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ON MULTIVARIATE ANALYSES OF CROSSOVER DESIGNS
by
Dallas E. Johnson and Carla Goad
Kansas State University

In crossover experiments, treatments are assigned to
experimental units in successive periods. Traditional analyses
of crossover designs with three or more periods assume that the
observations in successive periods satisfy conditions similar to
those utilized in the analysis of many repeated measures
experiments. The successive measurements are assumed to satisfy
conditions known as the Huynh-Feldt conditions. This paper
gives a test for the Huynh-Feldt conditions and discusses
possible analyses of crossover experiments, including tests for
carryover, when the Huynh-Feldt conditions are not satisfied.

1. Introduction

Crossover experiments are special types of repeated
measures experiments where the treatments being given to an
experimental unit change over time. This paper has nothing to
add to traditional analysis methods for two period crossover
designs, and considers only those crossover designs which
involve three or more periods.

Huynh and Feldt (1970) gave conditions under which repeated
measures experiments can be analyzed in the same way that split
plot experiments are analyzed. These conditions have since been
called the Huynh-Feldt (H-F) conditions. If one has p repeated
measures and 1if one lets X represent the variance—-covariance
matrix of the repeated measures on a randomly selected
experimental unit, the H-F conditions are said to be satisfied
if there exists a constant M and a p x 1 vector Y such that X =

NI tY3" +3,7" -

A test for the H-F conditions is obtained by testing
PXP’' = NI,., for some M where P is any p-1 x p matrix whose rows
consist of orthogonal normalized contrasts. A test of whether
a covariance matrix 1is a multiple of an identity matrix is
usually called a test of sphericity in multivariate literature,
and such a test is discussed in most multivariate methods books.
The test is also described in the next section.

When the H-F conditions are not satisfied, there have been
several alternative suggestions for analyzing repeated measures
designs. Some suggestions involve making adjustments to the
degrees of freedom associated with test statistics involving the
repeated measures. There are two common adjustments, one given
by Huynh and Feldt (1970) and one given by Greenhouse and
Geisser (1959). Both of these adjustments reduce the degrees of
freedom of ANOVA test statistics by multiplying their numerator
and denominator degrees of freedom by an adjustment or
correction factor.
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A third method for analyzing repeated measures experiments,
which 1s 1likely the most general approach, 1is to treat the
vector of repeated measures as a multivariate response vector
and apply multivariate analysis of variance methods to test the
relevant hypotheses.

The above approaches have rarely, if ever, been applied to
crossover designs in the published literature. In the next
section, a test for the H-F conditions in a crossover design is
given, and in the following sections, methods for analyzing
crossover designs when the H-F conditions are not satisfied are
proposed.

2. Testing for the H-F Conditions

Suppose a researcher has a crossover design with treatments
given to experimental units in s different sequences where each
sequence 1involves p periods. A traditional model (without
carryover) for this setup is

Yije = H + S; + 8, + Ty + Py + &4
(1)

for i=1,2,--+,s; 3=1,2,*-+,t; k=1,2,*,p; 0=1,2,...,n, where U
represents an overall mean, S, represents an effect due to the
ith sequence, 0, represents an error which is associated with
the €th subject in the ith sequence, T, represents the effect of
the Jjth treatment, P, represents the effect of the kth period,
and €;y,, represents residual variation within the {th subject who
received the Jjth treatment 1in the kth period of the ith
sequence.

Let y;,, be the p x 1 vector of responses for the {th subject
in the ith sequence and let €,, be the corresponding vector of

errors. Let X = Cov[g,], and assume the €,’'s are distributed
independently and identically multivariate normal for i=1,---,s
and ¢=1,*'-,n,. For convenience, let W, = E[y;,] and note that

the elements in the W,’s are functions of the S;’s, the T,;'s, and
the P,/s in model (1).
Let N be the total sample size, i.e., N=in. . It 1s

straightforward to show that

n n
ﬁizniiyia and £=_1_ f: }j (Vi) (V- y)/

=t N-Si-16-1

are sufficient statistics for this problem.
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It can be shown that (N-s) £ 1is distributed as a central

Wishart distribution with N-s degrees and variance-covariance

matrix X and that the i,s are distributed independent
N(u;, (1/nH) %), i=1,2,-++,s. Also the ﬁ{s are independent of

2

Let P be any p-1 x p matrix whose rows are orthogonal

normalized contrasts and W =(N-s)P 3 P’ then a test of the H-F

conditions 1s Dbased on A= A formula for

approximating a p-value for this test statistic is given by
Srivastava and Carter (1979, p. 327).

A SAS Analysis

A test for the H-F conditions in crossover designs can be
easily obtained in SAS-GLM by using the REPEATED option with the
following SAS commands where p represents the number of periods

in each sequence and Y1,Y2,*'',Yp represent the measurements
taken in successive periods. In the SAS output, the test
labeled as a test for sphericity is the test of the H-F
conditions.

PROC GLM;

CLASSES SEQUENCE;
MODEL Y1--Yp = SEQUENCE;
REPEATED PERIOD p POLYNOMIAL / PRINTE;

3. Alternative Analyses of Crossover Designs

In this section some different possible analyses of
crossover designs are suggested for those situations where the
H-F conditions are not satisfied.

3.1 Adjustments to the Degrees of Freedom
Greenhouse and Geisser (1959) and Huynh and Feldt (1970)

suggested reductions in the degrees of freedom of the numerator
and denominator mean squares of F ratios which involve time in
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repeated measures experiments. These same kinds of adjustments
can be made in crossover experiments.

Again let P Dbe any p-1 x p matrix whose rows are

orthogonal normalized contrasts and let W =(N-s)P 3 pr.

