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GENERALIZED LINEAR MIXED MODELS: AN APPLICATION 

Stephen D. Kachman and Walter W. Stroup 
Department of Biometry University of Nebraska-Lincoln 

Abstract 

The purpose of this paper is to present a specific application of the 
generalized linear mixed model. Often of interest to animal-breeders is 
the estimation of genetic parameters associated with certain traits. When 
the trait is measured in terms of a normally distributed response variable, 
standard variance-component estimation and mixed-model procedures can 
be used. Increasingly, breeders are interested in categorical traits (degree 
of calving difficulty, number born, etc.). An application of the generalized 
linear mixed to an animal breeding study of the number of lambs born 
alive will be presented. We will show how the model is determined, how 
the estimation equations are formed, and the resulting inference. 

Key Words: Generalized Linear Model, Categorical, Mixed Model, Variance Com
ponents. 

1. Introduction 

Researchers are often faced with analyzing data for which the assumptions of in
dependence and/or normality are not reasonable. When one of the assumptions is 
violated then, mixed models or generalized linear models may be used. Mixed models 
can model lack of independence with the use of random effects and generalized linear 
models can model a large class of distributions using link functions and variance func
tions. Difficulties arise when both the assumptions are not reasonable. Mixed models 
assume that the response variable is normally distributed and generalized linear mod
els assume the data are independently distributed. When both of the assumptions are 
not reasonable, generalized linear mixed models (GLMM) may be used. Generalized 
linear mixed models include random effects from mixed models with link functions 
and variance functions from generalized linear mixed models. GLMM estimators and 
tests are given in (Breslow and Clayton, 1993; Stroup and Kachman, 1994). 

Generalized linear mixed models are made up of several components. The flexi
bility in selecting the particular components to use allows for a variety of models to 
be analyzed. Random effects along with their covariances allow the modeling of a 
variety of experimental designs. In addition, the inclusion of random effects allows 
the modeling of variation arising from other sources such as Mendelian segregation 
of alleles. Inverse link functions allow for the modeling of non-additive effects. For 
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example, a logistic link function to model probabilities or a logistic growth curve to 
model growth. Letting the residual variance vary as a function of the mean allows 
modeling the heterogeneity arising from non-normal distributions. In addition, more 
complicated covariance structures allow the modeling of multivariate data including 
multinomial data. 

In Stroup and Kachman (1994) an overview of GLMM was given. The objective 
of this paper is to illustrate the process of using a GLMM to analyze a set of data. 
The paper will give a brief description of the features of a GLMM. Next a general 
introduction to threshold models as a special case of GLMM will be given. Finally a 
data set consisting of number of lambs born will be analyzed. 

2. Features of a Generalized Linear Mixed Model 

In this section the components of a GLMM will be briefly discussed. A more de
tailed overview can be found in Stroup and Kachman (1994). Three components of a 
GLMM are the linear predictor (1]), inverse link function (Jl = h( 1])), and conditional 
covariance matrix (R). 

The linear predictor, 1] = X f3 + Z U, is used to model systematic effects arising 
from the independent variables where f3 is a vector of fixed effects, U is a vector of 
random effects, and X and Z are known incidence matrices. Random effects are 
assumed to be normally distributed with mean 0 and covariance matrix G. It is 
important to note that the linear predictor does not include a random residual effect. 
The covariance matrix G is a function of set of variance components u. 

The inverse link function, Jl = h( 1]), is used to model the effect of the linear 
predictor on the conditional mean of the dependent variables given the random effects. 
For many models the value of the ith conditional mean will depend only on the ith 

linear predictor. Sometimes there will not be a one to one mapping. For example 
with ordinal data there is typically a single linear predictor for each individual and 
m observations per individual, where m is the number of ordered categories. 

The conditional covariance matrix, R, is used to model variability in the de
pendent variables around the conditional mean given the random effects. For many 
models the covariance matrix is a diagonal matrix. That is the dependent variables 
are conditionally independent and therefore their covariance is zero. The dependent 
variables may be correlated due to spatial variability or measuring multiple dependent 
variables on each individual. Furthermore, The covariance matrix may be singular as 
happens with multinomial data. 

2.1 Estimating Equations 

The estimating equations for the fixed and random effects are 

( X'H'R- HX X'H'R- HZ ) (~) (X'H'R-Y*) 
Z'H'R- HX Z'H'R- HZ + G-1 it = Z'H'R-y* (1) 
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where f3 is the estimate of the fixed effects, it is the predicted random effects, 
H = o/-t/orl' is the matrix of partial derivatives of the conditional mean with respect 
to the linear predictor, and y* = y - /-t + Hf/. Therefore, to estimate the fixed and 
random effects in a GLMM, three things will be needed: 1) the inverse link function, 
2) the residual covariance matrix, and 3) the partial derivatives of the inverse link 
function. 

