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ANALYSIS OF SPATIAL VARIABILITY USING PROC MIXED 

David B. Marx and Walter W. Stroup 
Department of Biometry 

University of Nebraska-Lincoln 
Lincoln, NE 68583-0712 

ABSTRACT 

Many data sets in agricultural research have spatially correlated 
observations. Examples include field trials conducted on heterogeneous plots 
for which blocking is inadequate, soil fertility surveys, ground water 
resource research, etc. Such data sets may be intended for treatment 
comparisons or for characterization. In either case, linear models with 
correlated errors are typically used. Geostatistical models such as those 
used in "kriging" are often used to estimate the error structure. 

SAS PROC MIXED allows the estimation of the parameters of mixed linear 
models with correlated errors. Fixed and random effects are estimated by 
generalized least squares. Variance and covariance components are estimated 
by restricted maximum likelihood (REML). 

The purpose of this presentation is to show how PROC MIXED can be used 
to work with spatial data. Several examples will be presented to illustrate 
how various analyses could be approached and some of the pitfalls users may 
encounter. 

1. INTRODUCTION 

Statistical methods traditionally used in agricultural research have 
emphasized designs and analyses which assume that variation among 
experimental units is either (i) homogeneous or (ii) can be controlled by 
blocking. In many field situations, however, variation is more likely to be 
characterized by smooth, localized, irregular trends - variation which is 
neither homogeneous nor necessarily well-controlled by blocking. 

Figure 1 illustrates the distinction among these three general classes 
of variability. Rows and columns represent field plots in a rectangular 
arrangement and the y-variable is some response of interest. The first case 
represents variation across the field when we have "homogeneous" 
experimental units, the nominal situation for which the completely random 
design its associated analysis of variance are appropriate. These data were 
produced by a normal random number generator. The second case represents 
experimental units with obvious homogeneous subsets - an idealized case for 
the use of a blocked design and its associated analysis of variance. The 
third case is a visual characterization of spatial variability - the 
variation obviously has pattern, but the pattern, while smooth, is irregular 
and an implementable criterion for blocking is not obvious. 

In the third case, the pattern of variability can often be 
characterized by a linear model with spatially correlated errors. Mixed 
linear model methods (Henderson, 1975; Harville, 1976, 1977; McLean, 
Sanders, and Stroup, 1991) are therefore useful tools to analyze such data. 

The general form of the mixed linear model is as follows. 

y XB + Zu + e, (1) 

where y is a vector of observations; 
X is a matrix of constants (describing regression or design 
structure) for the fixed effects; 
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B is a vector of fixed effects parameters; 
Z is a matrix of constants for the random effects; 
u is a vector of random effects; and 
e is a vector of residuals. 

For the random effects, u and e, assume E(u) = E(e) = 0, Var(u) = G, Var(e) 
= R, and Cov(u,e') = O. In "traditional" models, e.g. standard analysis of 
variance models for completely random and randomized block designs, R = 102 

is assumed, but mixed model theory places no requirements on R or G - both 
can be general. 

Inference with mixed linear model has three basic building blocks. The 
first is the mixed model equation, used to estimate Band u, given as 
follows: 

1 [ : 1 = [ :: ::: 1 (2) 

In most cases, the variance and covariance components of G and Rare 
unknown, and estimates must be used. Estimates are typically obtained using 
restricted maximum likelihood (REML), although other methods can be used. 

The second building block of inference is the predictable function, K' B 
+ M' u, which is predictable is K' B is estimable. Adjusted marginal treatment 
means (a.k.a. "Least Squares means"), treatment differences, and contrasts 
are typical predictable functions of interest to researchers. The marginal 
means or treatment comparisons of interest guide the choice of K. In most 
applications, M will be a matrix of zeros, corresponding to what McLean, et. 
al. (1991) call the "broad inference space." Other M matrices may be 
selected to restrict the inference space or to obtain best linear unbiased 
predictors (BLUP). See McLean, et. al. (1991) for further detail. 

The third building block of interest is the "standard error," or, more 
precisely, the square root of the prediction error of the estimated 
predictable function. The standard error is given by the formula JL'CL, 
where L' = [K' M') and C is the generalized inverse of 

1 
When L is a vector - e.g. when a single marginal mean, treatment contrast, 
or BLUP is of interest - the ratio estimate/ (standard error) is a t
statistic and be used as such. In the more general case, where L is a matrix 
- e.g. when multiple degree of freedom hypotheses, such ~: all treatment 
effects equal, are of interest, 

e'L(L'CL)"lL'e/rank(L), where e' = [B' u') 

is an approximate F-statistic. The numerator degrees of freedom equal 
rank(L). The denominator degrees of freedom are more complicated. A naive 
approach is to use the degrees of freedom implied by the appropriate error 
term in a analysis of variance table. In more complex models, e.g. for which 
the implied error from the ANOVA term involves more than one mean square, 
or the errors are correlated, Satterthwaite's approximation, or other 
alternatives, may be used. Jeske and Harville (1988) consider this issue in 
some detail, and the interested reader is referred to their article. PROC 
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MIXED (SAS Institute, 1992) uses the naive, ANOVA-ana10g approach to 
determine error degrees of freedom. 

