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Abstract. Some recently obtained results on cross validation, hypothesis test 
and estimation procedures for multiplicative models applied to multi-site crop 
variety trials are presented. The PRESS statistic is more sensitive to overfit
ting and choice of model form than data-splitting cross-validation. Because of 
their extreme liberality, Gollob F-tests should not be used to test multiplica
tive terms. FGH tests effectively control Type I error, but are conservative for 
tests of terms for which the previous term is small. "Simulation tests" have 
greater power than F GH tests, but still effectively control Type I error rates. 
Simulation results and cross validation in two examples suggest that BL UP
style shrinkage estimators of multiplicative terms produce fitted models with 
predictive value at least as good as the best truncated models and would eli
minate the need for cross validation as a criterion for model choice. Shrinkage 
estimators of multiplicative models were better than BLUPs computed under 
the assumption of random unpatterened interaction in one example and were 
at least as good in the second example. Both were much better than empirical 
cell means in both examples. It is suggested that variety performance estima
tes derived from shrinkage estimators of multiplicative models should replace 
empirical cell means routinely reported in experiment station crop variety trial 
bulletins. 
Key words: Multiplicative models, crop variety trials, PRESS statistics, si
mulation test, shrinkage estimators, genotype x environment interaction. 
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Applied Statistics in Agriculture 

1 INTRODUCTION 

In multi-site crop variety trials, multiplicative models (MMs) may be useful for 
studying yield response patterns andlor obtaining estimates of realized varietal 
response levels in specific environments which provide better estimates than are 
given by the empirical cell means. We suppose that there are g varieties evaluated 
with n replicates in each of e environments (sites). The empirical mean yield of 
the ith variety in the ph environment will be denoted Yij.. Potentially useful MM 
forms are: 

Completely multiplicative model (COMM), 

t 

Yij. = L AkCtik/jk + Eij. ; 
k 

Shifted multiplicative model (SHMM), 

t 

Yij. = f3 + L AkCtikljk + Eij. ; 
k 

Genotypes (varieties) regression model (GREG), 

t 

Y-·· - /I. +" AkCt'k'V'k + E" . 'J. - r' L..J • IJ 'J. , 
k 

Environments regression model (EREG), 

t 

Y-·· = /I' +" AkCt'k'V'k + E" • 'J. rJ L..J "J 'J. , 
k 

Additive main effects and multiplicative interaction (AMMI), 

t 

Yij. = It + Ti + 8j + L AkCtikljk + Eij .. 
k 

The Ak are such that Al 2:: A2 2:: ... 2:: At > 0; Ctik and Ijk satisfy orthonomality 
constraints I:i CtikCtil = I:j Ijkljl = 1 if k = 1, zero otherwise. The cell means of 
errors Eij. are assumed N I D(O, (72 In). It will be useful in the sequel to define 
fh = n 1/2 Ak 1(7. A suffix appended to the acronym for a MM form will indicate the 
number of multiplicative terms, e.g., COMM1, COMM2, etc., and, for generality, 
COMMt. 

Perhaps the earliest use of a multiplicative model for analysis of a crop va
riety trial was Fisher and Mackenzie's (1923) use of COMM1 for the analysis of a 
factorial arrangement of 12 potato varieties and six manurial treatments. Corne
lius (1978) suggested COMM, GREG, EREG and AMMI as useful models for the 
analysis of variety trials arranged in lattice designs with another treatment factor 
imposed on the lattice replicates. SHMM has been used as a basis for methods 
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158 Kansas State University 

for grouping varieties or environments into groups without variety rank changes 
(Cornelius, et al., 1992; Crossa et al., 1993; Crossa and Cornelius, 1993; Cornelius 
et al., 1993). 

Least squares estimates of multiplicative parameters in any of the models is by 
singular value decompostion (SVD) of the matrix Z = [Zij] where Zij is the resi
dual of Yij. after subtracting the estimates of the additive terms (Gabriel, 1978). 
Estimates of the additive terms in GREG, EREG and f\MMI are the usual esti
mates, {ti = Yi .. , {tj = Y.j., {t = Y ... , 'h = Yi .. - Y ... and OJ = Y.j. - Y ... · In SHMM, 
~ = Y ... - Lt ~kak,;h, where ak = g-l Li &.ik and 1k = e-1 Lj "7jk, which makes the 
matrix to be decomposed dependent on the result of the SVD. Newton-Raphson 
and EM-type iterative algorithms for SHMM estimation are described by Seyed
sadr and Cornelius (1992). 