Greenhouse and Geisser adjust the numerator and denominator
degrees of freedom by

_ 2
3?“&4
(p-1) 8 3 w?,

i=1j=1

g

and Huynh and Feldt adjust the numerator and denominator degrees
of freedom by

2 - N(p-1)§, -2
2 (p-1) (N-s-(p-1) &)

1f &, or &, should happen to be greater than 1, then they are

replaced by 1. That is, the degrees of freedom associated with
F —-ratios are never increased.

3.2 A Multivariate Approach

Unfortunately, a multivariate analysis of crossover designs
is not a straightforward generalization of a multivariate
analysis of a repeated measures experiment. This is because the
treatments are changing with respect to time 1in crossover
experiments. That is, both time and treatments are changing in
crossover experiments while only time is changing in repeated
measures experiments.

To consider a multivariate approach to analyzing crossover
experiments, once again let W;, §; , and $ be defined as they

were in Section 2, and for illustration purposes consider model
(1) . For model (1)

Big| [B+S;+T;+P

Biz| [B+S;+T5;+P,
Bi=| ,|T : » 151,2, 8
Bip| [B*+S3+Tp;*Pp
where T,, represents the treatment assigned to an experimental
unit in the kth period of the ith sequence, i=1,2,-'°,s,
k=1,2,""",p.
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Let B’ = [0 S, S, *++ S, T, T, **+ T, P, P, **+ P,] be the
vector of the parameters in model (1). Let yp' = [W," W,/
L'1. Thus U is a ps x 1 vector. Note that the elements of U
are all estimable functions and span the space of all estimable

functions of P. Thus there exists a matrix H such that
L = Hf.
Suppose a’P is an estimable function of the parameters in
B. Let H be the Moore-Penrose generalized inverse of H. It can
be shown that a’f=a’Hu=b’| where b=H’"a.
One unbiased estimator of a’f which is based on the

sufficient statistics is Bb/fi , and

b'fi~N(a'B,b'E*b)

where
L® o 0
m
1
0 =% - 0
Z* = COV( ﬁ ) = nz = E®DIAG(—:'L—I '—1"1".1 '—'1_)
. . m I g
o o )
L ns -
Let b’ = [b; b, *++ b,/] where each b, is a p x 1 vector, then
b = £bij, and VAR (Bf) = 3 L bEb,
i=1 i=1 I1;

It must be noted that there may be other unbiased
estimators of a’P which depend on the sufficient statistics, so

it cannot be guaranteed that the one given by b/fi 1is the best.
It should, however, be a PDG (pretty darn good) estimator of

a’'f.

blji-a’p

1 57
—bi®h
i=1 Hl 1 1

The result in (2) can be used to make inferences about a’f
if each of the samples sizes corresponding to each possible
sequence of treatments is sufficiently large. 1In this case, one
can assume the distribution of V is approximately N(0,1). But
what can be done for small sample sizes?

Now let V = (2)

For small sample sizes, one might try to approximate the
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distribution of V with a t — distribution. Since the numerator
and denominator of V are stochastically independent, one might
try to use a Satterthwaite approximation to the degrees of
freedom of V.

By Satterthwaite’s method, one would try to find v so that

u[)f L b8h,
U= i=1 I1;

¥ Lbpzb,

i=1 ni

is approximately distributed %?(v)

by equating the variance of U to 2V, the variance of the chi-
square distribution with v degrees of freedom, and solving for
V. However, at this point in time, the variance of U has not
been obtained.

Since (N-s) & has a Wishart distribution with N-s degrees

of freedom, one might conjecture that the degrees of freedom of
V will be approximately equal to N-s. We believe this to be a
reasonable conjecture and, in fact, there appears to be some
reason to believe that this is what Satterthwaite’s method will
eventually give. The evaluation of this conjecture has not yet
been done.

3.3 A Mixed Models Approach

Consider a model for a crossover experiment which is based
on the sufficient statistics. This model can be written as

B=HB+e* (2)

where & ~ N(U,X"). If I were known, the uniformly minimum
variance unbiased estimator of an estimable function a’f is

a’/B, where PBg=(H'Z*"H) HZI''{

In addition,

aB,~N(a'B, a’(H'Z*"H) ~a)

Unfortunately, X' is unknown, but it can be estimated by

2§@DLAG(;L,—£W'",;L) . Then the estimated mixed model
n, n, ng

estimator of a’fP is

aB,, where PBg= (HE7H) HE{
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Inferences about a’P based on a’Bm can be made using

critical points from the standard normal distribution in those
cases when all of the n;’s are large and perhaps by using
critical points from the t - distribution with N-s degrees of
freedom when the sample sizes are small. The suitability of
these approximations are in the process of being examined.

At this point in time, there exists no statistical software
to carry out a multivariate analysis of crossover experiments
(except to test for the H-F conditions). In the next section an
example 1s given. SAS—-IML has been used to carry out the
multivariate analyses.

4. An Example

To illustrate the techniques discussed in the previous
sections, consider the three period - three treament crossover
experiment discussed in Milliken and Johnson (1984). The design
used in this experiment considered all possible sequences of the
three treatments. This design produces an experimental design
which is balanced for carry-over effects.

Table 1 shows the six sequences in the this data set.