Several spatial correlation models are potentially useful for 
agricultural data. Typically, spatial correlation refers to variability 
among experimental units in a single location (e.g. among plots in a field) 
and is thus modeled through the covariance of the residual vector, a, that 
is, the matrix R. Zimmerman and Harville (1991) discuss several alternative 
structures for R. Many of these were originally developed for applications 
in geostatistics (Journel & Huijbregts, 1978). The basic idea is as follows. 

In a typical field trial with spatial variability, responses of plots 
close together are highly correlated, whereas plots farther apart are less 
correlated. At some critical distance, responses of plots that distance or 
farther apart are essentially uncorrelated. In geostatistics, the 
semivariogram is used to characterize spatial variability. The semivariance 
defined as 

r(h) = ~Var(difference between pairs of observations h units apart) 

The semivariogram is a plot of r(h) versus h. A typical semivariogram is 
given in Figure 2, below. The key features of the semivariogram are the 
range, defined as the critical distance above which observations are 
uncorrelated, the sill, the semivariance of uncorrelated observations (equal 
to the error variance, it can be shown), and the nugget, defined as the 
semivariance at distance zero. The nugget describes abrupt changes and was 
originally intended to model data from searches for diamonds, where probes 
a very short distance apart could find either nothing or a very high 
concentration of diamonds. Such abrupt variation is uncommon in agricultural 
field trials, so the nugget is frequently assumed to be zero. 

The semivariance is related to the R matrix in the mixed model as 
follows: 

Cov(2 observations h units apart) = C(h) = C(O) - r(h). 

Thus, C(O) corresponds to the diagonal elements of R and the C(h), where 
h>O, are the off-diagonal elements of R. Typical semivariance models for the 
mixed model are 

Spherical 

C(h) 0 2 [1 - (3h/2r) + (h3/2r3)], 

= 0, 

Exponential 

C ( h ) = a2 [ exp ( - h / r) ] 

Gaussian 

Linear 

C(h) = a2[ 1-hr], 
=0, 

if h < 2/r 
otherwise 

if h < r 
otherwise 

For all of the above models, two parameters, a2 and r, corresponding to the 
error variance and range, respectively, must be estimated. 

Each of the above semivariance models describes a different pattern of 
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correlation among neighboring experimental units. In the examples given in 
sections 3 and 4, we will show how the problem of selecting an appropriate 
semivariance can be approached. The important concept to keep in mind is 
that the use of linear models with correlated errors to analyze field data 
is strongly indicated when irregular, local gradients, as portrayed in 
Figure 1, case 3, are present. The correlation model is basically a model 
of the "surface" resulting from such variability. 

PROC MIXED (SAS Institute, 1992) permits the user to specify mixed 
models whose errors are correlated. Error correlation models include all of 
the semivariance models given above (spherical, gaussian, exponential, and 
linear) as well as other correlation models not as commonly of interest in 
agricultural field trials. Band u are estimated using the mixed model 
equations [2], and 0 2 and r are estimated using REML. In the following 
sections, we will present examples of basic applications of mixed models 
with spatial correlation. We will present the basic PROC MIXED programming 
requirements, highlights of the output of particular interest, and our 
experiences with problems and pitfalls users should anticipate. 

2. BASIC PROC MIXED PROGRAMMING AND OUTPUT 

Consider the simplest mixed model with spatially correlated errors, 

where Ii and the fi's are fixed, the vector u of rj's is distributed N(O,IoR2), 

and the vector e of eij's is distributed N(O,R), where R is some spatial 
covariance matrix. To analyze data using this model using PROC MIXED, the 
following input statements are minimally required: 

DATA a; 
INPUT fix_eff rand_eff row col Yi 

In describing program statements, we will refer to words that are mandatory 
verbatim in the program using capital letters and words that are mandatory 
but the specific word is user's choice using lower case. The variables 
"fix eff" and "rand eff" name the fixed and random factors in the model, 
"row" and "col" locate the observation in space, and "y" is the observed 
response. The number and specific names of the fixed and random factors will 
depend on the particular data set. Some data sets may have none, e.g. if 
estimating the semivariogram is the only objective (see section 3). Others 
may have only a fixed effect, e.g. treatment. Others may have several fixed 
and random effects, e.g. factorial treatments designs (factor A, B, etc.), 
and blocks, locations, etc. ALL data sets must have a "col" and "row" 
variable, corresponding, for example, to the longitudinal or east-west and 
the latitudinal, or north-south location of the observation, respectively. 

