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AUTOLOGISTIC MODEL OF SPATIAL PATTERN OF PHYTOPHTHORA 
EPIDEMIC IN BELL PEPPER: EFFECTS OF SOIL VARIABLES ON 

DISEASE PRESENCE 

M. L. Gumpertz, J. Graham, and J. B. Ristaino 
North Carolina State University 

ABSTRACT 

The pathogen Phytophthora capsici causes lesions on the crown, stem, and 
leaves of bell pepper, and rapidly causes the plant to die. The spatial patterns of 
disease in an agricultural field contain information about pathogen dispersal 
mechanisms and can be useful for developing methods of control of disease. Soil 
water content, soil pathogen population density, and disease incidence data were 
collected on a 20 x 20 grid in two naturally infested commercial bell pepper 
fields. In one field the initial pattern of disease closely matched the soil water 
content pattern and disease developed in areas where the pathogen population 
levels were high. In the other field no such correspondence was obvious from 
maps of disease and soil water content. 

The auto logistic model is a flexible model for predicting presence or 
absence of disease based on soil water content and soil pathogen population, while 
taking spatial correlation into account. In the autologistic model the log odds of 
disease in a particular quadrat are modeled as a linear combination of disease in 
neighboring quadrats and the soil variables. Neighboring quadrats can be defined 
as adjacent quadrats within a row, quadrats in adjacent rows, quadrats two rows 
away, and so forth. The regression coefficients give estimates of the increase in 
odds of disease if neighbors within a row or in adjacent rows show disease 
symptoms; thus we obtain information about the degree of spread in different 
directions. The coefficients for the soil variables give estimates of the increase in 
odds of disease as soil water content or pathogen population density increase. In 
this problem, soil water content is also highly correlated over quadrats. This 
introduces a kind of collinearity between water content and the disease in 
neighboring quadrats, making estimation and interpretation of the parameters of 
the auto logistic model more difficult. We discuss fitting and evaluating the 
autologistic model when the covariates are themselves spatially correlated. 

Additional keywords: spatial correlation, disease incidence, Markov random field, 
multidimensional binary data, pseudolikelihood estimation. 

1. INTRODUCTION 

Statistical models of the spatial patterns of disease in an agricultural field 
can be useful for understanding dispersal mechanisms and for developing methods 
of control of disease. This paper describes and demonstrates the use of the 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1994/proceedings/6



Applied Statistics in Agriculture 61 

autologistic model for spatial pattern of Phytophthora epidemics in bell pepper. 
There are two features of the autologistic model that make it well suited to study 
of spatial pattern of disease: (1) it applies specifically to binary response variables 
such as disease presence or absence; and (2) explanatory variables can be 
incorporated into the model. 

Statistical methods for continuous response variables have been more 
widely used in plant disease research than models developed specifically for binary 
data. For example, spatio-temporal autocorrelation analysis, described in 
Reynolds and Madden (1988), and kriging (see Lecoustre et al. 1989) have been 
proposed for describing spatial correlations in disease epidemics. These methods 
involve modeling the spatial or spatial-temporal covariance structure of the disease 
data with autoregressive-moving average type models and variogram models, 
respectively. They are used to study the effects of distance (and time) on the 
spread of the epidemic and to map the disease. Although designed for data 
measured on a continuous scale, they have also been applied to categorical data. 

The model upon which this paper focuses, the autologistic, was originally 
developed by physicists to model ferromagnetism, which involves binary data on a 
lattice (Cressie 1991). Besag (1972, 1974) developed much of the statistical theory 
of autologistic models and gave some examples involving plant disease. Some 
autologistic models incorporating time have also been proposed (Besag 1977, 
Chadoeuf et al. 1992). For example, Besag (1977) demonstrated the use of the 
auto logistic model to describe incidence of footrot in endive as a function of 
disease in neighboring plots at both the current and the previous times. The 
autologistic model has also been extended to ordered categorical data, such as 
disease rankings on a scale of 1 to 4 (Strauss 1992). Smyth et al. (1992) applied a 
similar model to anthracnose progress in tropical pasture legumes. 

The studies cited above modeled spatial pattern of disease as a function 
solely of proximity of diseased plants or of spatial and temporal relationships, but 
did not incorporate other environmental information. Measures of pathogen 
population density in the soil and environmental covariates, such as soil moisture, 
microclimate variables, elevation gradient of the field, soil nutrient concentrations, 
and soil compaction, should provide additional information for predicting the 
presence or absence of disease and elucidating the conditions under which the 
epidemic spreads. Concomitant information can theoretically be incorporated into 
any of the spatio-temporal autocorrelation, kriging and logistic regression models. 