TABLE 1. Sequences of Treatment Assignments.
PERIOD

SEQUENCE 1 2 3

1 A B C

2 A C B

3 B A C

4 B C A

5 C A B

6 C B A

Let W;y represent the expected response for PERIOD j in
SEQUENCE i. The usual effects model parameters without carryover
for the crossover design in Table 1 is:

Hip = HtP;+5,+7T, Hi; = HtP,+5,+7T, Mz = HtP3+5,+7T,
Moy = HtP,+5,+7T, Mo, = HtP,+5,+7T, Mo = HHP3+5,+71,
My, = HtP+5;+7T, Hi, = HUt+P,+5;+7T, Mi3 = H+P3+5;+7T,
Mgy = HtP,+5,+7T, Hy, = HtP,+5,+7T; Hgs = HHP3+5,+7T,
Hs; = H+P,+S5:5+7T, Hs, = HU+P,+5:+7T, Hs3 = H+tP3+S:+7T,
He1 = H+P,+S5,+7T, He, = HtP,+54+7T, Hes = H+P;+5,+7T,

where S represents the effect of the ith sequence,

i=1,2,3,4,5,6, T, represents the effect of the Jjth treatment,
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j=1,2, 3, and P, represents the effect of the kth period,
k=1,2,3

Let B’ = [MW S; S, S; S, S; S, T, T, T, P, P, P;], and
_O o= " K MY M K" He'] where W'=[py, My, MHy3] for
i=1,2,-++,6.

For this example, the matrix H which makes p=HP is

1 100000 100 100

‘17 100000 010 010

i1 100000 0OO0O1 O0O0T1

1 010000 100 100

1 010000 OO1 01O

1 010000 010 001

1 001000 010 100

1 001000 100 010
H= 1 001000 001 001

1 000100 010 100

1 000100 001 010

1 000100 100 001

1 000010 001 100

1 000010 100 010

1 000010 010 001

1 000001 001 10 0

1 000001 010 010

1 000001 100 001

The SAS statements used to analyze the data in Milliken and
Johnson and some of the results of the SAS analyses are shown in
Appendix 1. The first set of analyses assume there are no
unequal carryover effects; the second set of analyses test for
unequal carryover effects and give comparisons Dbetween
treatments in the presence of unequal carryover effects.

First a test for the H-F conditions is produced. This test
is the same regardless of whether there is carryover or not.
The results of this test are shown near the middle of page 4 of
the SAS output. The test is labled as a "Test for Sphericity."
The test resulted in a p-value of 0.8775, and hence, the H-F
conditions can not be rejected for this data. This is not
surprising if one examines the correlation matrix shown on page
3 of the SAS output. The pairwise correlations between Y1 and
Y2, Y1 and Y3, and Y2 and Y3 are 0.78, 0.80, and 0.74,
respectively. These are nearly equal to one another, and the
repeated measures seem to not only satisfy the H-F conditions,
they also seem to possess compound symmetry.

The adjustment factors for the H-F and G-G adjustments to
degrees of freedom are shown on page 6 of the SAS output. The
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value of &, is 1.2378 and the value of £, is 0.9911. Since

the H-F factor is greater than 1, 1 would be used when making
adjustments to degrees of freedom using a H-F adjustment.
Nothing else on SAS output pages 1-6 are wuseful for our
purposes.

Since the H-F conditions are satisfied, one can make
inferences about the treatment effects from the analyses shown
on page 10. At the bottom of page 10, one finds estimates of
the treatment means as well as estimates, standard errors and
test statistics for making pairwise comparisons amongst the
treatments. Some of the output on page 10 has lines drawn
through it. We crossed these things out because SAS has not
computed these statistics correctly. Using methods discussed in
Chapter 28 of Milliken and Johnson (1984) one can compute
corrected standard errors for the treatment means. First one
must estimate the two variance components by solving

82+362=10.2593 al 62=1.03876 fr 02 a @8 . @ gs 82=1.03876

and 8:=3.0735 . Then the standard error of each of the

treatment means is  /(87+83)/36=.3380 . To construct a

confidence interval for the true treatment means one must use a
Satterthwaite approximation to compute an approximate degrees of
freedom for a t critical point.

If it were the case that the H-F conditions were not
satisfied, F-type ratios can be computed by squaring the t-
ratios, then the degrees of freedom corresponding to the
numerators and denominators of the F-ratios could be multiplied

by El or EZ , and then finally, p-values could be recomputed.

Since the H-F conditions are satisfied for this data, and
the other analyses presented 1in this paper would not be
necessary. However, for illustration purposes, the other two
analyses are obtained by using the remaining SAS statements. On
page 12 of the SAS output, one finds the estimate of X. On page
13, estimates of the treatment means and their standard errors
are computed using the multivariate approach described in
Section 3.2. Confidence intervals for the true treatment means

are also given. Estimates of pairwise differences in the
treatments are shown along with their standard errors, t-tests,
and confidence intervals. The significance 1levels and

confidence intevals are computed by using degrees of freedom on
the t—-distribution equal to N-s. Note that the estimates in
this analysis are the same as those in the first analysis, but
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the estimated standard errors are slightly different.

The results from the mixed model analysis described in
Section 3.3 are shown on page 14 of the SAS output. The
significance levels are once again computed by using degrees of
freedom equal to N-s. Note that the estimates as well as their
estimated standard errors are slightly different than those
given by the first two analyses.

The output on SAS pages 15-20 is obtained by using a model
which allows for unequal carryover effects from the treatments
occuring in the previous period. Page 17 gives an analysis
appropriate when the H-F conditions are satisfied except for the
test statistics and p-values which have been crossed out. Page
19 gives the analysis described in Section 3.2, and page 20
gives the analysis described in Section 3.3.