The following is the basic SAS program. Variables in italics are not 
mandatory, but we have found them to be useful options. 

PROC MIXED SCORING=n; 
CLASS fix eff rand eff; 
MODEL y=fIx eff; -
PARMS (0/) (nugget) (range) (sill); 
RANDOM rand eff; 
REPEATED / SUBJECT=rand_eff LOCAL TYPE=SP(SPH) (row col); 

The SCORING option forces the REML algorithm to use a scoring procedure at 
least n times per iteration. We have found this option to be very helpful 
in obtaining convergence to reasonable solutions for the range and sill. The 
values in parenthesis in the PARMS statement are initial numeric values for 
the variance and covariance parameters. Typically, the nugget is assumed to 
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be zero, so the nugget option often will not be used in the PARMS statement. 
o~ will only be specified is one wishes to include the random effect in the 
model (which, note, is included in a separate RANDOM statement, not in the 
MODEL statement a la SAS-GLM). Our experience is that it is essential to 
specify initial estimates of the range and sill; PROC MIXED's default 
initial values frequently lead to grossly unreasonable estimates of the sill 
and range. 

REPEATED specifies the structure of the covariance matrix, R, of the 
e vector. If there is a random effect in the model, use SUBJECT=rand eff; 
otherwise use SUBJECT=INTERCEPT. LOCAL is used if the nugget is assumed to 
be non-zero. TYPE specifies the covariance (or semivariance) model to be 
estimated. The example above is for the spherical semivariance model. Other 
options include EXP (exponential), GAU (gaussian), and LIN (linear). Consult 
the SAS manual for other options. 

3. EXAMPLE 1 - NO TREATMENT EFFECTS, NUGGET ZERO 

In this example, we present the SAS statements required to estimate the 
sill and range of a rectangular array of spatially correlated data. The data 
are given in Table 1. Please note that only the location (LAT and LNG, i.e. 
"row" and "col") and response (X) variables from Table 1 are used in this 
example. The model is 

~ = ~ +~, where e is distributed N(O,R). 

The program: 

DATA A; 
INFILE 'KSUTALK DATA A'; 
INPUT REP BLOC TRT LAT LNG Y X; 

PROC MIXED SCORING=5; 
MODEL X= ; 
PARMS (5.0) (4.0); 
REPEATED / SUBJECT=INTERCEPT TYPE=SP(SPH) (LAT LNG); 
TITLE 'SPHERICAL COVARIANCE MODEL'; 

The PARMS statement contains initial estimates of the range and sill. 
No value for OR2 is included (since there is no RANDOM statement) and no 
value for nugget is included (i.e. we assume it is zero). Selected output: 

SPHERICAL COVARIANCE MODEL 

Parameter Search 

COL1 COL2 Variance REML LL -2REHL LL Objective 

5.0000 4.0000 2.9556 -125.342 250.6835 134.8973 

REHL Estimation Iteration History 

Iteration Evaluations Objective Criterion 

1 2 112.71950815 0.00280361 

8 1 111.71705126 0.00000000 

Scoring stopped after iteration 5. 

Convergence criteria met. 
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Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > Izl 
DIAG SP(SPH) 
Residual 

2.71198105 
1.00000000 

8.84278813 
3.26063787 

2.77131363 
0.65576061 

3.19 0.0014 
4.97 0.0000 

Model Fitting Information for X 

Description 

Observations 
Variance Estimate 
Standard Deviation Estimate 
REML Log Likelihood 
Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 REML Log Likelihood 
PARMS Model LRT Chi-Square 
PARMS Model LRT DF 
PARMS Model LRT P-Value 

Value 

64.0000 
3.2606 
1.8057 

-113.752 
-115.752 
-117.895 
227.5033 

23.1802 
1.0000 
0.0000 

The REML iteration history tracks the progress of the sill and range 
estimates. The important line is "convergence criteria met." The range and 
sill estimates are, respectively, 2.712 and 3.261 (rounded to 3 decimal 
places). They are given under the "ratio" for DIAG SP(SPH), and the 
"estimate" for "residual," respectively. This output was produced by Version 
6.07 of SAS. Later versions have the actual estimate of the range under the 
"estimate" column; thus a Version 6.08 PROC MIXED output would have 0.832 
and 1.000, respectively in the "ratio" column and 2.712 and 3.261 
respectively in the "estimate" column. 