In the autologistic model presented here, the log odds of disease presence 
in a particular quadrat, also called the logit, 

I °t () I (pr( disease present)) Ogl p = n , 
Pre disease absent) 
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is modeled as a linear combination of soil water content and pathogen population 
density in the quadrat, and disease presence in neighboring quadrats. In the next 
section we describe the autologistic model with covariates in more detail and 
briefly discuss available methods of estimation of the parameters. Section 3 
demonstrates the fitting and interpretation of this model for a Phytophthora 
epidemic in two naturally infested fields of bell pepper. Section 4 offers some 
practical methods for determining how well this model captures the spatial 
relationships and highlights some important issues in practical application of this 
model to plant disease epidemics. Finally, we list some problems in actual 
application of these methods that call for future research. 

2. THE AUTOLOGISTIC MODEL 

In the autologistic model the conditional probability of occurrence of 
disease depends on disease in neighboring quadrats. The definition of neighboring 
quadrats is very flexible and can be tailored to the particular situation under study. 
For rectangular lattices there are some standard systems of neighbors. A first 
order system includes only the four adjacent quadrats in the set of neighbors, two 
within the row and two in adjacent rows. A second order model includes the four 
diagonal neighbors in addition to the quadrats of the first order model. A third 
order model includes quadrats two rows or columns away (Besag 1974). 

* 
* * * * * * * 

* x * * x * * * x * * 
* * * * * * * 

* 

first order second order third order 

However, it is not necessary to use the standard neighbor systems and it is not 
necessary that the lattice have any regular shape. What is required is that a set of 
neighbors be defined for each quadrat in the lattice, and if quadrat i is a neighbor 
of quadrat j, the converse is also true. 

The autologistic model is a simple generalization to spatial data of the standard 
logistic model for independent binary data. In the standard logistic model for 
binary data the log odds of disease are modeled as a linear function of some 
regressor variables, Xl' ... , ~. 

where p is the probability of a "success"; e.g., the probability of disease being 
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present. 
In the context of designed experiments with plants grown in pots, if 

inoculum were introduced into each pot individually and all pots were physically 
separated from each other, then the observations would be independent of each 
other, the standard logistic model (1) would be appropriate, and the parameters of 
model (1) could be estimated by maximum likelihood using standard software such 
as SAS® PROC LOGISTIC. 

In the context of a disease epidemic in an agricultural field, quadrats are 
spatially correlated. One general way of incorporating spatial correlation into 
models is to predict the response at a particular site conditioned on the responses 
at neighboring sites. For binary data, if the response at site i depends on r 
covariates and on the responses in neighboring sites in a pairwise fashion, then the 
conditional probability of a particular response, Yi = 1 (disease present) or Yi = 0 
(disease absent), ~ven the observed amount of disease in the neighbors (the set of 
neighbors of the i site is denoted Ni) is: 

Pr(Yi = Yi I Yj' responses at neighboring sites j -:F- i) 

Since y takes the value 1 if disease is present, the log of the odds of disease being 
present is: 

r 
logit(Pi I Yj' for j -:F- i) = L f3 kXik + ,L YjYj , 

k=O jENj 

which looks just like the standard logistic model (1) with the addition of terms for 
disease in neighboring quadrats (Yj ). This model has flexibility in that neighbors 
may be defined in any way that makes sense, the observations do not necessarily 
need to be taken on a rectangular lattice, and covariates (~k) can be 
incorporated. The covariate terms in the autologistic model are not necessarily 
required to enter in a linear fashion. The general form of the autologistic model 
IS 

logit(Pi I Yj" for all other sites j -:F- i) = aiYi + L YiiYiYj ' 
jENj 'J 

(2) 
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Besag (1974). The parameters (3i and Yij can be different for every node, i. 
Consequently, the parameter ai may be a linear combination of covariates, as in 
model (2), or ai may be some nonlinear function of covariates, f(~). Furthermore, 
the dependence parameters Yij can differ for different neighbors j E Ni, which 
allows different amounts of dependence in different directions. The dependence 
structure is not completely general, however, being limited to pairwise dependence 
among sites. A completely general covariance structure would include three-term 
products of neighbors, four-term products, and so on. Hence the covariance 
structure of the autologistic model may be too restrictive to fit a particular set of 
data well. 