GREG1 is essentially the equivalent of the widely used "stability analysis" 
model (Finlay and Wilkinson, 1963; Eberhart and Russell, 1966), but reported 
stability analyses have generally not used the least squares estimates of Gabriel, 
but, instead, have been done as variety regressions on the observed environment 
main effects (the 8j of AMMI) as described by Mandel (1961). 

Our main consideration in this paper will be estimation (or prediction) of the 
true yield response in the cells. For this purpose, Gauch (1988) and Gauch and 
Zobel (1988) recommended using a truncated AMMI model, i.e., t < p = rank(Z), 
retaining only as many multiplicative terms as could be shown by cross-validation 
to improve the model's predictive value. The data are split (randomly) into nm 
replicates of each variety for modelling and nv replicates for validation. AMMIl, 
AMMI2, etc., are fitted to the modelling data and their mean squared errors of 
prediction (expressed as its square root and denoted RMS PD) determined. Ge
nerally, ten such random data splittings are done and the results averaged. The 
model with smallest RMS PD is assumed optimal and fitted to the entire data set 
to obtain improved estimates. It is argued that this "predictive" assessment is a 
better strategy for model choice than "postdictive" assessment based on statistical 
tests (Gollob, 1968) of hypotheses HOk : Ak = 0, computed essentially like analysis 
of variance F-tests for linear models. In all published examples (e.g., Gauch, 1988; 
Gauch and Zobel, 1988; Crossa et al., 1990; Nachit et al., 1992; van Oosterom et 
al., 1993) such tests have found more significant terms than could be shown to be 
predictively useful. 

In this paper we present results of our investigations of alternatives to current 
practice. In Section 2 we consider the "PRESS" statistic (Allen, 1971). In Section 
3 we present simulation results showing the Gollob F-test to be extremely liberal 
and suggest procedures which do effectively control Type I error rates. Finally, in 
Section 4, we suggest shrinkage estimates of multiplicative models as improvements 
over truncated models. 

2 CROSS VALIDATION 

The objective of the cross validation is to choose the model which will most 
effectively combine the direct information given by the empirical mean of all obser-

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1993/proceedings/13



Applied Statistics in Agriculture 

vations in a cell with indirect information which can be extracted from the other 
cells to give the best estimate of the true response in that cell. The best estimator 
of the direct information should be the mean of all the observations in the cell. 
The PRESS statistic, obtained as z.= IXYij - Y[ijj)2 where Y[ijj is the prediction of 
Yij. when the (ij)th cell is omitted, uses all of the information available from the 
other cells, and should most effectively identify the model which extracts the most 
indirect information from the other cells. However, when the model is fitted to the 
entire data set, the observed cell mean.will contribute to the estimate only to the 
extent that it contributes to the effects retained in the chosen model (one cannot 
depend on getting an optimally weighted average of the two pieces of information). 

The first and third authors have developed efficient Newton-Raphson algo
rithms for computing the PRESS statistic in MMs in complete two-way classifi
cations. For the CIMMYT EVT16B data set (nine varieties, 20 environments; 
for the cell means, see Cornelius et al., 1992), Table 1 shows RMS PD from 
data splitting (nm = 3, nv = 1) and an adjusted RMS PD(PRESS) obtained 
as [PRESS/ ge + 382/4]1/2, where 8 2 is the pooled within site error mean square. 
The term in 8 2 is an adjustment for the difference between variance of the valida
tion data (cell means as opposed to individual observations) done to make results 
comparable to RMS PD from 3-1 data splitting. The adjustment may be un
derestimated, because it does not compensate for sacrificed control of differences 
among blocks in blocked designs which occurs with random data-splitting cross 
validation. 