The model fitting information can be useful in comparing plausible 
models. The REML log likelihood, and two related criteria, Akaike' s 
Information and Schwarz's Bayesian, which are adjusted for various model 
characteristics, can be used for likelihood ratio tests when comparing 
models which are subsets of one another, or simply interpreted as "the 
higher, the better" for different models with the same number of parameters. 
These data were also fit using the exponential, gaussian, and linear 
semivariance models. The linear produced a warning "Scoring did not stop. 
Stopped because of infinite likelihood," which is typical - the linear 
semivariance model works poorly with the mixed model and REML. For the 
others, the model fitting output was 

EXPONENTIAL COVARIANCE MODEL 

REPEATED / SUBJECT=INTERCEPT TYPE=SP(EXP) (LAT LNG); 

Akaike's Information Criterion 
Schwarz's Bayesian criterion 
-2 REML Log Likelihood 

GAUSSIAN COVARIANCE MODEL 

REPEATED / SUBJECT=INTERCEPT TYPE=SP(GAU) (LAT LNG); 

Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 REML Log Likelihood 

-118.287 
-120.430 
232.5740 

-118.056 
-120.199 
232.1112 
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Covariance Parameter Estimates (REML) 

Cov Parm Ratio Estimate Std Error Z Pr > Izl 
DIAG SP(SPH) 
Residual 

2.71198105 
1.00000000 

8.84278813 
3.26063787 

2.77131363 
0.65576061 

3.19 0.0014 
4.97 0.0000 

Model Fitting Information for X 

Description 

Observations 
Variance Estimate 
Standard Deviation Estimate 
REML Log Likelihood 
Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 REML Log Likelihood 
PARMS Model LRT Chi-Square 
PARMS Model LRT DF 
PARMS Model LRT P-Value 

Value 

64.0000 
3.2606 
1.8057 

-113.752 
-115.752 
-117.895 
227.5033 

23.1802 
1.0000 
0.0000 

The REML iteration history tracks the progress of the sill and range 
estimates. The important line is "convergence criteria met." The range and 
sill estimates are, respectively, 2.712 and 3.261 (rounded to 3 decimal 
places). They are given under the "ratio" for DIAG SP(SPH), and the 
"estimate" for "residual," respectively. This output was produced by Version 
6.07 of SAS. Later versions have the actual estimate of the range under the 
"estimate" column; thus a Version 6.08 PROC MIXED output would have 0.832 
and 1.000, respectively in the "ratio" column and 2.712 and 3.261 
respectively in the "estimate" column. 

The model fitting information can be useful in comparing plausible 
models. The REML log likelihood, and two related criteria, Akaike' s 
Information and Schwarz's Bayesian, which are adjusted for various model 
characteristics, can be used for likelihood ratio tests when comparing 
models which are subsets of one another, or simply interpreted as "the 
higher, the better" for different models with the same number of parameters. 
These data were also fit using the exponential, gaussian, and linear 
semivariance models. The linear produced a warning "Scoring did not stop. 
Stopped because of infinite likelihood," which is typical - the linear 
semivariance model works poorly with the mixed model and REML. For the 
others, the model fitting output was 

EXPONENTIAL COVARIANCE MODEL 

REPEATED / SUBJECT=INTERCEPT TYPE=SP(EXP) (LAT LNG); 

Akaike's Information Criterion 
Schwarz's Bayesian criterion 
-2 REML Log Likelihood 

GAUSSIAN COVARIANCE MODEL 

REPEATED / SUBJECT=INTERCEPT TYPE=SP(GAU) (LAT LNG); 

Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 REML Log Likelihood 

-118.287 
-120.430 
232.5740 

-118.056 
-120.199 
232.1112 
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Thus, the spherical model would be preferred, because the Akaike and Schwarz 
criteria are higher and the -2 REML Log Likelihood is lower. 

The "PARMS model LRT" (likelihood ratio test) tests So: range=O if NO 
parms option is used, but it test the hypothesis that the difference between 
the initial value and the estimated value is zero when the PARMS statement 
is used. This is not a particularly useful test. 

4. EXAMPLE 2 - COMPLETELY RANDOM DESIGN WITH CORRELATED ERRORS 

The second example contains 64 observations on 16 treatments, laid out 
in an 8 x 8 array of field plots. Data appear in Table 1. The 64 
observations were subdivided into four squares, corresponding to 
replications of a 4 x 4 lattice design, but, for now, we will analyze them 
according to the model 

Yij = IJ + 'l"i + eij' where e is distributed N(O,R). 