2.2 Variance components 

Often the covariance matrix will also need to be estimated. When the response 
variables are normally distributed REML estimates of the variance components are 
obtained by solving the following set of equations 

u --u = tr -- uu ~/oG-l ~ [OG-1 E(~~)] 
O(Ji O(Ji 

(2) 

where E(itit) = G - Var(u - it) (Harville, 1977). 
When the response variables are not normally distributed or the inverse link func

tion is not linear the variance of the predicted random effects is difficult to obtain. 
Estimates of the covariance components can be obtained from the following estimating 
equations 

u--u-tr -- -~/oG-l ~ _ [OG-1 (G CUU)] 
O(Ji O(Ji 

where C Uu is the asymptotic covariance matrix of u - it (Harville and Mee, 1984). 

3. Threshold Model 

In this section a quick introduction to threshold models will be given. The details 
will be left for the next section when a specific example will be examined in more 
detail. Ordinal categorical data arises in numerous settings. The number of lambs 
born, calving difficulty scores, and fabric ratings are examples ordinal categorical 
data. Threshold models provide a means of modeling ordinal categorical data. 

For normally distributed response variables it is often reasonable to model the ef
fect of a set of independent variables as additive. That is a change in one independent 
variable will raise or lower the average of the dependent variable by a given amount. 
The challenge is then to estimate how large this amount is. 

When the data is categorical, it is often not reasonable to model the effect of a 
set of independent variable as additive. The effect of a set of independent variables 
is measured by their impact on the probability of falling into a certain category. The 
effect of a set of independent variables can be modeled as a cumulative effect. That 
is unless an individual falls above a certain threshold they will be observed in lower 
category. The effect of a change in one independent variable will be to raise or lower 
the threshold by a given amount. The challenge is then to estimate how large this 
amount is. 
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As with any GLMM three features need to be specified. First, the dependent 
variable is needed along with its conditional mean and variance. Second, the inverse 
link function is needed. Third, the linear model for the linear predictor is needed. 

4. Example 

In this section an example involving the number of lambs born will be used to examine 
the features of a GLMM in more detail. Number of lambs born to 276 ewes bred in 
1980 and giving birth to at least one live lamb will be used to compare the reproductive 
rates of Finn, Suffolk, and Targhee breeds. The ewe records included the sire and 
dam of the ewe, the age of the ewe, along with the breed of the ewe and number of 
lambs born alive. The number of lambs born was categorized as singles, twins, and 
triplets. Ewes giving birth to at least three live lambs were pooled into the triplet 
category. 

4.1 Dependent Variable 

The dependent variables for ewe i is 

(~1) if she gave birth to a single live lamb, 

Yi= (0°1) if she gave birth to two live lambs, 

and 

(o~) if she gave birth to at least three live lambs. 

Assuming conditional independence between ewes, the probability density func
tion for Y given the vector of random effects is 

(3) 

where 7rij = Pr(Yij = 1Iu). Written another way, 

3 

Pr(ylu) = Uexp[Lyij ln(7rij)], 
t j=l 

it is clear that the conditional distribution of y is a member of the exponential family. 
The conditional mean of Yi given u is 
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where 1ri = {7fij}. The conditional covariance matrix of y given u is 

R = E8 Diag( 1ri) - 1ri1r; 
z 

where is the usual direct sum operator and Diag(·) is a diagonal matrix. A conve-
nient generalized inverse of R is 

R- = EEl Diag( 1ri)-l 
z 

(McCullagh and NeIder, 1989). 

4.2 Linear Predictor 

The linear predictor is used to model factors that have a systematic effect on the 
dependent variables. It will be assumed that underlying effect of each of the inde
pendent variables will be the same for the three dependent variables. That is, factors 
that have a large effect on pushing a ewe over the threshold for having twins will also 
have a large effect on pushing a ewe over the threshold for having triplets. 

The linear predictor for ewe i (r;;) includes fixed effects for breed (Targhee, Suffolk, 
and Finnsheep), and age of the ewe (one, two, or at least three years old) along 
with random effects for sire of the ewe (100 sires) and dam of the ewe (244 dams). 
The random effects are assumed to be independently distributed as normal random 
variables with mean zero and variances 0"; and O"J respectively. It is important to 
note that while each ewe has three dependent variables there is only a single linear 
predictor for each ewe. 