These data suggest that PRESS is much more sensitive than data splitting 
to an overfitted model, will more definitively differentiate between model forms 
and will not be less parsimonious. The model with smallest PRESS (SHMM1) 
predicted data in a deleted cell better than they were predicted by three replicates 
of data with all cells present. Many overfitted models gave extremely unreliable 
prediction of a missing (i.e., deleted) cell, a situation which can only get worse if 
there are multiple missing cells. If a MM is to be used to impute missing cells 
(Gauch and Zobel, 1990), one should be extremely careful to avoid overfitting. To 
be able to compute PRESS for incomplete data sets would be highly desirable. To 
develop an algorithm to do so is a future objective. 

3 TESTS OF SIGNIFICANCE OF MULTIPLICATIVE TERMS 

Tests of hypotheses HOk : Ak = 0 are based on sequential sums of squares "ex
plained" by the multiplicative terms. For AMMI, GREG, EREG and COMM, 
sequential sums of squares are n times the eigenvalues [~~, k = 1, ... , rank(Z)] of 
Z' Z (or of Z Z') which are distributed as eigenvalues of a p-variate Wishart matrix 
with q df where p and q are the smaller and larger, respectively, of elements of the 
following couples: for AMMI, (g - 1, e - 1); GREG, (g, e - 1); EREG, (g - 1, e); 
COMM, (g, e) (Johnson and Graybill, 1972). In SHMM, sequential sums of squa
res are given by SSk = n[z.=~=k ~;'(k-l) - z.=~=k+l ~;'(k)] where ~m(k) is the mth 
largest eigenvalue of Z when the fitted model contains k multiplicative terms. 
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Let 5 2 /n be an independent estimate of the variance of a cell mean with f df. 
The Gollob (1968) approximate F-test assumes n~U(J2 is distributed as chi-square 
with df = p + q + 1 - 2k (the Gollob analog for SHMM has dfthe same as COMM 
except that there is a loss of one df from the last term). Since eigenvalues of 
Wishart matrices do not have chi-square distributions, the assumption does not 
hold. Computer simulation of AMMI for nine varieties and 20 sites has shown 
Gollob tests intended to be at 0.05-level to be extremely liberal, e.g., Type I error 
rate of 66.2% for testing HOl and 17.6% for H02 when 01 = O2 = 0 (Cornelius, 
1993), and 34.9% for H03 if (01,02) = (10,5) (Table 2). Clearly, the Gollob test 
cannot be recommended and its use should be discontinued. 

Tests which effectively control Type I error rates are the F GHl, F GH2 and "simu
lation" tests. Cornelius et al. (1992) developed FGHl and FGH2 as modifications of 
tests which they denote as F1 and F2. F2 is an approximation developed by John
son (1976) for k = 1, viz., F2 = n~Vulk52, approximately distributed under Ho as 
central F with 2uik/U~k and f df, where U1k = E(n~V(J2) and U~k = V(n~U(J2) 
given all Ak = O. To obtain F1 , put X = n~V f 52 and find beta distribution 
parameters a and b such that under HOk , to a two-moment approximation, X + 1 
is distributed as the reciprocal of a beta random variable. Solutions for a and b 
are a = 1 + (J - 2)qt!q2 and b = ulkqt!q2 where q1 = U~k + Uik + (J - 4)Ulk and 
q2 = (J - 2)U~k + 2uik' Then F1 = aX/b is distributed approximately as F with 2b 
and 2a df. In practice, P-values computed for F1 and F2 always agree very closely. 
For SHMM, S Sk is substituted for n~% in these test procedures. 

Recent computer simulation results (unpublished) show that F1 and F2 com
puted under the complete null hypothesis (all Ak = 0) are liberal tests for k > 1 
in SHMM analysis, and this is probably also true for other MM forms. Theo
retical results of Goodman and Haberman (1990), Marasinghe (1985) and Schott 
(1986) concerning properties of estimates, residuals and eigenvalues as one or more 
Ak --+ 00 (with the other Ak = 0) suggest, as conservative procedures, that for 
testing terms beyond the first, F1 and F2 be modified so as to make them equiva
lent to tests of the first term in a (g - k + 1) X (e - k + 1) table. We denote such 
tests as FGH1 and FGH2. A worked example is given by Cornelius (1993). 