The SAS program: 

DATA A; 
INFILE 'KSUTALK2 DATA A'; 
INPUT REP BLOC TRT LAT LNG Y X; 

PROC MIXED SCORING=5; 
CLASS TRT; 
MODEL Y=TRT; 
PARMS (5.00) (4) ; 
REPEATED / SUBJECT=INTERCEPT TYPE=SP(SPH) (LAT LNG); 
LSMEANS TRT; 
ESTIMATE 'T1 VS T2' TRT 1 -1 a a a a a a a a a a a a a a a 0; 
ESTIMATE 'T1 VS T3' TRT 1 a -1 a a a a a a a 0 0 0 0 0 0 0 0; 
ESTIMATE 'T1 VS T8' TRT 1 o 0 0 0 0 0 -1 a 0 0 0 0 0 0 0 a 0; 
CONTRAST 'T1 VS T2' TRT 1 -1 0 0 0 a 0 0 a 0 0 0 0 0 0 0 0 0; 
CONTRAST 'T1 VS T3' TRT 1 a -1 a 0 a 0 0 0 0 0 0 a 0 0 0 0 0; 
CONTRAST 'T1 VS T8' TRT 1 0 o 0 0 0 0 -1 0 0 0 0 a 0 0 0 0 0; 
TITLE 'SPHERICAL COVARIANCE MODEL - TRT EFFECT IN MODEL'; 

Selected output: 

SPHERICAL COVARIANCE MODEL - TRT EFFECT IN MODEL 

Cov Parm 

DIAG SP(SPH) 
Residual 

Parameter 

T1 VS T2 
T1 VS T3 
T1 VS T8 

Covariance Parameter Estimates (REML) 

Ratio 

3.13277873 
1.00000000 

Estimate 

11.17435804 
3.56691583 

Std Error 

3.25978411 
0.77855187 

Tests of Fixed Effects 

Z Pr > Izl 
3.43 0.0006 
4.58 0.0000 

Source NDF DDF Type III F Pr > F 

TRT 15 48 12.96 0.0000 

ESTIMATE Statement Results 

Estimate 

-0.03705715 
0.81100587 
3.69534390 

Std Error 

0.78250253 
0.80309159 
0.81410883 

DDF 

48 
48 
48 

T 

-0.05 
1.01 
4.54 

Pr > ITI 
0.9624 
0.3176 
0.0000 
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CONTRAST Statement Results 

Source NDF DDF F Pr > F 

Tl VS T2 1 48 0.00 0.9624 
T1 VS T3 1 48 1.02 0.3176 
T1 VS T8 1 48 20.60 0.0000 

Least Squares Means 

Level LSMEAN Std Error DDF T Pr > ITI 

TRT 1 12.49765196 0.74954746 48 16.67 0.0000 
TRT 2 12.53470911 0.75986106 48 16.50 0.0000 
TRT 3 11.68664609 0.76719779 48 15.23 0.0000 

The data are actually the same as example 1 except that treatment 
effects were added according to the lattice design. The estimates of range 
and sill are 3.133 and 3.567, different, but not substantially so, from the 
previous example. Note that PROC MIXED only gives F-values rather than a 
full ANOVA (sums of squares and mean squares do not have any conventionally 
useful meaning in mixed models). Also the standard errors for least squares 
means and differences are not the same. Although the number of observations 
per treatment are equal, the observations lie at different points on the 
local gradients resulting from the spatial correlation and at different 
average distances from one another. Assuming the spatial correlation is 
accurately estimated, the variability estimates for means and differences 
are thus more realistic. 

These data could alternatively be analyzed using conventional ANOVA 
models. In particular, the traditional RCBD model or the Lattice model could 
be evaluated. Selected results are as follows: 

CLASS REP TRT; 
MODEL Y=TRT; 
RANDOM REP; 

RCBD ANOVA 

model Yij = J.I + 'l"i + rj + eij 

r - N ( 0, I 0/) , e - N (0, I 0 2) 

Covariance Parameter Estimates (REML) 

Cov Parm Ratio 

REP 
Residual 

0.00000000 
1.00000000 

CLASS REP BLOC TRT; 
MODEL Y= TRT; 

* RANDOM REP BLOC(REP); 
RANDOM BLOC; 

Estimate 

0.00000000 
3.05074506 

LATTICE ANOVA 

Std Error Z Pr > Izl 

0.62273073 4.90 0.0000 

model Yijk = J.I + 'l"i + rj + b(r)jk + eijk 

assumptions as RCBD + b(r) - N(0,IosR2 ) 

Covariance Parameter Estimates (REML) 

Cov Parm 

BLOC 
Residual 

Ratio 

0.73832005 
1.00000000 

Estimate 

1.31435334 
1. 78019457 

Std Error 

0.70964068 
0.44073910 

Z Pr > Izi 
1. 85 0.0640 
4.04 0.0001 
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SPHERICAL COVARIANCE MODEL - TRT EFFECT IN MODEL 

Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 REML Log Likelihood 

RCBD ANOVA 

Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 REML Log Likelihood 

LATTICE ANOVA 

Akaike's Information Criterion 
Schwarz's Bayesian Criterion 
-2 REML Log Likelihood 

-99.9192 
-101. 790 
195.8385 

-107.969 
-109.840 

211. 9373 

-104.109 
-105.981 

204.2189 

The model fitting criteria indicate that the ReBD model is inferior to 
the alternatives. The Lattice model is an improvement over the RCBD, but is 
not as good as the spatial covariance model. This result is common in the 
analysis of field data (see also Stroup, Baenziger, and Mulitze, 1994). 
Complete block designs should be avoided when spatial variability is 
suspected. Incomplete block designs are often only partial fixes. We now 
turn our attention to some pitfalls we have encountered using PROC MIXED to 
analyze data with spatial variability. 