5. References

Huynh, H. and Feldt, L.S. (1970). Conditions under which mean
square ratios in repeated measures designs have exact
F—-distributions. Journal of the American Statistical
Association 65:1582-89.
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Appendix 1. SAS Analyses

The following statements were used to test for the H-F
conditions for the experiment discussed in Section 4.

options 1s=72 nodate pagesize=66;
dm ’log; clear; output; clear’;
DATA one;

INPUT seq subject yl y2 y3 @Q@;

IF seg=1 THEN trtl=’A’; IF seg=1 THEN trt2='B’; IF seqg=l
THEN trt3='C’;

IF seg=2 THEN trtl='A’; IF seg=2 THEN trt2='C’; IF seqg=2
THEN trt3='B’;

IF seg=3 THEN trtl='B’; IF seg=3 THEN trt2=’'A’; IF seqg=3
THEN trt3='C’;

IF seq=4 THEN trtl='B’; IF seg=4 THEN trt2='C’; IF seqg=4
THEN trt3='A’;

IF seg=5 THEN trtl=’'C’; IF seg=5 THEN trt2='A’; IF seg=5
THEN trt3='B’;

IF seg=6 THEN trtl='C’; IF seg=6 THEN trt2='B’; IF seqg=6
THEN trt3='A’;

CARDS;

1 1 20.1 20.3 25.6 1 2 23.3 24.8 28.7 1 3 23.4 24.8 28.3
1 4 19.7 21.3 25.7 1 5 19.2 20.9 25.9 1 6 22.2 22.0 26.2
2 7 24.7 29.4 27.5 2 8 23.8 28.7 24.1 2 9 23.6 26.4 25.0
2 10 20.2 26.2 21.4 2 11 19.8 23.7 23.3 2 12 21.5 25.5 20.8
3 13 24.3 23.2 30.1 3 14 26.4 26.4 32.3 3 15 19.9 23.7 25.5
3 16 23.9 26.8 30.8 3 17 20.5 23.2 26.3 318 21.8 23.6 29.1
4 19 20.9 27.5 24.3 4 20 21.9 28.6 23.1 4 21 22.0 27.4 24.5
4 22 23.3 30.7 26.6 4 23 18.8 27.9 24.6 4 24 24.6 29.8 26.6
525 24.0 21.8 21.6 5 26 25.9 23.7 23.9 5 27 25.5 22.0 23.4
528 27.9 25.4 24.4 529 25.3 26.4 25.8 5 30 25.7 24.7 24.9
6 31 23.2 18.9 23.8 6 32 23.9 21.5 25.4 6 33 28.0 25.3 28.1
6 34 24.6 22.7 23.8 6 35 27.7 23.5 25.6 6 36 21.5 18.1 22.8
RUN;

PROC GLM DATA=one OUTSTAT=two;
CLASS seqg;
MODEL yl--y3 = seqg / NOUNI;
REPEATED period 3 POLYNOMIAL / PRINTE;
RUN;

DATA sigma; SET two;
IF TYPE =/ ERROR’ ;
columnl yl/df;
column?2 = y2/df;
column3 = y3/df;
KEEP columnl--column3;
RUN;

DATA df; SET two;
IF TYPE = /ERROR’;
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IF NAME = 'Y1’/;
KEEP DF;
RUN;
DATA a; SET one; DROP yl-y3 trtl-trt3;

period=1;
period=2;
period=3;
RUN;

y=yl;
Yy=Y2;
y=y3;

trt=trtl; priortrt='0';
trt=trt2; priortrt=trtl;
trt=trt3; priortrt=trt2;

PROC PRINT DATA=a;

PROC GLM DATA=a;
CLASSES seg subject trt period;
MODEL y = seq subject (seq) trt period;

ESTIMATE ’'Trt A LSM'
period 2 2 2/DIVISOR=6;
ESTIMATE ’'Trt B LSM’
period 2 2 2/DIVISOR=6;
ESTIMATE ’'Trt C LSM'
period 2 2 2/DIVISOR=6;

ESTIMATE ’'Trt A-Trt B’ trt 1 -1 0;
ESTIMATE 'Trt A-Trt C’ trt 1 0 -1;
ESTIMATE 'Trt B-Trt C’ trt 0 1 -1;
CONTRAST ’'Trt A LSM’ intercept 6 seqg 1 1
period 2 2 2;
CONTRAST ’'Trt B LSM’ intercept 6 seqg 1 1
period 2 2 2;
CONTRAST ’'Trt C LSM’ intercept 6 seqg 1 1
period 2 2 2;
CONTRAST ’'Trt A-Trt B’ trt 1 -1 0;
CONTRAST ’'Trt A-Trt C’ trt 1 0 -1;
CONTRAST ’'Trt B-Trt C’ trt 0 1 -1;
RANDOM subject (seq) ;
RUN;
PROC SORT DATA=a;

BY seq period;
PROC MEANS DATA=a NOPRINT;
BY seq period; VAR y;
OUTPUT OUT=b MEAN=ybar N=n;
DATA means; SET b;
KEEP ybar;
RUN;
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OUTPUT;
OUTPUT;
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DATA size; SET b;
IF period=1;
k = 1/n;
KEEP n k;
RUN;

/* No Carryover

PROC IML;
RESET nolog;

USE sigma;
READ ALL INTO sigmahat; PRINT

USE df;
READ ALL INTO df;

USE means;
READ ALL INTO means;
muhat = means([,1];

USE size;

READ ALL INTO size;
n=sizel[,1l] ; k=sizel[,2];
d = DIAG (k) ;

sigmastr = d @ sigmahat;

H= {1 100000
1 100000
1 100000
1 010000
1 010000
1 010000
1 001000
1 001000
1 001000
1 000100
1 000100
1 000100
1 000010
1 000010
1 000010
1 000O0O0T1
1 000001
1 000001

Model

, , Sigmahat;

P OOORRORFRPROOORrRPROOORrOOR

PRINT / ’'No Carryover Model’;

ORPORrRPROO0OOORrRPROORRRPOOORrO

OORrRPOORrRRORrRPRORPROOORrRORrOO

O ORrRPROORrRPROORrRPROORrRROORrRrOOR

ORPRPOORrRPROORrRPROORPROORrRROORrO

*/;

POORPROORPROORPROORPROORFrr OO

NN N N N N N N N N N N N N N NS
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PRINT ’'Multivariate Approach’;