In logistic regression models the regression coefficients contain information 
about the effects of changes in the covariate values on the odds of disease. In 
model (1) the log odds of disease in a quadrat appears as a function of k regressor 
variables, Xl' ... , Xk. If Xl increases by one" unit while the other variables remain 
constant, the log odds of disease increases by (31 units. The odds ratio for an 
increase of one unit is defined as 

odds ratio = 
odds of disease if X I = x + 1 

odds of disease if Xl = x 

Thus the odds ratio is ef31. If the odds ratio = 1.5 for increasing Xl by one unit, 
the odds of disease increase 50% for every unit increase in Xl' 

The method of choice for estimating parameters of the ordinary logistic 
regression model is maximum likelihood. In the autologistic model for spatially 
correlated responses the observations are not independent and it is not possible to 
write the likelihood function in closed form. Besag (1975) coined the term 
"pseudolikelihood" (PL) for the function that would be the likelihood were the 
data independent, 

n 

PL({3, Y I Y) = II (Pi I yj' for J ~ i). 
i=l 

Maximization of the pseudolikelihood function as though it were a true likelihood 
function is simple to implement because it just involves fitting the autologistic 
model using standard software for ordinary logistic regression, such as SAS® 
PROC LOGISTIC (Strauss 1992). 

Before implementing the pseudo likelihood method, it is necessary to first 
create a variable for each type of neighbor. For instance, if your model includes a 
term for adjacent quadrats within the rows (W), and another term for adjacent 
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quadrats one row apart (A), then two new variables containing these disease 
values must be created. These new variables are most easily constructed using a 
matrix programming language such as SAS® IML. First create an array of disease 
values representing the actual field. Then shift the array in the desired directions 
to create a new array of neighbor values for each distance and direction, and 
finally output these neighbor values to your ~ata set. 

The pseudolikelihood estimates have good statistical properties when the 
spatial dependence is not too large (Strauss 1992, Geyer 1991). Be aware, 
however, that the standard errors of regression coefficients from standard logistic 
regression software are not correct for the autologistic model. Hence, Wald-type 
tests of hypotheses cannot be constructed using the output from PROC 
LOGISTIC and, furthermore, likelihood ratio-type tests should not be constructed 
using pseudolikelihood values. In ordinary logistic regression, large sample 
likelihood ratio tests are constructed by maximizing the likelihood function under 
two competing models, one nested within the other, and comparing twice the 
difference between the logarithms of the likelihoods to a quantile of the Chi
square distribution. If pseudolikelihood values are substituted for true likelihood 
values in this procedure, the resulting statistic has a distribution far from Chi
square (Graham 1994), so should be avoided. 

A new method of estimation, Monte Carlo maximum likelihood, has 
recently been developed which gives good estimates of the parameters even when 
the correlations among neighboring plots are extremely high (Geyer 1991), and 
which provides standard errors and tests of hypotheses (Graham 1994). At the 
current time, there are still practical difficulties in implementing this method and 
no commercial software for Monte Carlo maximum likelihood estimation exists. 
In this paper all parameters have been estimated using the maximum 
pseudolikelihood method. 

3. APPLICATION TO PHYTOPHTHORA EPIDEMIC 

The pathogen Phytophthora capsid Leonian causes lesions on the crown, 
stem, and leaves of bell pepper, and rapidly causes the plant to die. Ristaino et 
al. (1993, 1994) and Larkin et al. (1994) described the spatial pattern of 
Phytophthora epidemics in six naturally infested commercial bell pepper fields. 
Ristaino et al. found that the spatial correlations of disease incidence down rows 
and across rows contain information about whether the disease is spread by water, 
by root-to-root contact, or aerially. They demonstrated that disease generally 
tends to form longer clusters along rows than across rows, and from this concluded 
that movement of surface water within furrows is important in spreading inoculum. 
The spatial and temporal order in which wilt occurs and stem and crown lesions 
develop provide further clues to the methods of dispersal (Ristaino et al. 1994). It 
appears that root infections spreading to the crown are the most frequent paths of 
infection. Stem, leaf, and fruit infections were much rarer or nonexistent, 
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indicating that splash dispersal was not as important for spreading inoculum. 
Larkin et af. (1994) presented spatial correlograms and crosscorrelograms for 
disease severity and soil variables in the Phytophthora study. The correlograms 
show that the distance over which quadrats are correlated increases steadily over 
time and reveal some correspondence between disease and the soil variables. 