5. HOW TO USE PROC MIXED IN DESIGNED EXPERIMENTS 

In using PROC MIXED it is important to realize that the definitions of 
parameters has changed between versions. For example, in version 6.07 the 
parameter DIAG SP(SPH) estimates the range times the sill, and 
consequentially the ratio of the DIAG SP(SPH) to the residual estimates the 
range. In version 6.08 the parameter estimate of DIAG SP(SPH) is itself the 
estimate of the range. When assuming a spatial structure, say spherical, 
without a nugget effect only one parameter, the range, will effect the value 
of the log likelihood. Since SAS uses an iterative procedure, it is 
important to grid the parameter space for initial evaluations of the 
likelihood function so that local minimums can be identified. A typical 
plot of the range against the -2 REML log likelihood looks like figure 3. 
If the range were assumed larger than six then the procedure would converge 
to a local minimum. 

Often the procedure will not converge. If this is the case using 
SCORING = 10 will often help. Another practice which should be followed 
when using PROC MIXED in spatially correlated models is to graph the 
empirical semivariogram with the modeled semivariogram from PROC MIXED. A 
simple procedure to do this is to use the fixed effects derived from PROC 
MIXED and calculate the residuals. Use these residuals in a geostatistica1 
package, such as GEOEAS, and have that package automatically obtain the 
empirical semivariogram and then input the parameters of the modeled 
semivariogram from PROC MIXED. A caution is noted here: sometimes GEOEAS 
will not use the larger lag distances and hence the resulting graph may be 
misleading. In figure 4 the maximum lag distance was 5 and it looks as if 
PROC MIXED has underestimated the sill. However, if all the lags are used, 
the modeled semivariogram looks much better as in figure 5. 

PROC MIXED can be used to help determine which spatial model is 
appropriate for a set of data. This can be done by first assuming a 
particular spatial model, say spherical, and obtaining the model fitting 
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criteria (Akaike's, Schwarz's, and -2 REML LL), then repeating the process 
for several other models, say gaussian and exponential. The fitted models 
can be graphed and the fitting criteria compared. For example, in figure 
6 the graph indicates that the spherical fitted model looks better than 
either the exponential or gaussian. However, even though the sill seems a 
little too high for the spherical, the gaussian clearly underestimates the 
sill and the exponential overestimates it. 

Finally, the likelihood is not appropriately calculated for some 
starting values in the gaussian model. In figure 7, at large ranges, the 
value for -2 REML LL will abruptly change between a reasonable value (around 
1200) and an unreasonable large number (say 1.789E308). Hence there are a 
number of local minimums as seen in the gaussian graph in figure 7. For 
this experimental data set, the three different models used provided the 
following statistics (Table 2): 

Table 2. Statistics associated with one simulation run (#1) corresponding 
to Figure 7. 

49 

Model Range Sill Akaike's Schwarz's -2 REML LL 

Spherical 2.916 5.161 -128.22 -130.36 252.44 

Exponential 1. 895 6.054 -129.25 -131. 39 254.49 

Gaussian 1.005 4.530 -131.22 -133.36 255.44 

These three models are graphed in figure 8, and as one can see the models 
are all very similar. Again it is important to look at the graphs as well 
as the fitting criteria since the best fit model may be totally inadequate. 

A simple simulation study was run using 100 simulations of 64 spatially 
correlated observations each in an 8 by 8 grid. For each run the original 
spatially correlated data had treatment effects added to the observations 
for the 16 treatments. The treatment effects were 13, 13, 14, 14, 15, 15, 
16, 16, 16, 16, 17, 17, 18, 18, 19, and 19. The spatial model used was 
spherical with no nugget effect, a range of 3.50 and a sill of 4.00. First 
we tried to determine if PROC MIXED would be able to correctly handle the 
treatment effects. The results indicted that PROC MIXED would estimate the 
fixed effects very accurately in that the average of the simulation 
treatment effects were very close to the true treatment effect and had 
little variability from run to run. As an example the true treatment effect 
for treatments 1 and 2 were both 13. The average for the 100 simulation 
effects given by PROC MIXED were 12.94 and 13.03 respectively with standard 
deviations of 0.77 and 0.76. The results of the simulation indicated that 
PROC MIXED does a fairly good job of estimating the sill as seen in Table 
3. However, PROC MIXED also tends to underestimate the range, although with 
only 100 simulations the underestimation is not statistically significant 
(p>.05). The true spatial structure was spherical and the model assumed by 
PROC MIXED was spherical as well. The results are: 
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Table 3. Comparison of Simulation Data 100 Simulations of 64 Observations 