Kar}sgsttate University

P R I N
2
_...’,-
a={6 111111 600 222,

6 111111 060 222,

¢ 111111 006 222,

0 000O0O0CO0C 6-60 000,

0 00000O0C 60=-6 000,

0 000O0O0CO O6 -6 00 0}/6;

DO I=1 TO 6;
b = GINV(H') *a[i,]';

estimate = b' * muhat; stderr = SQRT( b' * sigmastr * b);
t = estimate/stderr; alpha=2* (1-PROBT (ABS(t),df));

alpha = max(.0001,alpha);

tcrit=tinv (.975,df);

I.CL=estimate—-stderr*tcrit; UCL=estimate+stderr*tcrit;

IF I=1 THEN;

PRINT,, 'Trt A LSM '’ estimate stderr t alpha,
LCL UCL;

IF I=2 THEN;

PRINT,, 'Trt B LSM ’ estimate stderr t alpha,
LCL UCL;

IF I=3 THEN;

PRINT,, 'Trt C LSM ’ estimate stderr t alpha,
LCL UCL;

IF I=4 THEN;

PRINT,, ’'Trt A-Trt B’ estimate stderr t alpha,
LCL UCL;

IF I=5 THEN;

PRINT,, ’'Trt A-Trt C’ estimate stderr t alpha,
LCL UCL;

IF I=6 THEN;

PRINT,, ’'Trt B-Trt C’ estimate stderr t alpha,
LCL UCL;
END;

"A 95%

"A 95%

"A 95%

"A 95%

"A 95%

"A 95%

CI

CI

CI

CI

CI

CI

is’

is’

is’

beta eg = GINV(H' * INV(sigmastr) * H) * H' * INV(sigmastr) *

muhat;
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DO I=1 TO 6;
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estimate = a[i,] * beta eg;
stderr = SQRT( ali,] * GINV( H' * INV(sigmastr) * H ) *
ali, 1" )
t = estimate/stderr; alpha = 2 * (1 - PROBT(ABS(t),df) );
alpha = max(.0001,alpha);

tcrit=tinv (.975,df);

LCL = estimate - stderr*tcrit; UCL =

IF I=1 THEN;

estimate +

stderr*tcrit;

PRINT,, ’'Trt A LSM '’ estimate stderr t alpha, ’'A 95% CI is’
LCL UCL;
IF I=2 THEN;
PRINT,, 'Trt B LSM ’ estimate stderr t alpha, ’'A 95% CI is’
LCL UCL;
IF I=3 THEN;
PRINT,, 'Trt C LSM '’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;
IF I=4 THEN;
PRINT,, ’'Trt A-Trt B’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;
IF I=5 THEN;
PRINT,, ’'Trt A-Trt C’ estimate stderr t alpha, A 95% CI is’
LCL UCL;
IF I=6 THEN;
PRINT,, ’'Trt B-Trt C’ estimate stderr t alpha, ’'A 95% CI is’
LCL UCL;
END;
/* Model with Carryover x/
PROC GLM DATA=a;
CLASSES seq subject trt period priortrt;
MODEL y = seq subject(seq) trt period priortrt/E;
CONTRAST ’Carryover Effect’ priortrt 1 -1 0 O,
priortrt 1 0 -1 0Oy
ESTIMATE 'Trt A LSM’ intercept 18 seq 3 3 3 3 3 3 trt 18 0 0
period 6 6 6 priortrt 4 4 4 6/DIVISOR=18;
ESTIMATE ’'Trt B LSM’ intercept 18 seq 3 3 3 3 3 3 +trt 0 18 O
period 6 6 6 priortrt 4 4 4 6/DIVISOR=18;
ESTIMATE 'Trt C LSM’ intercept 18 seq 3 3 3 3 3 3 trt 0 0 18
period 6 6 6 priortrt 4 4 4 6/DIVISOR=18;
ESTIMATE ’'Trt A-Trt B’ trt 1 -1 0;
ESTIMATE ’'Trt A-Trt C’ trt 1 0 -1;
ESTIMATE ’'Trt B-Trt C’ trt 0 1 -1;
ESTIMATE ’Carryover A-B’ priortrt 1 -1 0 0;
ESTIMATE ’'Carryover A-C’ priortrt 1 0 -1 0;
ESTIMATE ’Carryover B-C’ priortrt 0 1 -1 0;
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CONTRAST 'Trt A LSM'’ intercept 18 seq 3 3 3 3 3 3 trt 18 0 O
period 6 6 6 priortrt 4 4 4 6;
CONTRAST 'Trt B LSM’ intercept 18 seq 3 3 3 3 3 3 trt 0 18 O
period 6 6 6 priortrt 4 4 4 6;
CONTRAST ’'Trt C LSM’ intercept 18 seq 3 3 3 3 3 3 trt 0 0 18
period 6 6 6 priortrt 4 4 4 6;
CONTRAST 'Trt A-Trt B’ trt 1 -1 Oy
CONTRAST ’'Trt A-Trt C’ trt 1 0 -1;
CONTRAST ’'Trt B-Trt C’ trt 0 1 -1;
CONTRAST ’Carryover A-B’ priortrt 1 -1 0 O;
CONTRAST ’'Carryover A-C’ priortrt 1 0 -1 O0;
CONTRAST ’'Carryover B-C’ priortrt 0 1 -1 0;
RANDOM subject (seq) ;
RUN;
PROC IML;
RESET nolog;
USE sigma;
READ ALL INTO sigmahat;
USE df;
READ ALL INTO df;
USE means;
READ ALL INTO means;
muhat = means({,1l];
USE size;
READ ALL INTO size;
n=sizel[,1] ; k=sizel[,2];
d = DIAG(k);
sigmastr = d @ sigmahat;
H ={(1 100000 100 100 0001,
1 100000 010 010 100 O,
1 100000 0O001 0 01 01 0 0,
1 010000 100 100 0001,
1 010000 0O001 010 100 0,
1 010000 010 001 0 01 0,
1 001000 010 100 0001,
1 001000 100 010 010 0,
1 001000 0001 0 01 100 0,
1 000100 010 100 0001,
1 000100 0O001 010 010 0,
1 000100 100 0 01 001 0,
1 000010 000212 100 0001,
1 000010 100 010 001 0,
1 000010 010 0 01 100 O,
1 000001 0001 100 00 0 1,
1 000001 010 010 001 0,
1 000001 100 0 01 010 0};
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PRINT ’'Model with Carryover’;