Functions which may be used in computer programs to approximate values of 
Un and U21 for the FGH tests for p - k + 1 :::; 19, q - k + 1 :::; 99, are given by 
Seyedsadr and Cornelius (1991) for SHMM and Cornelius (1980) for the other MM 
forms. Tables of such values may be found in Mandel (1971) for model forms other 
than SHMM. 

Cornelius (1993) found intended 0.05-level FGH tests of HOk have Type I error 
rates close to 0.05 if Ok-1 ~ 10, but become conservative as Ok-1 decreases. For 
example, the Type I error rate for the FGH2 test of H03 in simulated AMMI analyses 
of 9 x 20 tables with (01 , O2 ) = (10,5) was 0.019 (Table 2). 

Simulation and iterated simulation tests (Cornelius, 1993) use computer simu
lation to find improved values for U1k and U2k to use in F2-type tests. Define 
uik,U1k and U2k such that E(n~%) = Uik(J2 + nA%, E(n~n).m = O,m ~ k) = 
U1k(J2, V(n~~IAm = 0, m ~ k) = u~k(J4. The scheme is as follows. 
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1. Begin with an initial value of urk for k = 1, ... ,p; we use Go11ob's df for this. 

2. Compute F;: = n~VUrks2. 

3. Compute).k = ~k[(F;: - 1)/ F;:P/2 provided F;: > 1, else ).k = O. 

4. By simulation, determine Ulk and U2k under the assumption Om Om 
n1/2)'m/S if m < k, else Om = 0, and uik under the assumption Ok = Ok for 
all k. 

If the). fail to give a non-increasing sequence, pool ~k through ~k+m by computing 
F;:.m = n L: ~V L: Urks2 , where the sums are over the terms whose sums of squares 
are to be pooled, and put ).k = ).k+1 = ... = ).k+m = [(m + 1)-1 L: ~~(Fk.m -
1)/ F;:.mp/2 • 

Cornelius (1993) described a computational strategy for the simulation in Step 
4 which exploits the fact that {) = n 1/2 ~k / (J' can be simulated as the kth largest 
singular value of a q X P matrix R = [diag(Ok, k = 1, ... ,p), Opx(q-p)]' + E where 
E is a matrix of random standard normal deviates (Gaussian "noise"). Thus, one 
can begin by generating R = hi] = E, obtain its SVD to give a simulated result 
under the scenario that all Ak = 0, add 01 to 7'11, do the SVD again to obtain a 
result under the scenario 01 = 01 (i.e., Al = ).d, then add O2 to 7'22, again obtain 
the SVD, etc. Once this has been done for all Ok > a the SVD gives simulated {h 
values under the scenario that Ok = Ok for all k. 

After completing the tests at Step 5, the iterated simulation test is done by 
returning to Step 2 using the uik values from the simulation. We recommend 
1000 simulations, but, in this paper, we present simulated results of simulation 
tests which used only 100 simulations for each test of 1000 simulated tables tested. 
Type I error rates and power of test do not change much with increases in number 
of simulations per test beyond 100, but increasing the number of simulations per 
test will make individual applications of the tests less subject to simulation error. 
Simulation tests have not been developed for SHMM. 

The simulation and iterated simulation tests are less conservative and have 
greater power than the F GH2 test without seriously sacrificing Type I error rates 
(Table 2; see also Cornelius, 1993). Simulation results for a case where all Ok = 5 in 
9 x 20 tables indicate that one might actually detect all eight terms if the simulation 
tests are used. 

Since it will generally be more parsimonious than the Gollob test, the FGH2 test 
is a viable alternative to cross validation as a criterion for model choice. For AMMI 
with balanced data, using data-splitting cross validation, the expected mean squa
red error of prediction is equal to the sum of (1) the variances of the estimates of 
the mean and additive main effects, (2) the mean squared error of the estimated in
teraction and (3) the error variance in the validation data. A change in the number 
of terms retained will change only the second component. Thus, the predictively 
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best truncated AMMI model is the one with the smallest expected interaction mean 
squared error (IMSE). (More generally, for AMMI, GREG, EREG or COMM, the 
predictively best truncated model is the one with the smallest mean squared er
ror of the estimated multiplicative effects.) Simulation estimates of E(IMSE) in 
AMMI models fitted to 9 x 20 tables with various interaction patterns (Table 3) 
indicate that using a 0.05-level FGH2 test as criterion for model choice will result 
in an E(IMSE) only slightly larger than E(IMSE) for the best truncated model. 
Neither cross validation nor the FGH2 test will always identify the predictively best 
truncated model obtainable from the full data set, but evidently FGH2 will usually 
choose the best or something not very much worse. In view of the simplicity of 
the FGH2 criterion, it is highly questionable whether cross validation is worth the 
effort. 