I I parameter II mean I maximum I minimum I std dev 

No treatment range 3.08 5.30 1.55 0.63 

Effect sill 4.03 7.35 2.09 0.98 

Treatment range 3.09 6.26 1. 68 0.75 

Effect sill 3.99 8.21 1.94 1.07 

Difference range -0.01* 1.55 -2.60 0.50 

sill 0.05* 2.64 -3.56 0.72 

* not significant (p>.05) 

One common (Cressie, 1991) method of removing "drift" of fixed effects 
from spatially correlated data is by the use of median polish. The original 
data are "polished" and the residuals from the polished data are then 
assumed to be free of drift and can then be subjected to the usual 
geostatistical estimation procedures. Median polish is preferred to mean 
polishing in that it is suspected that mean polishing also polishes out some 
of the spatial correlation. Thus the simulated data were polished to remove 
drift (here a linear drift) and drift was removed by PROC MIXED. These were 
compared to the original data before the drift was added in Table 4. Both 
the range and the sill are significantly (p<.05) for the polished data. 

Table 4. Simulated Results for Polished Data 

mean maximum minimum std dev 

No Drift 

range 3.08 5.30 1.55 0.63 

sill 4.03 7.35 2.09 0.98 

Drift Removed by PROC MIXED 

range 3.09 5.33 1.28 0.77 

sill 4.06 7.75 1. 70 1.22 

Drift Removed by Polishing 

range 2.91 6.13 1.09 1.01 

sill 3.49 7.24 0.98 1.41 

Difference in PROC MIXED and Polishing 

range 0.18* 3.30 -3.44 0.88 

sill 0.57* 4.22 -2.69 1.12 

* both range and sill are significantly smaller (p < .05) for polished data 
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To determine how well the exponential and gaussian models fit the 
spherical data PROC MIXED was used assuming those spatial structures. Since 
the data were simulated using a spherical structure we would not expect the 
exponential or gaussian models to estimate the range or sill as well. These 
results (Table 5) indicate that the average range (sill) is different with 
the spherical (exponential) model being the largest and the gaussian 
(gaussian) being the smallest. Note how the gaussian underestimates the 
range and the exponential overestimates the sill. Actual values should be 
close to the simulation parameters of the range = 3.50 and the sill = 4.00. 

Table 5. Simulation Results for Spherical Exponential and Gaussian Models 

mean maximum minimum std dev 

Spherical 

range 3.08 5.30 1.55 0.63 

sill 4.03 7.35 2.09 0.98 

Exponential 

range 2.29 8.14 0.59 1.41 

sill 5.37 16.08 2.12 2.75 

Gaussian 

range 1.02 1.29 0.76 0.09 

sill 3.49 5.22 2.02 0.75 

To determine if PROC MIXED had a preference for one spatial structure 
over another we simulated 100 exponential data sets each with 64 
observations as well as 100 gaussian data sets. All data sets were 
structured as in the previous simulation with treatment effects, 8 by 8 grid 
and same nugget, range and sill. However, the spatial structure was 
exponential or gaussian rather than spherical. Combining the two simulation 
runs we now have a data set which consists of 100 runs of each of spherical, 
exponential and gaussian. PROC MIXED was used to compute Akaike' sand 
Schwarz's criteria and -2 REML LL. Using these fitting criteria the "best" 
of either spherical, exponential, or gaussian models was chosen. These 
results (Table 6) indicated that the model chosen was generally correct. 
If the data were actually exponential, the exponential model fit best over 
60% of the time with the other two models about splitting the remaining data 
sets. If the data were gaussian the gaussian model always fit best. This 
seems to be because of the s-shaped nature of the gaussian model which 
neither the spherical nor the exponential can adequately represent. The 
spherical model was correctly identified over 75% of the time when the 
original data were spherical. 
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Table 6. Simulation Result for Spherical Exponential and Gaussian Data 

Model Chosen 

Data Structure Spherical Exponential Gaussian 

Spherical 77 12 11 

Exponential 21 64 15 

Gaussian a a 100 

In conclusion, we would recommend that the researcher always use 
SCORING=10 so that many of the problems of failing to converge will be 
alleviated. Secondly, we would grid the parameter space fairly densely. 
Look at the map of the gridded values to see if local minimums exist. Try 
several models including the spherical, exponential, and gaussian. Also try 
a model with and without the nugget effect. Remove "drift" if necessary and 
compare the results when drift was assumed to be absent. Finally, compare 
the final model with the empirical semivariogram. It will take a great 
amount of time to use PROC MIXED with spatially correlated data effectively, 
but the results are worth the effort. 