P R I N T
2
._/,-
a={18 3 3 3 333 18 00 6 6 6 4 4 4 6,
18 333333 0180 6 6 6 44 4 0o,
18 333333 00 18 6 6 6 4 4 4 6,
0O 0o00O0OO0OO0O 18 -18 0 000 O0O0O0 O,
o oo0oo0o0O0CO0 18 0 -18 00O O0O0OOO,
o 0ooo0oo0o0O0 018 -18 000 O0O0O0O,
o ooo0oo0oo0oo0 00O OOCO 18 -18 0 O,
o 0000O0OCO0C OOO OOO 18 0 -18 0,
0 000000 OOO0 O0OOO O 18 =18 0}/18;

DO I=1 TO 9;
b = GINV(H') *al[i,]‘;
estimate = b' * muhat;
stderr = SQRT( b' * sigmastr * Db);
t = estimate/stderr;
alpha = 2 * (1 — PROBT(ABS(t),df)); alpha = max(.0001,alpha);

tcrit=tinv(.975,df);
LCL = estimate — stderr*tcrit; UCL = estimate + stderr*tcrit;

IF I=1 THEN;

PRINT,, ’'Trt A LSM '’ estimate stderr t alpha, ’'A 95% CI is’
LCL UCL;

IF I=2 THEN;

PRINT,, ’'Trt B LSM ' estimate stderr t alpha, 'A 95% CI is’
LCL UCL;

IF I=3 THEN;

PRINT,, ’'Trt C LSM ’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;

IF I=4 THEN;

PRINT,, 'Trt A-Trt B’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;

IF I=5 THEN;

PRINT,, ’'Trt A-Trt C’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;

IF I=6 THEN;

PRINT,, ’'Trt B-Trt C’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;

IF I=7 THEN;

PRINT,, ’'Carryover A — Carryover B /' estimate stderr t alpha;

IF I=8 THEN;

PRINT,, ’'Carryover A — Carryover C ' estimate stderr t alpha;
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IF I=9 THEN;

PRINT,, ’'Carryover B — Carryover C '’ estimate stderr t alpha;
END;

>*

beta eg = GINV(H' * INV(sigmastr) * H) * H' * INV(sigmastr)
muhat;

DO I=1 TO 9;
estimate = a[i,] * beta eg;
stderr = SQRT( afi,] * GINV( H' * INV(sigmastr) * H ) *
afi, 1" )
t = estimate/stderr; alpha = 2 * (1 - PROBT (ABS(t),df) );
alpha = max(.0001,alpha);

tcrit=tinv(.975,df);
LCL = estimate - stderr*tcrit; UCL = estimate +
stderr*tcrit;

IF I=1 THEN;

PRINT,, 'Trt A LSM '’ estimate stderr
LCL UCL;

IF I=2 THEN;

PRINT,, 'Trt B LSM '’ estimate stderr
LCL UCL;

IF I=3 THEN;

PRINT,, ’'Trt C LSM ’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;

IF I=4 THEN;

PRINT,, ’'Trt A-Trt B’ estimate stderr t alpha, ’"A 95% CI is’
LCL UCL;

IF I=5 THEN;

PRINT,, ’'Trt A-Trt C’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;

IF I=6 THEN;

PRINT,, 'Trt B-Trt C’ estimate stderr t alpha, 'A 95% CI is’
LCL UCL;

IF I=7 THEN;

PRINT,, ’'Carryover A — Carryover B / estimate stderr t alpha;

IF I=8 THEN;

PRINT,, ’'Carryover A - Carryover C ' estimate stderr t alpha;

IF I=9 THEN;

PRINT,, ’'Carryover B — Carryover C ' estimate stderr t alpha;
END;

pa

alpha, 'A 95% CI is’

+

alpha, 'A 95% CI is’
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The important parts of the output obtained from the
preceding SAS commands is shown next. All of the output can be
obtained by executing the preceding commands.

SAS 4
General Linear Models Procedure
Repeated Measures Analysis of Variance

Partial Correlation Coefficients from the Error SS&CP Matrix
of the Variables Defined by the Specified Transformation / Prob > |r]|

DF = 29 PERIOD.1 PERIOD.2
PERIOD.1 1.000000 0.050046
0.0 0.7892

PERIOD.2 0.050046 1.000000
0.7892 0.0

Test for Spherieity: Mauchly’'s Criterien = 0.9910303
Chisquare Approximation = 0.2612936 with 2 df
Preb > Chisquare = 0.877S

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no PERIOD Effect
H = Type III SS&CP Matrix for PERICD E = Error SS&CP Matrix

S=1 M=0 N=13.5
Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda 0.18884865 62.2811 2 29 0.0001
Pillai’s Trace 0.81115135 62.2811 2 29 0.0001
Hotelling-Lawley Trace 4.29524555 62.2811 2 29 0.0001
Roy’s Greatest Root 4.29524555 62.2811 2 29 0.0001

Manova Test Criteria and F Approximations for
the Hypothesis of no PERIOD*SEQ Effect
H = Type III SS&CP Matrix for PERIOD*SEQ E = Error SS&CP Matrix