Soil water content measurements and leaf disk assays of soil pathogen 
population were collected for two of the naturally infested commercial bell pepper 
fields that were studied by Ristaino et af. (described in detail in Ristaino et af. 
1993). Each field was a square lattice of 20 rows by 20 quadrats with 2 to 3 bell 
pepper plants per quadrat. The response variable of interest was presence or 
absence of disease in a quadrat. If any plant was wilted or dead or had lesions on 
stem, crown, or leaves, disease was considered to be present in the quadrat. 
Disease presence or absence was recorded for each quadrat on 9 dates throughout 
the growing season, from 6/16/92 to 8/5/92. Soil water content (%) was measured 
in each quadrat of field 1 on 7/2/92 and fiel" 2 on 6/22/92, number of leaf disks 
colonized (out of five) was counted in each quadrat on two dates: 6/29/92 and 
7/29/92 for field 1 and 6/19/92 and 8/5/92 for field 2. 

For one of the fields (field 2) the initial pattern of disease closely matched 
the soil water content pattern and disease developed in areas where population 
density of Phytophthora in the soil was high (Fig. 2). For the other field (field 1) 
no such patterns are obvious from the maps of soil water content and number of 
leaf disks colonized (Fig. 1). The patterns of soil water content were quite 
different in these two fields. Field 2 had a distinct wet corner and disease was 
present in most of the quadrats in this corner from the first sampling date. Field 
1 was wetter overall (mean water content = 10.8%, compared to field 2 mean 
water content = 8.8%) but more homogeneous with wet quadrats dispersed 
throughout the field (field 1 std. dev. = 1.82, field 2 std. dev. = 2.39). 

As a preliminary step we fit the logistic model 

to the data from each quadrat for the last sampling date, where M = soil water 
content, L1 = number of leaf disks colonized in June, L2=number of leaf disks 
colonized in late July or early August, and the subscripts i and j indicate row and 
quadrat respectively. All models were fit to the inner 16 X 16 lattice of 256 
quadrats, so that models involving adjacent quadrats and quadrats two spaces 
away could be accommodated. In each field one quadrat had a measured water 
content value greater than 25%, which was far from the distribution of remaining 
water content values, so was omitted from all regression and correlation 
computations, and 4 or 5 water content values were missing altogether. The 
preliminary model (MODELl) ignores the spatial nature of the data and is used 
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to check whether spatial correlations exist in disease incidence among neighboring 
quadrats after accounting for the effects of soil water content and pathogen 
population in the soil. 

Before doing any regression, disease incidence showed fairly high 
correlations (r = .47 and r = .55 in fields 1 and 2, respectively) between adjacent 
quadrats within a row on the last sampling date. The lag one autocovariance 
between adjacent quadrats within a row is computed as the covariance between 
the "tail" and "head" variables, where the tail variable is the response in quadrats 3 
through 17 and the head variable is the response in quadrats 4 through 18. 

1 18 17 [ 1 18 17 1 [ 1 18 18 1 
C(l) = 16.15.E .EYiiYiJ'+1 - 16 15 E EYii 16 15 E EYii , 

l =3 ] =3 ~ • i =3 j =3 'J • i =3 j =4 'J 

The spatial autocorrelation is computed by dividing C(l) by the product of the 
"head" and "tail" standard deviations. After fitting the logistic model for the 
effects of soil water content and the leaf disk assays, ignoring spatial correlations 
(MODELl), the Pearson residuals showed correlations between neighboring 
quadrats within a row of .44 and .35 for fields 1 and 2, respectively (Figure 3). 
The reduction in correlation from .55 to .35 in field 2 indicates that a large part of 
the spatial correlation in disease incidence may be attributable to the 
environmental variables soil water content and Phytophthora population level. In 
field 1 the correlation between adjacent quadrats does not appear to be related to 
these variables. Pearson residuals, 

Xij = 
Yij - Pij 

J~j(l - ~j) 
are standardized differences between the observed response (Y = 1 for disease 
present, Y = 0 otherwise) and the predicted probability of disease. 

