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Applied Statistics in Agriculture 

SPATIAL Al'lALYSIS OF YIELD TRIALS USING SEPARABLE 
ARThlA PROCESSES 

M.O. Grondona, Instituto de Clima y Agua, INTA, Argentina 
J. Crossa, P.N. Fox and W.H. Pfeiffer, CIMMYT, Mexico 

ABSTRACT 

Spatial analysis procedures based on one-dimensional and 
two-dimensional (separable) ARIMA (Auto Regressive Integrated 
Moving Average) processes were used to analyze several yield 
trials. Two criteria were used to determine the best spatial 
model: 1) standard error of the treatment difference (SED) and 
2) mean squared error (MSE) of prediction based on a 
cross-validation approach. It is found that spatial models 
with two-dimensional exponential covariance functions are 
frequently the best models regarding SED and MSE. Differenced 
models are frequently the best models regarding SED and the 
worst with respect to MSE. 

1. INTRODUCTION 

The main objective of variety trials is to obtain precise 
estimates of differences in yield. However, spatial 
variability due to fertility gradients, environmental factors, 
etc., may cause: 1) serious bias in the estimation of 
treatment effects and 2) inflation of the residual variation. 
Thus it is important to reduce residual variation not 
accounted for by the treatment effects. Residual variation can 
be reduced through the use of appropriate experimental 
designs, nearest neighbor approach, and/or spatial methods of 
analysis. 

Recently, several models have been proposed to account 
for spatial variability (Besag and Kempton, 1986; Gleeson and 
Cullis, 1987; Williams, 1986; Martin, 1990; Zimmerman and 
Harville, 1991; Grondona and Cressie, 1991; Cullis and 
Gleeson; 1991). Spatial variation is modeled by including two 
main components: 1) the "global trend", which is modeled 
through the mean structure, and 2) the "local trend ", which is 
modeled through a random spatially-correlated structure. 

One problem with the spatial approach is the inadequate 
diagnostics to select the best models. One measure for 
comparing different models is the average variance of the 
difference between pairs of varieties. To compute this 
measure, the parameter vector () of the spatial- covariance 
function should be known. The customar~ procedures are 
obtained by substituting an estimator () for () in the 
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expression for the variance of the treatment difference. This 
measure relies on assumptions regarding the covariance 
structure, and underestimates the true average variance of the 
pairwise treatment differences, since the uncertainty in the 
estimation of e is not taken into account. A less dependent 
measurement of the model's adequacy is obtained with the 
cross-validation approach (Stone, 1974; Geisser, 1975), where 
each observation in turn is considered missing and predicted 
for the remaining ones. 

The objectives of this article are: 1) to analyze sets of 
variety trials using several spatial models with the separable 
error structure proposed by Cullis and Gleeson (1991) and 2) 
to describe and use a cross-validation approach for selecting 
the best spatial models. 

2. THE SPATIAL MODELS 

The general form of the two-dimensional model proposed by 
Cullis and Gleeson (1991) comprises terms for: 1) fixed 
effects (treatments, covariates, etc.), 2) random effects 
(test lines in unreplicated trials, blocks in incomplete block 
analysis with recovery of inter-block information, 3) global 
trend effects or large-scale variation (row and column 
effects, polynomial trend), 4) local trend effects or smooth 
small-scale variation (the spatially correlated random 
component), and 5) error effect, which is the random component 
representing error measurements and is assumed to be 
identically and independently distributed. 

Assuming that the experimental trial has r rows and c 
columns, the spatial models used in this paper can be 
represented by the following general linear model: 

(1 ) 

where Y represents the vector response, sorted by columns and 
rows within columns; a represents the treatment effects 
(varieties); D is the design matrix for the treatments; r 
represents the global trend variation, e.g., block effects, 
polynomial trend, etc,; Z is the design matrix for the global 
trend; W represents the smooth local trend variation, modeled 
as a spatially dependent random vector with a mean of zero; 
e is a vector of random residuals which are identically and 
independently distributed with variance Iu 2 • The vector r will 
usually be considered as a fixed effect, except in the 
incomplete block analysis with recovery of inter-block 
information where the block effect r is assumed random. 

Adding the assumption of normality, the parameters of the 
covariance structure are estimated by REML. 