4.3 Inverse Link Function 

The inverse link function is used to model the effect of the linear predictor on the 
conditional probability of having singles, twins, or triplets. Two approaches to select
ing an inverse link function are: 1) finding a process that could generate multinomial 
data and 2) looking at the properties the inverse link function has. 

The first approach is to find a process that could generate multinomial data. Start 
with a hypothesized random variable X with mean r;i and variance 0"2. If the random 
variable falls below the first threshold then the ewe will have a single live lamb, if 
the random variable falls below the second threshold but above the first threshold 
then the ewe will have twins, otherwise the random variable will fall above the second 
threshold and she will have at least three live lambs. The conditional probability that 
a ewe 'i will have singles, twins, or triplets is the probability a random variable X with 
mean r;i falls between the corresponding thresholds. The first approach is illustrated 
in Figure 1. 

Many choices exist for the distribution of the underlying random variable including 
the normal and logistic distributions. The normal distribution was selected. The 
normal distribution is consistent with our choice for the distribution of the random 
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effects. In addition the normal distribution will simplify our interpretation as will be 
seen in the results section. \Vithout loss of generality the variance of our underlying 
random variable will be set to one. The idea of a process that could have generated 
the multinomial data helps in formulating a model. However, it does focus attention 
away from the effect of the independent variables and onto a hypothesized underlying 
random variable. 

The second approach is to start with the properties the inverse link functions 
should have. Three properties the inverse link function should have are: 1) the mean 
should fall between zero and one, 2) singles under unfavorable conditions the prob
ability should be close to one, and 3) as conditions improve the probability should 
decrease to zero where larger 'f/i denote more favorable conditions. These properties 
describe a cumulative distribution function F( Tll'f/i) as a function of a location pa
rameter 'f/i. For triples we expect the opposite relationship, which is as conditions 
improve the probability should increase to one. For twins the probability of having 
twins should be highest for moderate levels of 'f/i. Last, the probability of having 
singles, twins, or triples should sum to one. The inverse link functions for singles, 
twins, and triples are summarized in Figure 2. 

As with the first approach many choices exist for the distribution selected. Look
ing at the properties of the inverse link function does add a level of abstraction. 
However, attention is focused on the effect of the independent variables as opposed 
to a hypothesized underlying random variable. 

The inverse link function selected was 

where <1>(.) is the standard normal cumulative distribution function. 
To complete the estimation equations for the fixed random effects 

derivatives of J.1, with respect to 17 is needed. The partial derivatives are 

H = ffiHi , 

where 

an ¢(.) is the standard normal density function. 

(4) 

the partial 

(5) 

Estimates of the thresholds will also be needed and can be obtained from the 
estimating equations 

(6) 

where T = oJ.1,/or'. The partial derivatives are 

T= {T;} 
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where 

(7) 

The estimating equations (6) are equivalent to the estimating equations in Misztal, 
Gianola and Foulley (1989). 

4.4 Computations 

SAS macros based on PROC MIXED (SAS Institute Inc., 1992) for analY>cing bi
nary data are not sufficiently general for analyzing three ordered categories. Using a 
FORTRAN program for analyzing mixed models as a basis, a FORTRAN program 
for analyzing ordinal categorical data was developed. Changes in the mixed model 
program included: 1) using H~Ri Hi in place of 1/CJ2 , 2) using H~RiYi in place of 
y;j CJ2, and 3) estimating the thresholds. 

Starting with a set of estimates for the fixed effects, random effects, variance com
ponents and thresholds the program iteratively updates the estimates. The fixed 
effects, random effects, and variance components are updated each iterate. The 
threshold estimates are updated after every five iterations. 

Each iterate starts by building the estimating equations (1) for the fixed and ran
dom effects, and the estimating equations (6) for the thresholds. For each observation 
H;Ri Hi, H;RiYi, T;RiTi' and T;Ri(Yi - ili + T/h) are obtained and used to 
update the estimating equations. After the equations have been built estimates of the 
fixed and random effects are obtained by solving (1). After updating the estimates of 
the fixed and random effects estimates of the variance components are obtained by 
usmg (2). Every fifth iteration estimates for the thresholds are obtained by solving 
(6) . 

5. Results 

An initial analysis was run which included separate effects for the nine Breed-Age 
combinations. Tests using Wald statistics for main effects and the two-way interaction 
are presented in Table 1. There were significant differences among the three breeds 
and among three ages (P < .001). However, the interaction between breed and age 
was not significant (P = .222). The model used for the remaining analyses did not 
include the interaction between breed and age. Estimates of the thresholds, variance 
components are in Table 2. Using a Wald statistic breed and age effects were highly 
significant (P< .001). 