4 SHRINKAGE ESTIMATORS OF MULTIPLICATIVE MODELS 

The estimates of the multiplicative portion of the model in truncated models 
may be written as L:~ Sk~kaik1jk' i.e., the kth term is multiplied by a "shrinkage 
factor" Sk which is either 0 or 1. Table 3 includes E(IMSE) when Sk is instead cho
sen as max[(Fk' -1)/ Fk', 0] where Fk' = n~VUrks2. If the urk value used is correct, 
then Sk is an estimate of n)..V(Urk(72 + n)..k). Results are shown for three choices 
of Fk'. FGH2 , as previously defined, uses an approximate value of Ulk instead of 
urk' Fsim is Fk' using uik estimated from simulation using the shrinkage estimates 
Sk~k as the supposed true )..k for the simulation, with the initial Sk obtained using 
Gollob's F (Fsim is not the Fk or Fk' which results from the previously described 
simulation test). Theorems of Goodman and Haberman (1990) suggest that Gol
lob's df should be a good choice for uik for )..k which are large, but not for )..k which 
are small. Interestingly, the only case shown (Table 3) where shrinkage estimation 
did not give E(IMSE) smaller than the best truncated model is where the only 
nonnull )..k was )..1 = 1O(72/n . Here, Gollob's df should be a good value for Uil' 

but a poor value of Ui2' Shrinkage using FGH2 was superior to Gollob's F in cases 
with no more than two nonnull terms, but Gollob's F was better otherwise. In all 
cases, shrinkage using Fsim gave E(IMSE) close to the better choice of FGH2 or 
Gollob's F. 

The shrinkage factors Sk were constructed by analogy to shrinkage factors in
volved in empirical best linear unbiased predictors (BL UPs) in random effects and 
mixed models (Henderson, 1984) and to empirical Bayes estimators in linear models 
with normal priors (Lindley and Smith, 1972). In particular, the empirical BLUP of 
a cell mean under a two-way random effects model with a balanced data set is easily 
derived in the form SGCik -y..)+SE(Y.j -Y .. ) +SJ(Yij-Yi. -Y.j+Y..), where the shrin
kage factors are of the same form as we are using, viz., Sx = max[(Fx -1)/ Fx , 0] 
for X = G, E or I and FG, FE and FJ are F-statistics for varieties, environments 
and interaction, each with the pooled error s2 as denominator. We claim no op
timal properties for Sk of this form for multiplicative models, but these results 
suggest that they will almost always result in better predictors than truncated 
models without shrinkage. 
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Computation of shrunken ~k using Fsim is shown in Table 4 for the EVT16B 

data. The pooling of ~3 and ~4 is done by computing 

~3&4 
F;&4 

S3&4 

S3&4~3&4 

[(6514651 + 5383288)/2]1/2 = 2439.05, 

2(2439.05)2/[(27.30 + 20.06)(150712)] = 1.667, 

0.667/1.667 = 0.4001, 

(0.4001)(2439.05) = 976. 

We used 3-1 data-splitting cross validation to validate the shrinkage estimation 
approach with real data. Shrinkage estimates of multiplicative terms in GREG, 
EREG and COMM were constructed in the same way as in AMMI. SHMM shrin
kage is described in the Appendix. Table 5 shows the RMS PD values for the 
EVT16B data and another data set (EVT14B, also corn, with 9 = 8, e = 47). 
BL UP cell means refers to empirical BL UPs of the cell means under a random 
(unpatterned) interaction model. Clearly, empirical BLUPs are superior to the 
ordinary cell means in both data sets. Truncated multiplicative models were su
perior to empirical BLUPs in EVT16B, but not in EVT14B. Shrinkage with uik 
values obtained by simulation was equal to or better than either truncated models 
or empirical BLUPs in both data sets. 