The local trend component is modeled as a separable ARlMA 
process, i.e., separate ARlMA processes are assumed in the row 
and column directions. ARlMA processes are characterized by 
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three parameters: p, the order of autoregression; d, the order 
of differencing, and q, the order of the moving average; they 
are denoted as ARlMA(p,d,q) . Low order processes (0 or 1) will 
usually be sufficient to represent the local trend component 
W. Commonly used ARlMA processes are: ARlMA(l,O,O) 
(exponential decreasing correlation structure), ARlMA(O,l,O) 
(differenced observations are independent), ARlMA(O,O,l) 
(after differencing, just neighbor plots are correlated) and 
ARlMA(O,l,l) (just correlation between neighbor differenced 
observations) . 

The 22 spatial models fitted in this paper are special 
cases of (1); every model included a fixed variety effect 
component Da. The classical analysis approach is considered by 
including the following models: 1) complete block design (CB), 
2) incomplete block with blocks as fixed effects (IB-F) and 3) 
incomplete block with blocks as random effects (IB-R). The 
remaining 19 models are presented in Table 1. 

3. CROSS-VALIDATION 

We use cross-validation in a way similar to its 
application in geostatistics, where a variogram m~del is 
fitted (Cressie, 1991). Assume var(Y) = E(O) and let 0 be the 
fitted covariance parameter obtained using all the data. 
Cross-validation involves deleting each plot observation and 
spatially predicting ("kriging") it with the vector of n-1 
remaining observations Yn-1 , based on the fitted covariance 
parameter O. Consider for simplicity that Yo is the deleted or 
"missing" observation, then the best linear unbiased" spatial" 
predictor (BLUP) of Yn, denoted Yn=A 'Yo-I' is obtained by 
minimizing E(Yo-A 'YD-1 ) 2 subject to the unbiased condition 
E (Yn- A 'Yo-t ) =0 . Denote with X' = [X' 0-1 XD] the incidence matrix 
associated with all fixed effects, e.g., X=[D Z], where X0-1 is 
the matrix containing the first n-1 rows of X and XI D is the 
last row of X. Assume, without loss of generality, that X is 
the full column rank. Then the ("universal") kriging equations 
are obtained by differentiating 
i'(A,m) =E (AIYD_t-Yo)2+mIE (A I Yo-I - Yo) with respect to A and m 
(Cressie, 1991). Equating to zero the resulting system of 
equations the kriging predictor is given by AIYo_t with 

Under the integrated or differenced local trend models, 
i.e., W is an ARlMA(Pl,1,ql)xARlMA(P2,1,~) process, developing 
the kriging equations poses some complications since the 
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covariance is defined in terms of the increment of the 
observations and not of the vector Y. The kriging equations 
could be derived by assuming {Y j : i=l, ... , n} as an intrinsic 
random process with generalized covariance matrix K. In 
practice, there is no problem with using the kriging 
equations since this is equivalent to fitting a dummy 
covariate for each missing observation and computing its 
generalized least squares estimator using the fitted 
covariance parameter 0 (Green, 1985). 

4. EXPERIMENTAL DATA 

Four sets of CIMMYT's triticale and wheat yield trials, 
described below, were analyzed using the spatial model 
presented in Section 2. 

Set 1. 1990/91 Triticale Preliminary Yield Trials conducted at 
Cd. Obregon, Mexico (PYT1) 

Eighteen adjacent trials, each with 56 entries and the 
same two check lines arranged in a resolvable incomplete block 
design with two superblocks were analyzed. The entries had two 
replicates and the checks were replicated eight times each. 
The experimental layout is 16 rows and 8 columns; incomplete 
blocks correspond to rows. 

Set 2. 1990/91 Preliminary Yield Trials planted in Huamantla, 
Mexico (PYT2) 

This set includes four adjacent trials, each having 56 
entries replicated three times and one check replicated 24 
times. The experimental design for each trial is a resolvable 
incomplete block design with eight plots in each block. The 
layout consists of 24 rows and 8 columns; incomplete blocks 
correspond to rows. 