In some settings spatial correlations can be completely eliminated by 
regression on covariates. In the present application, however, disease is actually 
spread from one plant to another, so it is likely that, even after taking the soil 
variables into account, the disease status of the neighboring quadrats would be an 
important predictor of disease presence. After verifying that the Pearson residuals 
were not free of spatial correlation, terms for disease in adjacent quadrats were 
added to MODELl to form a second order autologistic model. 

In this model Wij = Yi,j + Yi,j + l' the numbe~ of diseased quadrats of the two 
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adjacent quadrats within the same row, ~j = number of diseased quadrats of the 
two adjacent quadrats in neighboring rows, Dijl = number of diseased quadrats of 
the two diagonal quadrats in the (1,1) and (-1,-1) direction, and Dij2 = number of 
diseased quadrats of the two diagonal quadrats in the (-1,1) and (1,-1) direction. 
The types of neighbors of site Sij are diagrammed below; notice that the rows are 
numbered from right to left to match the actual field layout. 

Row 

i + 1 i i-I 

j + 1 D" l IJ W·· IJ D" 2 IJ 
Quadrat j ~j S·· IJ ~j 

j - 1 D" 2 IJ W" l IJ D" l IJ 

Including four separate terms for neighbors allows us to examine whether 
correlations across rows are as strong as those within rows, and whether there are 
any diagonal gradients in the field. If we thought that there was a gradient in a 
different direction, such as the (1,2) direction, we could add terms to the model to 
capture the expected pattern. 

Finally, we fit a pure autologistic model without covariates to check 
whether predictions based on solely disease in the neighboring quadrats would be 
adequate. 

The estimated odds ratios (J) and the number of quadrats misclassified for each 
fitted model for field 1 on the last sampling date are shown in Table 1. For any 
given quadrat, if Pij > .5" disease was predicted to be present. The 
misclassification rate is the proportion of quadrats for which the predictions do 
not match the disease status actually observed. 

In field 1, within-row effects were pronounced and some diagonal trend 
across the field was seen. The estimated odds of disease were over four times 
higher if one neighboring quadrat within the-row was diseased than if the two 
neighbors were disease-free (MODEL 3, Table 1), with all other variables held 
constant. Disease in neighboring rows appeared to have little effect on disease 

presence (odds ratio exp{j3} approximately equal to one). The soil water content 
and leaf disk data did not appear to be helpful in predicting disease presence or 
absence, as the odds ratios for water content and leaf disk assays were all close to 
one. Fitting the autologistic model was successful in reducing the residual spatial 
autocorrelation (Fig. 3), but not completely successful in reproducing the spatial 
pattern of disease (Fig. 4). The percent of quadrats misclassified was 21 or 22% 
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regardless of whether the soil variables were included in the autologistic model or 
not (compare MODELs 2 and 3 in Table 1). 

In field 2 there was a clear visual correspondence between the maps of soil 
water content and disease incidence (Fig. 2), with the southeast corner having 
both high soil water content and high disease incidence. The second order 
auto logistic model with covariates (MODEL 2) was fitted to the field 2 data for 3 
sampling dates: 6/25/92, 7/13/92, and 8/4/92 (Table 2). The relationship with water 
content showed up most strongly on 6/25/92, which was just 3 days after the soil 
water content measurements were taken, and decreased as time went on. The 
relationship between disease and the number of leaf disks colonized in the 6/19/92 
assay was fairly strong early in the season and weak late in the season. For 
example, at the 6/25 sampling date, the estimated odds of disease if one leaf disk 
was colonized was 48% higher than if no leaf disks were colonized. At the end of 
the season, the leaf disk assay of 8/5/92 was a better predictor of disease than the 
early leaf disk assay, and the odds of disease were estimated to be about 60% 
higher if the number of leaf disks colonized was increased by one. 

The most striking relationships in the autologistic models for field 2 are 
those between diagonally adjacent quadrats. Soil water content also shows a 
diagonal trend in this field (Figs 2, 5). The estimated relationships between the 
soil variables and disease are weaker than might be expected, and in particular, 
much weaker than the relationship among disease states in neighboring quadrats. 
When spatial correlations are ignored (MODELl), the effects of water content 
and the leaf disk assays appear stronger (Table 3). However, MODELl is clearly 
not adequate because strong spatial correlations remain after regressing disease 
incidence on soil water content and the two .leaf disk assays (Fig. 3). When terms 
for disease in neighboring quadrats are omitted from the model (MODELl), the 
effects of soil water content and the leaf disk assays are biased upward. This type 
of bias in regression parameters may be expected when the response depends on 
disease in neighboring quadrats and the covariates are also spatially correlated. 
There is high correlation between soil water content levels in neighboring diagonal 
quadrats (Fig. 5) and there is a discernible relationship between water content in 
one quadrat and disease in the diagonal neighbors (Fig. 5). 