Recall that ewes with a linear predictor below the lower threshold have at least a 
.50(/rJ chance of having singles and that ewes above the upper threshold have at least 
a 50% chance of having triplets. The F'innsheep breed was the only breed estimated 
to have over a majority of multiple births for all three age groups. For older ewes the 
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Finnsheep are expected to have three or more live lambs the majority of the time. 
The Targhee and Suffolk breeds had the lowest proportion of multiples. The Suffolk 
breed tended to have a larger proportion of multiples births compared to the Targhee 
(P < .1). Age of the ewe also played a large role, with the proportion of multiple live 
lambs increasing for older ewes. 

The effects of the independent variables on the observed scale are obtained using 
the inverse link function. The probability that a one year old Suffolk ewe will give 
birth to a single live lamb is 

. (71 - agel - breeds) E [<l>( 71 - agel - breeds - szre - dam)] = <l> V 
1 + (J'2 + (J'2 s d 

where agel is the age effect for a one year old ewe, breeds is the breed effect for a 
Suffolk ewe, sire is the random effect of a Suffolk sire, and dam is the random effect 
of a Suffolk dam. An estimate is then obtained by replacing the unknown parameters 
with their estimates yielding 

<l> ( -.29 + .92 + .31 ) 
VI + .014 + .036 

or 82%. Estimates for probability of having singles, twin, and triplets for the nine 
breed x age groups are given in Table 2 along with the sample proportions. 

6. Summary 

Generalized linear mixed models provide a framework that brings together linear 
mixed models and generalized linear models. The addition of a link function or an 
inverse link function to linear mixed models allows the researcher to model the mean 
of a response variable separately from residual variance of a response variable. The 
addition of random effects to generalized linear models allows the researcher to model 
experimental designs such as split plots. 

Besides modeling underlying systematic effects, a researcher needs to select an 
appropriate distribution for the response variable and an inverse link function. After 
taking partial derivatives of the inverse link function estimating equations for the 
fixed and random effects can be readily obtained. Because of the similarity between 
the estimating equations for a generalized linear mixed model and the mixed model 
equations, mixed model software can be modified to analyze generalized linear mixed 
models. Currently software with the flexibility of PROC MIXED (SAS Institute Inc., 
1992) is not generally available for the analysis of generalized linear mixed models. 

Many questions still need to be addressed. When there are additional parameters 
to be estimated how should uncertainty in their value be incorporated in the analysis? 
How well do these tests and estimators perform in small samples? How well do 
different designs perform? How sensitive are results to model miss-specification? 
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Figure 1: Probability that ewe i has twins. The probability is calculated by finding 
the probability that random variable X with mean T/i falls between the first threshold 
Tl and the second threshold T2. 
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Figure 2: Inverse link functions for ewe i where 'T/i is the linear predictor for ewe i and 
7rij is the probability the ewe i has j live lambs given the random effects. Thresholds 
T1 and T2 denote the 50% probability cutoffs for singles and triples respectively. 
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Table 1: Test of fixed effects for model including an interaction between age and 
breed. 

Source p-value 
Breed 
Age 
BreedxAge 

2 80.26 
2 41.89 
4 5.71 

< .001 
< .001 

.222 

Table 2: Estimates of thresholds, variance components, and fixed effects for number 
of lambs born alive. 

Thresholds 
Lower -.29 Upper 1.48 

Variance Components 
Sire .014 Dam .036 

Breed effects Age effects 
Targhee -.71 1 year -.92 
Suffolk -.31 2 year .19 
Finnsheep 1.01 ;:::3 year .73 
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Estimator 
Sample GLMM 

Number Born Number Born 
Breed Age n 1 2 ~3 1 2 ~3 

Targhee 
1 7 100 0 0 91 9 0 
2 23 65 35 0 59 39 3 
~3 40 28 68 5 38 54 8 

Suffolk 
1 8 75 25 0 82 18 0 
2 13 54 46 0 43 51 6 
~3 28 21 61 18 24 61 15 

Finnsheep 
1 65 32 62 6 36 56 9 
2 33 9 36 54 7 54 39 
~3 59 7 36 58 2 38 60 

Table 3: Estimated and sample percentages of one, two, or at least three live births 
for Targhee, Suffolk, and Finnsheep ewes at one, two, or at least three years old. 
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