Set 3. 1990/91 International Triticale Yield Nurseries 
(ITYN-22) 

Six trials from the international triticale nurseries 
were analyzed. Each trial had 25 entries in an a-lattice 
design with three replicates and incomplete blocks of five 
plots each. Layout differs among experiments and is determined 
by individual cooperators. 
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Set 4. 1990/91 Elite Durum Yield Trials (EDYT-20) 

Seven trials from the durum wheat international nurseries 
were analyzed. The experimental design for each trial is an a­
lattice with 30 entries, incomplete blocks of five plots and 
three replicates. As in the ITYN trials, the layout varies 
from trial to trial. 

5. RESULTS OF SPATIAL ANALYSES AND THE CROSS-VALIDATION 
PROCEDURE ON SEVERAL VARIETY TRIALS 

Two criteria were used to determine the best spatial 
models. The first criterion is the mean squared error (MSE) 
obtained from the cross-validation procedure. The average 
predicted error sums of squares, called PRESS in the linear 
regression approach (Allen, 1971), measures the fit of the 
predicted value of the model to the corresponding observed 
value 

n 
1 L "2 MSE= - ( y. - y. ) 

1 1 n i =l 

(3 ) 

The relative efficiency of the model in terms of the MSE is 
the ratio of MSE for the complete block model (CB) over the 
MSE for the model of interest (MSE-RE). 

The other criterion used to determine the best spatial 
model was the relative efficiency based on the standard error 
of the treatment difference (SED). The average standard error 
(SED of the pairwise treatment difference) is 

SED = (4 ) 

The relative efficiency of the model in terms of the SED is 
calculated as the squared ratio of the SED for the complete 
block model (CB) over the SED for the model of interest (SED­
RE) . 

Models with one-dimensional first order differences in 
the row or column direction (models 9 and 14, respectively) or 
two-dimensional first order differences in the row and column 
directions (model 21) assume no plot variance; therefore, they 
are considered unreasonable (Gilmour, 1992). However, first 
order difference models seem to be valid in a randomization 
framework (Besag and Kempton, 1986; Zimmerman and Harville, 
1991) . 
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The TWoD software (Gilmour, 1992) was used to calculate 
the average variance of pairwise differences of entries for 
each of the 22 models and SAS IML was used to compute the mean 
squared error of prediction. 

In Tables 2 to 5, the "best" model, in terms of the 
average predicted error sums of squares (MSE), the standard 
error of differences including all models (SED (a)), and the 
standard error of differences excluding models 9, 14, and 21 
(SED (b)), is presented for every trial. The second and third 
columns of Tables 2-5 present the SED-RE and MSE-RE of the 
incomplete block analysis with recovery of interblock 
information (IB-R) . The tables show the SED-RE and the average 
predicted error sums of squares efficiency (MSE-RE). The 
latter is computed as the ratio of the CB's MSE, defined in 
(4), over the model's MSE. 

Tables 2-5 show the superiority, in terms of the SED and 
the MSE criteria, of spatial models compared with complete and 
incomplete block models. Considering the SED (a) criterion, 
first-order difference models (9,14 and 21) usually give the 
smallest values (20 out of 35 times). The most frequent (16 
times) and best (with respect to SED-RE) is model 14, ARIMA 
(0,1,0) in the row direction (Fig. 1), with average SED-RE and 

MSE-RE of 1.55 and 1.09, respectively (Table 6). The next most 
frequent (9 times) SED model is 17, 2d AR (1) (Fig. 1) with an 
average SED-RE and MSE-RE of 2.03 and 2.23, respectively 
(Table 6). When models 9, 14, and 21 are omitted from the 
analysis, 2d AR (1) (model 17) is the best SED (b) model in 21 
trials (Fig. 1) with average SED-RE and MSE-RE of 1.75 and 
1.70, respectively (Table 6). The next most frequent model is 
Cols+AR(l)C (model 12) with the smallest SED value in five 
trials and an average SED-RE of 1.70 . 

When models are chosen by cross-validation (MSE) , the 
first-order difference models (9, 14, and 21) never yield the 
minimum average prediction sum of squares (Fig. 1). Two­
dimensional AR(l) (model 17) is the model that most frequently 
(14 times) (Fig. 1) achieves the smallest MSE value with an 
average SED-RE and MSE-RE of 1.70 and 1.64, respectively 
(Tables 6). The next most frequent (5 times) best model is 
Cols+AR(l) (Fig. 1) with average SED-RE and MSE-RE of 1.71 and 
2.60, respectively. These results are consistent with results 
obtained by Zimmerman and Harville (1991) from a randomization 
study of uniformity trials. The methods that accounted for 
two-dimensional spatial correlation were generally the most 
accurate. 