MODEL2 does a better job of predicting disease for field 2 than for field 
1, with a misclassification rate of 16%. If we explore further, and consider models 
that include soil water content and leaf disk assays of neighboring quadrats as well 
as in the current quadrat, and if we expand our definition of neighbors to include 
quadrats two spaces away, we can find some models that have misclassification 
rates of 10 to 12 percent. There are several models that do well, so it is difficult 
to choose among them, and it is difficult to interpret the coefficients in these more 
complicated models. The simplest model that gave a substantially improved 
misclassification rate included nine terms: 
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'" logit (Pij) = -4.48 + O.66Mij + O.61L2ij + 1.26~j + 2.16Dij2 + O.74Wij2 

- 0.48MijA1 - 0.49MijW2 + O.66MijA2 + O.74L2ijD1, (6) 

where Wij2 indicates disease two quadrats away within the same row, MijA1 = 
water content in adjacent rows, MijW2 = water content two quadrats away within 
the same row, MijA2 = water content two rows away and L2i'Dl = leaf disk assay 
2 in the diagonal (1,1) direction. Fitting this model reduced t~e misclassification 
rate to 12%. When the values of water content and leaf disk assays for 
neighboring quadrats are included in the model, the values of the coefficients of 
the soil covariates increase; however, the relationship between a covariate and 
disease cannot be inferred from one coefficient alone in these more complicated 
models. The instability in the coefficients for the soil variables is probably an 
indication that the auto logistic model is not completely adequate. 

4. EVALUATION OF FIT 

The second order autologistic model was successful in decreasing the spatial 
autocorrelation in both fields studied. The maps of misclassified quadrats show 
that this model had difficulty predicting disease status at the boundary between 
diseased and disease-free areas. If the autologistic model does not fit a set of 
data well, it is possible that an autologistic model is appropriate, but that a higher 
order neighbor system is needed. Another possibility is that the assumption of 
pairwise dependence, which is basic to the autologistic model, is not adequate; i.e., 
that disease in a quadrat depends on some products or more complicated 
functions of neighboring disease values. These deficiencies of the model can be 
checked by examination of the prediction errors. For example, in field 2 there 
were 42 misclassified quadrats after fitting the autologistic model with covariates 
(MODEL 2). Categorizing these according to the disease status of the neighbors 
two quadrats away reveals that 79% of them had one diseased neighbor two rows 
away (Table 4). However including the third order neighbors in the autologistic 
model did not improve the predictive ability of this model. The third order model 
with covariates misclassified 41 of the 253 quadrats, which was not noticeably 
better than the misclassification rate of MODEL2. 

Crossvalidation provides another tool for evaluating the predictive ability of 
a model, for examining the stability of parameter estimates, and for checking for 
influential quadrats. For crossvalidation we refit the autologistic model 256 times, 
omitting one quadrat each time, and then predicted disease presence or absence 
for the omitted quadrat. If the model included neighboring disease or soil 
variables, the neighbor quadrats were also omitted from the model fitting. Thus, 
the dataset used to fit the model for prediction of a given quadrat was completely 
free of the point to be predicted. The numbers of quadrats misclassified by 
crossvalidation were very similar to the simple misclassification rates reported in 
Tables 1 and 3: 25% for field 1 MODEL3, 19% for field 2 MODEL2, and 10% 
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for the 9-term model (6) for field 2. The signs and general magnitudes of the 
regression coefficients did not vary substantially when anyone quadrat was 
omitted from fitting the model. For example, in field 2 the diagonal (-1,1) 
direction still had the largest coefficients, followed by disease in the adjacent row 
neighbors; the coefficients for the other diagonal direction and the neighbors 
within rows were relatively small, and the second leaf disk assay appeared to be 
the most important of the soil covariates. 