In the future, we would like to see SAS implement nested structures and 
anisotropic models in PROC MIXED. A test for isotropy would be extremely 
helpful and allow a more effective way of choosing between an isotropic or 
anisotropic model. The scoring problem needs to be rectified so that 
SCORING=10 would not have to be included every time. Although we realize 
that there is a great tendency to misuse multiple comparisons, it would be 
extremely convenient if a multiple comparison were easily available in PROC 
MIXED. 
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Table 1. Data set used in examples 1 and 2. X is response variable used in 
example 1.Y is response variable in example 2. 

OBS REP BLOC TRT LAT LNG Y X 

1 1 4 14 1 1 8.5411 10.5411 
2 1 4 16 1 2 5.5806 8.5806 
3 1 2 7 1 3 11. 2790 11. 2790 
4 1 2 6 1 4 13.4344 12.4344 
5 1 4 13 2 1 8.3416 10.3416 
6 1 4 15 2 2 8.3103 11. 3103 
7 1 2 8 2 3 9.0282 9.0282 
8 1 2 5 2 4 10.7985 9.7985 
9 1 3 11 3 1 9.4939 10.4939 

10 1 3 12 3 2 10.2576 11. 2576 
11 1 1 2 3 3 10.3720 7.3720 
12 1 1 3 3 4 8.0833 6.0833 
13 1 3 10 4 1 9.8869 9.8869 
14 1 3 9 4 2 8.2849 8.2849 
15 1 1 4 4 3 9.2836 7.2836 
16 1 1 1 4 4 11. 0018 8.0018 
17 2 7 15 5 1 7.3349 10.3349 
18 2 7 3 5 2 11. 9135 9.9135 
19 2 6 10 5 3 8.1662 8.1662 
20 2 6 2 5 4 13.7679 10.7679 
21 2 7 11 6 1 11.1580 12.1580 
22 2 7 7 6 2 11. 0230 11. 0230 
23 2 6 14 6 3 7.2912 9.2912 
24 2 6 6 6 4 10.1392 9.1392 
25 2 5 5 7 1 14.1097 13.1097 
26 2 5 13 7 2 8.0121 10.0121 
27 2 8 12 7 3 7.2482 8.2482 
28 2 8 16 7 4 4.3975 7.3975 
29 2 5 9 8 1 11.0226 11. 0226 
30 2 5 1 8 2 13.7690 10.7690 
31 2 8 8 8 3 6.2206 6.2206 
32 2 8 4 8 4 8.5696 6.5696 
33 3 12 7 1 5 11.1944 11.1944 
34 3 12 13 1 6 5.9737 7.9737 
35 3 11 8 1 7 5.8400 5.8400 
36 3 11 14 1 8 4.9580 6.9580 
37 3 12 4 2 5 12.2561 10.2561 
38 3 12 10 2 6 9.8180 9.8180 
39 3 11 3 2 7 12.3009 10.3009 
40 3 11 9 2 8 7.4719 7.4719 
41 3 9 6 3 5 11.1148 10.1148 
42 3 9 1 3 6 12.6252 9.6252 
43 3 10 15 3 7 5.7800 8.7800 
44 3 10 12 3 8 10.2786 11. 2786 
45 3 9 11 4 5 6.9548 7.9548 
46 3 9 16 4 6 3.1100 6.1100 
47 3 10 5 4 7 9.6507 8.6507 
48 3 10 2 4 8 12.2237 9.2237 
49 4 16 9 5 5 10.3129 10.3129 
50 4 16 4 5 6 9.3161 7.3161 
51 4 13 12 5 7 7.6394 8.6394 
52 4 13 1 5 8 10.8669 7.8669 
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Table 1. continued. 

OBS REP BLOC TRT LAT LNG Y X 

53 4 16 15 6 5 6.0250 9.0250 
54 4 16 6 6 6 8.2483 7.2483 
55 4 13 14 6 7 8.0104 10.0104 
56 4 13 7 6 8 10.0473 10.0473 
57 4 14 13 7 5 5.0507 7.0507 
58 4 14 8 7 6 11.1225 11.1225 
59 4 15 3 7 7 14.0253 12.0253 
60 4 15 10 7 8 10.4298 10.4298 
61 4 14 2 8 5 10.3220 7.3220 
62 4 14 11 8 6 9.5104 10.5104 
63 4 15 5 8 7 13.6808 12.6808 
64 4 15 16 8 8 7.4482 10.4482 
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