S=2 M=1 N=13.5
Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda 0.01748514 38.0625 10 58 0.0001
Pillai’s Trace 1.7330847 38.9581 10 60 0.0001
Hotelling-Lawley Trace 13.2652621 37.1427 10 56 0.0001
Roy’s Greatest Root 7.66493366 45.9896 5 30 0.0001
NOTE: F Statistic for Roy’s Greatest Root is an upper bound.
NOTE: F Statistic for Wilks’ Lambda is exact.
SAS 5
General Linear Models Procedure
Repeated Measures Analysis of Variance

Tests of Hypotheses for Between Subjects Effects
Source DF Type III SS Mean Square F Value Pr > F
SEQ 5 53.1885 10.6377 1.04 0.4142

Error 30 307.7789 10.2593
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SAS 6
General Linear Models Procedure
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects
Source: PERIOD
Adj Pr > F
DF Type III SS Mean Square F Value Pr > F G - G H-F
2 106.64518519 53.32259259 58.52 0.0001 0.0001 0.0001
Source: PERIOD*SEQ
Adj Pr > F
DF Type III SS Mean Square F Value Pr > F G - G H-F
10 365.94037037 36.59403704 40.16 0.0001 0.0001 0.0001
Source: Error (PERIOD)
DF Type III SS Mean Square
60 54.6677771778 0.91112963
Greenhouse-Geisser Epsilen = 0.9911
Huynh-Feldt Epsilen = 1.2378
SAS 10
General Linear Models Procedure
Dependent Variable: Y
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 39 817.58500 20.96372 20.18 0.0001
Error 68 70.63574 1.03876
Corrected Total 107 888.22074
R-Square C.V. Root MSE Y Mean
0.920475 4.170071 1.0192 24.44074
Source DF Type I SS Mean Square F Value Pr > F
SEQ 5 53.18852 10.63770 +024——06-0660%
SUBJECT (SEQ) 30 307.77889 10.25930 9.88 0.0001
TRT 2 349.97241 174.98620 168.46 0.0001
PERIOD 2 106.64519 53.32259 51.33 0.0001
Source DF Type III SS Mean Square F Value Pr > F
SEQ 5 53.18852 10.63770 1024 66661
SUBJECT (SEQ) 30 307.77889 10.25930 9.88 0.0001
TRT 2 349.97241 174.98620 168.46 0.0001
PERIOD 2 106.64519 53.32259 51.33 0.0001
Contrast DF Contrast SS Mean Square F Value Pr > F
Trt A LSM 1 20145.071 20145.071 3939337 660601
Trt B LSM 1 18609.507 18609.507 +#915+16 660661
Trt C LSM 1 26109.174 26109.174 2513492 6-666%
Trt A-Trt B 1 15.217 15.217 14.65 0.0003
Trt A-Trt C 1 193.061 193.061 185.86 0.0001
Trt B-Trt C 1 316.681 316.681 304.86 0.0001
T for HO: Pr > |T| std Error of
Parameter Estimate Parameter=0 Estimate
Trt A LSM 23.65555556 +39:26—— 0060016986603
Trt B LSM 22.73611111 13385 06-006F——0-16986603
Trt C LSM 26.9305555¢6 15854 66061 616986603
Trt A-Trt B 0.91944444 3.83 0.0003 0.24022685
Trt A-Trt C -3.27500000 -13.63 0.0001 0.24022685
Trt B-Trt C -4.19444444 -17.46 0.0001 0.24022685
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SAS 12
SIGMAHAT
4.3508889 3.2581111 3.2118889

3.2581111 3.9822222 2.8781667
3.2118889 2.8781667 3.7484444

SAS 13

No Carryover Model

Multivariate Approach

ESTIMATE STDERR T ALPHA
Trt A LSM 23.655556 0.3344641 70.726734 0.0001
LCL UCL

A 95% CI is 22.972489 24.338622
ESTIMATE STDERR T ALPHA
Trt B LSM 22.736111 0.3344641 67.977726 0.0001

LCL UCL
A 95% CI is 22.053044 23.419178

ESTIMATE STDERR T ALPHA
Trt C LSM 26.930556 0.3344641 80.518516 0.0001
LCL UCL

A 95% CI is 26.247489 27.613622
ESTIMATE STDERR T ALPHA
Trt A-Trt B 0.9194444 0.2249851 4.0866897 0.0003007

LCL UCL
A 95% CI is 0.4599635 1.3789254

ESTIMATE STDERR T ALPHA
Trt A-Trt C -3.275 0.2249851 -14.55652 0.0001
LCL UCL

A 95% CI is -3.734481 -2.815519

ESTIMATE STDERR T ALPHA
Trt B-Trt C -4.194444 0.2249851 -18.64321 0.0001
LCL UCL

A 95% CI is -4.653925 -3.734963

SAS 14

No Carryover Model

Mixed Model Approach

ESTIMATE STDERR T ALPHA
Trt A LSM 23.666882 0.3342378 70.808514 0.0001
LCL UCL

A 95% CI is 22.984278 24.349487
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Trt B LSM

Trt C LSM

Trt A-Trt

Trt A-Trt

Trt B-Trt

ESTIMATE
22.745525 0.3342378 68.051922

STDERR

LCL

A 95% CI is 22.062921

ESTIMATE
26.909814 0.3342378 80.510983

A 95% CI is

ESTIMATE

STDERR

LCL

STDERR

26.22721 27.592419

Conference on Applied Statistics in Agriculture

T ALPHA
0.0001
UCL
23.42813
T ALPHA
0.0001
UCL
T ALPHA

B 0.921357 0.2239738 4.1136812 0.0002791

LCL

UCL

A 95% CI is 0.4639414 1.3787726

ESTIMATE

STDERR

T

C -3.242932 0.2239738 -14.47907

LCL

UCL

A 95% CI is -3.700348 -2.785516

ESTIMATE

STDERR

C -4.164289 0.2239738

LCL

T

-18.59275

UCL

A 95% CI is -4.621705 -3.706873

SAS

General Linear Models Procedure

Dependent Variable: Y

Source
Model
Error

Corrected Total

Source

SEQ

SUBJECT (SEQ)
TRT

PERIOD
PRIORTRT

Contrast

Carryover Effect
Trt A LSM
Trt B LSM
Trt C LSM
Trt A-Trt B
Trt A-Trt C
Trt B-Trt C
Carryover A-
Carryover A-
Carryover B-

aQOow

DF

41

66

107
R-Square

0.925484

DF

NENDO O

o
o]

I L e =

Sum of
Squares

822.03421
66.18653
888.22074
C.V.