71 

Collinearity among the regressor variables causes difficulty in estimation 
and interpretation of the coefficients in logistic regression models just as in linear 
regression models. In autologistic regression there is also the potential for the 
disease in neighbors in different directions to be highly correlated with each other. 
This has happened on the last sampling date in field 2. Visually, it appears that 
disease status runs in strips down rows; however the fitted model gives much 
higher odds of disease if an adjacent row is diseased than if an adjacent quadrat 
within the same row is diseased. Using the measure of association, y, which 
estimates the difference between the probabilities of concordance and discordance 
(Agresti 1990), the number of diseased neighbors one quadrat away within the 
row, Wij = (Yi,j-l + Yi,j+l)' is highly correlated with the number of diseased 
neighbors in every other direction: across rows y = .85, within the row two 
quadrats away y = .87, diagonal (1,1) direction y = .84, and diagonal (-1,1) 
direction y = .87. In contrast, for field 1 the corresponding correlations are much 
lower: across rows y = .58, two quadrats away within the row y = .78, diagonal 
(1,1) Y = .64, and diagonal (-1,1) Y = .57. Cross-classifying the numbers of 
diseased quadrats in different directions reveals that in field 2 it was very rare that 
a quadrat had two diseased neighbors within a row but no disease in the adjacent 
row quadrats, and vice versa (Table 5). Also, if a quadrat had two diseased 
within-row neighbors, it most often had 2 diseased neighbors in any other 
direction. 

This collinearity does not show up in standard regression diagnostics, 
probably because of the categorical nature of the regressor variables. The result, 
however, is that the regression coefficients may not give meaningful estimates of 
the odds ratios. The model may still be a good predictive model, but the 
parameter estimates cannot stand alone. As a demonstration of the difficulty of 
fitting the second order autologistic model to the field 2 data and interpreting the 
coefficients, we refit MODEL2 using Monte Carlo maximum likelihood. For the 
MCML estimation missing water content values were replaced by the mean of 
their two within-row neighbors. The parameter estimates for the two estimation 
methods are quite different (Table 6), but the misclassification rates are nearly 
identical. Consequently, it would not be wise to conclude that the odds of disease 
depends more on neighbors in adjacent rows than within the row (or vice-versa) 
for this agricultural field. 
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5. SUMMARY 

This paper has demonstrated the use of a logistic model for describing the 
spatial pattern of Phytophthora epidemics in bell pepper, while incorporating soil 
covariates and spatial correlation. The autologistic approach is intuitively 
reasonable. If a low-order model fits well, the parameter estimates give a concise 
summary of the factors affecting the odds of disease. If no low-order model fits, it 
may be that a logistic or probit model with another type of spatial correlation 
pattern would be appropriate (see e.g. Breslow and Clayton 1993). One aim of 
this paper, in addition to showing the autologistic model, has been to bring models 
that are specifically developed for binary data to the attention of researchers in 
the plant sciences. These models are not as familiar, and statistical theory and 
software for them tend not to be as well developed as for models for continuous 
response variables, but they are rapidly becoming more available. 

For autologistic models specifically, there are many questions that remain 
to be answered. The method of estimation demonstrated (maximum 
pseudolikelihood) is simple to implement, but has two major practical deficiencies: 
1) lack of standard errors for parameter estimates; and 2) lack of formal tests of 
hypotheses about the parameters. In the future, these two deficiencies can be 
remedied by use of Monte Carlo maximum likelihood estimation. The lack of 
standard errors is particularly important for interpreting the estimated coefficients. 
As a case in point, the estimates of odds ratios given in Section 3 can only be 
interpreted as guides to the direction and magnitude of changes in odds because 
there are no estimates of precision for them. 

Practitioners also require methods for comparing the covariance structure 
imposed by the autologistic model with other models of spatial correlation. With 
Monte Carlo maximum likelihood, tests coul~ be done to determine whether the 
pairwise-only dependence structure is adequate by adding products of neighbors to 
the autologistic model. This may not be, in the end, a practical way of detecting 
departures from the auto logistic covariance structure; because the number of 
forms that departures could take is so large. We also need ways of determining 
whether neighboring values of the covariates should be incorporated into the 
model. It may be possible to adapt time series methods for identifying the 
number of lags of covariates to spatial problems. 