Modeling the small-scale variation W as ARIMA(O,l,O) 
processes in one dimension (models 9 and 14) or in two 
dimensions (model 21) produces minimum MSE-RE values but large 
SED-RE values (Fig. 1). However, modeling the small-scale 
variation as 2d AR(l) produces large values for both SED-RE 
and MSE-RE (Table 6). 
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6. CONCLUSIONS 

The spatial approach is more successful in reducing 
residual variation than the classic design approach with 
independent observations. Results also indicate that models 
selected based solely on the average variance of pairwise 
differences frequently did not perform satisfactorily under 
the cross-validation criterion. Modeling the small-scale 
variation component as ARlMA(O,l,O) processes in one or two 
dimensions frequently yields minimum MSE-RE values and large 
SED-RE values. The results presented here are consistent with 
those of previous studies in which the two-dimensional spatial 
approach has proved superior to the one-dimensional approach. 
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Table 1. Fitting spatial models (non-classical). 

Trend 

Model Global (*) Local 

Row Col. 
Row Col 

N Description ARIMA(p"d"q" ARIMA(P2,d2,q2) 

4 Rows X 

5 AR(1) R (1,0,0) 

6 Rows + AR(1) R X (1,0,0) 

7 Cols X 

8 Cols + AR( 1) R X (1,0,0) 

9 Diff. Cols (0,1,0) 

10 Diff. Cols + MA(l) C (0,1,1) 

11 AR(l) C (1,0,0) 

12 Cols + AR(l) C X (1,0,0) 

13 Rows + AR(l) C X (1,0,0) 

14 Ditt. Rows (0,1,0) 

15 Diff. Rows + MA(l) R (0,1,1) 

16 Rows&Cols X X 

17 2d AR(l) (1,0,0) (1,0,0) 

18 Rows&Cols + AR( 1) R X X (1,0,0) 

19 Rows&Cols + AR( 1) C X X (1,0,0) 

20 Rows&Cols + 2d AR( 1 ) X X (1,0,0) (1,0,0) 

21 Ditf. Rows&Cols (0,1,0) (0,1,0) 

22 Ditf. Rows&Cols + 2d MA(l) (0,1,1) (0,1,1) 
( *) The X indicates that the corres ondin p 9 main effect is fitted. 
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Table 2. PYT1 :Best Models using the MSE and SED criteria 

IB-R MSE SED (a) SED (b) 
Tri-
al SED MSE Mo- SED MSE Mo- SED MSE Mo- SED MSE 

-RE -RE del -RE -RE del -RE -RE del -RE -RE 

1 1.09 1.12 20 2.28 2.89 17 3.27 2.73 17 3.27 2.73 

2 1.07 1.07 17 1.14 1.17 17 1.14 1.17 17 1.14 1.17 

3 0.98 1.02 11 1.07 1.02 11 1.07 1.02 11 1.07 1.02 

4 1.01 1.03 15 1.48 1.54 14 1.61 1.03 13 1.48 1.54 

5 0.96 1.00 13 0.87 1.12 14 1.09 0.67 1 1.00 1.00 

6 1.12 1.13 5 1.26 1.30 17 1.39 1.25 17 1.39 1.25 

7 1.15 1.24 6 1.02 1.31 14 1.53 1.31 7 1.28 1.29 

8 1.22 1.42 13 1.13 1.46 3 1.22 1.42 3 1.22 1.42 

9 1 .. 25 1.41 3 1.25 1.41 17 1.34 1.39 17 1.34 1.39 

10 0.82 0.84 17 3.63 3.85 17 3.63 3.85 17 3.63 3.85 

11 0.97 0.99 15 1.22 1.26 14 1.27 0.91 17 1.22 1.17 

12 0.78 0.79 1 1.00 1.00 14 1.06 0.62 1 1.00 1.00 

13 0.95 0.96 15 1.30 1.40 14 1.56 1.23 17 1.43 1.34 

14 0.95 1.05 18 1.25 1.88 12 1.49 1.38 12 1.49 1.38 

15 1.14 1.17 17 1.62 1.50 17 1.62 1.50 17 1.62 1.50 

16 0.98 0.99 17 1.30 1.23 17 1.30 1.23 17 1.30 1.23 

17 0.95 0.94 12 1.18 1.20 14 1.25 0.82 17 1.18 1.08 

18 0.84 0.79 12 1.58 1.47 14 1.67 1.08 12 1.58 1.47 

Avg 1.01 1.05 1.42 1.56 1.58 1.37 1.53 1.49 
(a) Including all models 

(b) Excluding models 9, 14 and 21 
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Table 3. PYT2: Best models using the MSE and SED criteria 