4.097307

Type III SS

53.67258
307.77889
249.72636

15.12500

4.44921

Contrast SS

4.449
17298.308
16108.924
22157.857

9.884

140.188
224.518

0.596

1.727

4.351
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Mean
Square

20.04961

1.00283

Root MSE

1.0014

Mean Square

10.73452
10.25930
124.86318
15.12500
2.22461

Mean Square

2.225
17298.308
16108.924
22157.857

9.884

140.188
224.518

0.596

1.727

4.351

ALPHA
0.0001
ALPHA
0.0001
17
F Value Pr > F
19.99 0.0001
Y Mean
24.44074
F Value Pr > F
+H0-F+—0-000%
10.23 0.0001
124.51 0.0001
15.08 0.0002

2.22 0.1168

F Value Pr > F

2.22 0.1168
++249-56—0-666%
+6063-53— 66661
2269541 666061

9.86 0.0025

139.79 0.0001
223.89 0.0001

0.59 0.4436

1.72 0.1940

4.34 0.0411
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144
T for HO: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
Trt A LSM 23.67685185 13134 000061 618027478
Trt B LSM 22.84837963 126+-+4 00661 618627478
Trt C LSM 26.79699074 1H48-65—0-0061+—0-18027478
Trt A-Trt B 0.82847222 3.14 0.0025 0.26389526
Trt A-Trt C -3.12013889 -11.82 0.0001 0.26389526
Trt B-Trt C -3.94861111 -14.96 0.0001 0.26389526
Carryover A-B -0.27291667 -0.77 0.4436 0.35405264
Carryover A-C 0.46458333 1.31 0.1940 0.35405264
Carryover B-C 0.73750000 2.08 0.0411 0.35405264
SAS
Model with Carryover
Multivariate Approach
ESTIMATE STDERR T ALPHA
Trt A LSM 23.676852 0.3399816 69.641567 0.0001
LCL UCL
A 95% CI is 22.982517 24.371187
ESTIMATE STDERR T ALPHA
Trt B LSM 22.84838 0.3399816 67.204753 0.0001
LCL UCL
A 95% CI is 22.154045 23.542715
ESTIMATE STDERR T ALPHA
Trt C LSM 26.796991 0.3399816 78.818943 0.0001
LCL UCL
A 95% CI is 26.102656 27.491326
ESTIMATE STDERR T ALPHA
Trt A-Trt B 0.8284722 0.2485599 3.3330889 0.0022926
LCL UCL
A 95% CI is 0.3208452 1.3360993
ESTIMATE STDERR T ALPHA
Trt A-Trt C -3.120139 0.2485599 -12.55287 0.0001
LCL UCL
A 95% CI is -3.627766 -2.612512
ESTIMATE STDERR T ALPHA
Trt B-Trt C -3.948611 0.2485599 -15.88595 0.0001
LCL UCL
A 95% CI is -4.456238 -3.440984
ESTIMATE STDERR T ALPHA

Carryover A - Carryover B

ESTIMATE

Carryover A - Carryover C

ESTIMATE

Carryover B - Carryover C

SAS

Model with C

STDERR

STDERR

arryover

-0.272917 0.3446902 -0.791774 0.4347088

T ALPHA

0.4645833 0.3446902 1.3478286 0.1878041

T ALPHA

0.7375 0.3446902 2.1396024 0.0406403

Mixed Model Approach
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Trt

Trt

Trt

Trt

Trt

Trt

Carryover A

Carryover A

Carryover B
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ESTIMATE STDERR T ALPHA
A LsM 23.68273 0.339728 69.710857 0.0001
LCL UCL
A 95% CI is 22.988913 24.376547
ESTIMATE STDERR T ALPHA
B LSM 22.848954 0.339728 67.25661 0.0001
LCL UCL
A 95% CI is 22.155137 23.542771
ESTIMATE STDERR T ALPHA
C LSM 26.790538 0.339728 78.858786 0.0001
LCL UCL
A 95% CI is 26.096721 27.484355
ESTIMATE STDERR T ALPHA
A-Trt B 0.8337763 0.2475175 3.3685554 0.0020892
LCL UcCL
A 95% CI is 0.3282782 1.3392744
ESTIMATE STDERR T ALPHA
A-Trt C -3.107808 0.2475175 -12.55591 0.0001
LCL UCL
A 95% CI is -3.613306 -2.60231
ESTIMATE STDERR T ALPHA
B-Trt C -3.941584 0.2475175 -15.92447 0.0001
LCL UCL

A 95% CI is -4.447082 -3.436086

- Carryover B

- Carryover C

- Carryover C

ESTIMATE
-0.285747

ESTIMATE
0.4408652

ESTIMATE
0.7266117
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STDERR T ALPHA
0.3437527 -0.831256 0.4123964

STDERR T ALPHA
0.3437527 1.2825068 0.2094864

STDERR T ALPHA
0.3437527 2.1137629 0.0429597
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