Although no formal tests for aptness of the model are available for use 
with pseudolikelihood estimation, much can be learned from examination of the 
fitted model, the Pearson residuals, and the prediction errors. The following plots 
and tables are useful for studying whether the fitted model adequately captures 
the spatial correlation structure: 1) correlograms of the Pearson residuals; 2) 
crosstabulations of the number of misc1assified quadrats according to numbers of 
diseased neighbors omitted from the model; and 3) maps of the misc1assified 
quadrats. The maps of misc1assified quadrats and the numbers of misc1assified 
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quadrats can also be compared to those for higher order models to determine 
whether the fitted neighborhood structure is large enough. Crossvalidation is 
another useful tool, and the quadrats misclassified in crossvalidation can be 
mapped and crosstabulated in the same ways as the simple misclassification errors. 
Finally, it is important to view the estimated odds ratios with a critical eye. If they 
seem unreasonable, examination of the covariates and the disease states of the 
neighbors via correlograms, descriptive plots and tables may shed light both on the 
relationships among the variables and on the reliability of the parameter 
estimates. 
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Table 1. Field 1 on 7/29/92. Estimated odds ratios (/3) and proportion of 
quadrats misc1assified from fitted autologistic models, MODELl, MODEL2, and 
MODEL3. 

Soil 6/29 7/29 Within- Across Diago- Diago-
Inter- Water Leaf Leaf Row Rows nal nal Miss-

Model cept Content Disk Disk Disease Disease (1,1) (-1,1 ) Class 

MODELl 0.22 1.08 1.19 1.16 85/252 

MODEL2 0.11 0.97 1.16 1.13 4.17 1.07 1.83 1.22 54/252 

MODEL3 0.086 4.21 1.08 1.84 1.24 57/256 

Table 2. Field 2. Estimated odds ratios (/3) from fitted MODEL2 for three 
sampling dates. 

6/22/92 
Water 6/19/92 8/5/92 Within- Across- Diagonal Diagonal 

Date Intercept Content Leaf Disk Leaf Disk Row Rows (1,1) (-1,1) 

6/25/92 0.002 1.35 1.48 1.14 1.29 1.30 3.41 2.21 

7/13/92 0.01 1.14 1.42 1.12 2.31 0.57 2.59 4.09 

8/04/92 0.01 1.12 1.19 1.63 1.40 3.02 1.25 4.48 

Table 3. Field 2, last sampling date, 8/4/92. Estimated odds ratios, /3, and 
proportion of quadrats misc1assified from fitted autologistic models, MODELl, 
MODEL2, and MODEL3. 

Soil 6/19 8/5 Within- Across- Diago- Diago-
Water Leaf Leaf Row Rows nal nal Mis-

Model Intercept Content Disk Disk Disease Disease (1,1) (-1,1) class 

MODELl 0.019 1.40 1.41 1.97 63/253 

MODEL2 0.011 1.12 1.19 1.63 1.40 3.02 1.25 4.48 42/253 

MODEL3 0.039 1.57 4.55 1.23 4.77 42/256 
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Table 4. Field 2. MODEL2. Quadrats misc1assified. 

Number diseased two Number of Diseased quadrats two rows away 
quadrats away within 

0 1 2 the row 

0 3 11 3 

1 1 8 1 

2 1 14 0 

total 5 33 4 

Table 5. Field 2. 8/4/92. Cross-classification of numbers of diseased neighbors. 

Across-Rows Within-row, 2 
Within- 1 row away quadrats away Diagonal (1,1) Diagonal (-1,1) 
Row 0 1 2 0 1 2 0 1 2 0 1 2 

0 90 30 3 100 21 2 88 32 3 89 34 0 
1 16 28 14 19 22 17 14 34 10 17 30 11 

2 1 31 43 4 16 55 4 27 44 2 28 45 

Table 6. Field 2. 8/4/92. MODEL2 parameter estimates and number of quadrats 
misclassified for Monte Carlo maximum likelihood and maximum pseudolikelihood 
estimation. Standard errors for Monte Carlo maximum likelihood estimates are 
given in parentheses. 

Soil 6/19 8/5 Within- Across- Diago- Diago- Mis-
Water Leaf Leaf Row Rows nal nal class 

Method Intercept Content Disk Disk Disease Disease (1,1) (-1,1) (n=253) 

PL -4.52 0.068 0.23 0.45 0.53 1.18 1.48 0.14 42 
MCML -5.33 0.14 0.43 0.85 1.00 0.42 2.02 0.38 44 

(0.43) (.074) (.21) (.27) (.41) (.45) (.40) (.36) 
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Figure 1, Field 1 disease incidence, soil moisture, and leaf disk assays. 
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Figure 2. Field 2 disease incidence, soil moisture, and leaf disk assays. 
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Figure 3. Correlograms of Pearson residuals. 
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Figure 5. Field 2 Spatial Variability of Soil Water Content 
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