Improvement of shrinkage estimates over truncated models should be better 
than Table 5 indicates because, in practice, the shrinkage factors will be compu
ted from the complete data, not from a modelling subset, whereas the truncated 
model still must be chosen by cross validation (unless chosen by FGH tests). With 
shrinkage estimates, cross validation is unnecessary, except possibly to choose a 
model form. Results suggest that choice of model form is not of great importance. 

SUMMARY 

Either truncated or shrunken MMs can provide much better estimates of reali
zed response levels of crop varieties in environments where tested than are given by 
the empirical cell means. Good truncated MMs may be chosen by cross validation, 
but simulation results suggest that a slightly conservative test procedure such as 
FGHI or FGH2 as a criterion will result in only a small loss of efficiency. Howe
ver, simulation results also indicate that shrinkage estimates of the type proposed 
here should be superior to truncated MMs. Cross validation of the EVT16B and 
EVT14B examples did not show as much advantage for shrinkage estimates, but 
opportunity to compute shrinkage factors from the complete data set should result 
in more advantage than can be demonstrated by data splitting cross validation. 
In cross validation, shrinkage estimates of MMs were superior to BL UPs of cell 
means using a two-way random effects model in EVT16B and were equally good 
in EVT14B. 

State agricultural experiment stations or affiliated entities routinely conduct 
crop variety trials in their respective states. Results of this study strongly suggest 
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that yield performance estimates obtained by shrinkage estimates of MMs should 
replace the empirical means now routinely reported in published bulletins. 

Obviously, the potential use of MMs for two-way studies is not limited to trials 
of crop varieties over a set of sites. Other possibilities immediately come to mind. 
For example, consider performance of a set of corn hybrids consisting of 9 new 
inbred lines, each crossed with e elite lines already in commercial use. Also, consi
der "on farm" trials where, say, 9 crop management practices are experimentally 
evaluated on each of e farms. The potential beneficial applications of shrinkage 
estimation of MMs would appear to be virtually unlimited. 

APPENDIX 

Shrinkage of SHMM was done as follows. Suppose for th~ moment that the 
left and right singular vectors are known. Then (3 and the Ak can be obtained 
as intercept and regression coefficients for the multiple regression of vec(Y) = 

vec([Yij.]) on X k = ak®/k' Then the partial sum of squares owing to regression on 

X k is nqk~% where qk = (1- geLa~;Y!)/[I- ge(La~;y! - a%;yn]. This suggests 
the following iterative scheme which is similar to a generalized ridge regression 
(Hoerl and Kennard, 1970) with iterative re-estimation of the left and right singular 
vectors from which the X k are obtained. Initialize uik = g+e-2k. Given an initial 
value of ~, obtain the SVD of Z = [Zij] = Wij. - ~]. Compute Fk = nqk~VuikS2 
and Sk = (Fk - 1)/ Fk provided Fk > 1, else Sk = O. Then the shrunken ~k is 
Sk~k and the new value of 

(A.l) 

For a solution based on the initial uik, iterate these equations until they converge. 
By simulation, obtain new values for uik = nE[qk~%-qkAk]/0"2 where qk, Ak, aik and 
Ijk are put equal to the previous qk, shrunken ~k' O:ik and 1jk, respectively. Repeat 
the above scheme, the solution of which will be defined as the Fsim shrinkage. 

The right hand side of (A. 1) is a function only of Y, uik for k = 1, ... , min(g, e), 
and ~. If we consider the ujk as given constants, w~ can move ~ to the right hand 
side giving an equation 1((3) = 0 to be solved for (3. The solution can usually be 
obtained by a Newton-Raphson algorithm. The mathematical details are extremely 
lengthy and will be presented in another paper. Once ~ is so obtained, computation 
of Sk, ~k' O:ik and 1jk (some of which will be involved in the Newton-Raphson 
iteration) is straightforward. 
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Table 1: RMS PD (data split 3-1) and adjusted RMS PD(PRESS) for models 
fitted to EVT16B data. 