IB-R MSE SED (a) SED (b) 
Tri 
-al SED MSE Mo- SED MSE Mo- SED MSE Mo- SED MSE 

-RE -RE del -RE -RE del -RE -RE del -RE -RE 

1 0.93 0.93 17 1.90 1.69 14 2.11 1.45 17 1.90 1.69 

2 0.90 0.96 22 0.76 1.24 14 1.30 0.88 17 1.23 1.19 

3 0.89 0.97 20 1.37 2.05 14 2.53 1.98 17 2.35 2.04 

4 0.96 0.98 17 2.69 2.61 14 2.70 2.16 17 2.69 2.61 

Avg 0.92 0.96 1.68 1.90 2.16 1.62 2.04 1.88 
(a) Including all models (b) Excluding models 9, 14 and 21 

Table 4. ITYN-22: Best models using the MSE and SED criteria 

IB-R MSE SED (a) SED (b) 

Tri-

SED MSE Mo- SED MSE Mo- SED MSE Mo- SED MSE 
al 

-RE -RE del -RE -RE del -RE -RE del -RE -RE 

1 1.03 1.06 17 1.08 1.10 14 1.13 0.68 17 1.08 1.10 

2 1.38 3.73 12 1.59 6.15 17 1.68 4.65 17 1.68 4.65 

3 0.99 0.90 17 1.19 1.12 14 1.34 0.99 17 1.19 1.12 

4 0.92 0.83 17 2.94 2.38 17 2.94 2.38 17 2.94 2.38 

5 1.43 1.31 20 1.35 1.34 9 1.54 1.00 3 1.43 1.31 

6 1.28 1.17 17 1.81 1.79 21 2.07 1.23 17 1.81 1.79 

7 1.11 1.02 17 1.27 1.22 9 1.34 1.07 17 1.27 1.22 

Avg 1.16 1.43 1.60 2.16 1.72 1.71 1.63 1.94 

(a) Includin 9 all models (b) Excluding models 9, 14 and 21 
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Table 5. EDYT-20: Best models using the MSE and SED criteria 

IB-R MSE SED (a) SED (b) 
Tri-
al SED MSE Mo- SED MSE Mo- SED MSE Mo- SED MSE 

-RE -RE del -RE -RE del -RE -RE del -RE -RE 

1 1.32 1.22 12 1.49 1.56 12 1.49 1.56 12 1.49 1.56 

2 0.69 0.75 15 1.27 1.27 14 1.53 0.96 5 1.29 1.18 

3 1.12 1.05 12 2.69 2.60 12 2.69 2.60 12 2.69 2.60 

4 1.00 1.04 17 1.02 1.07 14 1.05 0.71 17 1.02 1.07 

5 1.02 0.93 17 1.23 1.23 21 1.42 1.00 12 1.25 1.17 

6 0.95 0.99 17 0.98 1.02 1 1.00 1.00 1 1.00 1.00 

Avg 1.02 1.00 1.45 1.46 1.53 1.31 1.46 1.43 
(a) Including all models 

(b) Excluding models 9, 14 and 21 
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Table 6. Mean MSE-RE and SED-RE of the best three more frequent models for the MSE, SED(a), and 

SED(b) criterion. 

Criteria Ranking Model Frequency SED-RE MSE-RE 

1 17 14 1.70 1.64 

MSE 2 12 5 1.71 2.60 

3 15 4 1.32 1.37 

1 14 16 1.55 1.09 

SED(a) 2 17 9 2.03 2.23 

3 12 3 1.89 1.85 

1 17 21 1.75 1.79 

SED(b) 2 12 5 1.70 1.64 

3 3 2 1.33 1.37 
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Fig. 1. Best models based on MSE and SEDs 
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Fig. 1. Best models based on MSE and SEDs 
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