No. Model form 
terms AMMI GREG EREG COMM SHMM 

Data splitting 
0 980 
1 915 954 908 962 947 
2 934 907 935 911 906 
3 951 926 947 930 924 
4 955 946 949 951 944 
5 963 957 967 957 959 

Cell means model: 985 

Adjusted RMS PD (PRESS) 
0 970 
1 956 939 892 942 925 
2 2725 912 9155 935 886 
3 30708 994 7071 1557 925 
4 19030 1071 14670 2682 2246 
5 30540 3251 8165 8688 5094 

Table 2: Rejection rates of HOk : Ak = 0 at 0: = 0.05 by the Gollob test, FGH2 test, 
simulation test and iterated simulation test in AMMI analyses of 9 X 20 tables. 

Principal Component ( k) 
Description 1 2 3 4 5 6 7 8 
(h = n1/ 2Ak/a 10 5 0 0 0 0 0 0 
Gollob 1 .957 .349 .041 .002 0 0 0 
FGH2 1 .496 .019 0 0 0 0 0 
Simulation 1 .520 .046 .006 .003 .008 .010 .020 
Iterated sim. 1 .516 .057 .018 .007 .013 .018 .026 

(h = n 1/ 2 Ak/ a 5 5 5 5 5 5 5 5 
Gollob 1 1 1 .991 .872 .550 .181 .015 
FGH2 .998 .985 .899 .687 .382 .168 .058 .015 
Simulation .999 .985 .961 .884 .807 .738 .630 .527 
Iterated sim. .999 .992 .978 .919 .830 .727 .593 .410 
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Table 3: Simulated E(IMSE) values for AMMI models fitted to 9 x 20 tables with 
various interaction patterns 

Nonnull Best truncated Model chosen by Shrinkage using 
O-values* model FGH2 test t Gollob F FGH2 Fsirn 
10 0.167 (l)t 0.181 0.178 0.148 0.149 
14, 6 0.342 (2) 0.350 0.275 0.266 0.265 
12, 8, 4 0.418 (2) 0.444 0.344 0.353 0.345 
12, 10, 8, 4 0.547 (3) 0.565 0.446 0.4 73 0.451 
14, 6,4,4,2 0.562 (1) 0.592 0.404 0.425 0.402 
Cell means model: E(IMSE)=0.844 for all sets of 0 values. 
*(h = n 1/ 2 )"k/rr . 

t .05-1evel. 

iNumber of terms shown in parentheses. 

Table 4: Computation of shrunken ~k values for prediction using AMMI (EVT16B 
data, ui'k obtained by simulation, 8 2 In = 150712). 

3rd and 4th 
~2 

k ~k ui'k F* k Sk Sk~k Pooled 
35080839 5923 28.34 8.214 0.8783 5202 5202 
9427899 3070 32.06 1.951 0.4874 1497 1497 
6514651 2552 27.30 1.584 0.3685 941 976 
5383288 2320 20.06 1.781 0.4384 1017 976 
3092937 1759 18.88 1.087 0.0801 141 141 
1725053 1313 13.37 0.856 0 0 0 

628268 793 8.73 0.478 0 0 0 
573093 757 4.86 0.782 0 0 0 
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Table 5: RMS PD values for models fitted to two data sets (3-1 data split). 

Model Best truncated Shrinkage with u~k 
form model obtained by 

wlo wi Gollob Simul- Iterated 
BLUPs* BLUPs* df ation simulation 

EVT16B data 
AMMI 915 (l)t 914 913 911 911 
GREG 907 (2) 907 909 906 905 
EREG 908 (1) 908 910 908 908 
COMM 911 (2) NA 911 910 910 
SHMM 906 (2) NA 908 905 907 

Cell means: 985 BLUP cell meanst : 932 
EVT14B data 

AMMI 819 (1) 818 806 805 805 
GREG 816 (1) 816 804 803 803 
EREG 819 (1) 819 809 808 809 
COMM 816 (1) NA 804 803 803 
SHMM 816 (1) NA 811 808 809 

Cell means: 873 BLUP cell meanst : 808 
*Without and with BLUPs of additive main effects in AMMI, GREG and EREG. 

Shrinkage results are also "w /BL UPs" . 

tNumber of multiplicative terms retained. 

tEmpirical BLUPs of cell means under a two-way random effects model. 
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