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ANALYZING SPLIT-PLOT AND 
REPEATED-MEASURES DESIGNS 

USING MIXED MODELS 

Russ ~Wolfinger, Nancy Miles-McDermott, and Jenny Kendall 
SAS Institute Inc., SAS Campus Drive, Cary, Nt' 2751:3 

Abstract 

\Ve first introduce the general linear llllxed model and provide a j ustificatioll for 
using REML to fit it. Then, for an irrigation example, we present sevt~raJ mixed 
models of increasiug complexity. The initial model corresponds to a typical split-plot 
analysis. Next, we present covariance structureI' that directly describe the variability 
of repeated measures within whole plots. Finally, we combine the above types into 
more complicated mixed models, and compare them using likelihood-based criteria. 

Somt: kt:y words: Covariance structure, Mixed mod(~l, Restricted maximum likelihood 

1 Introduction 

The mixed model is a linear version of th(~ signal-pIus-noise model 

when~ f1 = Xb and t = Zu + e. The signal is thus assumed to he a lim~ar functioll of 
unknown fixed-effects parameters b, and the Hoise is decomposed into two additive 
terms. This decomposition permits you to model random effects in u and additional 
error 111 C. U neler the general assumption 

[ (; 0 1 
o R 

the mixed model provides a fair amount of flexibility in capturing the covariance 
structure of the noise. We recommend Ilsing restrict(~d/residual maximum likelihood 
(REML) to estimate G and R, and then computing estimates of band 7l using these 
REML estimates. For a general iutroduction to this methodology. see McLean, 
Sanders .. and Stroup (J 9(1). 
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In this article we discuss our preference of REML, and then demonstratt~ the mixed 
model's flexibility by applying it to data arising from two very common agricultural 
designs: split-plot and repeated-measureso Split-plot designs an~ handled effectively 
ill G and repeated-measures designs in It is eVt~n possible to combine the two 
designs into one complex mixed Tlw R matrix is also suited for modeling 
spatial variability. We usp an example data set and the new SAS/STAT MIXED 
procedure to analyze thesp mixed modpls. 

2 Why REML? 

We recommend usmg REML instead of method-of-moments to fit mixed models. 
Mcthod-of-moments procedures equate expected quadratic forms to observed quadratic 
forms and solve the resulting system of equations. ANOVA. MIVQUE, and MINQUE 
procedures are all examples of mcthocJ-uf-mOlllents. 

The method of moments is attractive because it makes no distributional assumptions 
about the data. This is in contrast to R.EML and maximulll likelihood (ML), which 
by definition require the specification of a probability distribution for 'U and e, usually 
normal. Also, method-of-moments procedures are often more simple computationally 
than the likelihood-based approaches. 

However. the normal-theory REML and ML estimates haw appealing asymptotic 
properties. even for nOllllormal data (see C(Jurieroux, Monfort, and Trognon, 1984). 
REML call also be derived free of distributiomd assumptions by iterating the MIVQUE 
procedure. For discrete data, it is possible to fit generalized linear models with ran­
dom effects and correlated errors (Wolfinger and O'Collnell, 1992). 

REML and ML estimates can be computationally intensive, altbough most problems 
can be performed with no more than an overnight turnaround on a PC. Large data 
problems, such as in genetics, remain computationally difficult, although progess 
is heing made. Unbalanced data close the computational gap between REML and 
method-of-moments as evidenced by the complexity required in the article by Marta 
Remmcnga at this conference. REML handles unha.lance by constructing and opti­
mizing the !'("sidual likelihood of the observed clata--no observations are discarded as 
in some lVIANOVA procedures. 

Several other arguments for preferring REML or ML to method-of-moments are pro­
vided by Harville (1977) and Searle et a1. (1992). To summarize, REML has been 
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shown in simulation studies to perform better in terms of bias and mean-squared 
error than method-of-moments (Swallow and Monahan, 1984). A Newton-type im­
plementation of REML produces an asymptotic covariance matrix for the estimated 
parameters; this is absent in most method-of-moments procedures. Also, method­
of-moments estimation becomes more difficult upon introduction of nontrivial struc­
tures for G and R. Missing data complicates the construction of moment equations, 
whereas the likelihood of unbalanced data is usually easy to formulate. ML and 
REML have an asymptotic justification from a Bayesian viewpoint (Lindley, 1972, 
Section 11). Finally, REML and ML permit the use of likelihood-based criteria for 
model comparison (see Section 5). 

REML is preferred to ML because it adjusts for bias in the estimation of G and R. 
However, only ML is useful in deciding between different fixed-effects models. 

3 Example Data Set 

Line-source sprinkler irrigation data are presented in Hanks et al. (1980), and an­
alyzed by .Johnson et al. (198:3), Stroup (1989), and in Example 16.6 of the PROC 
MIXED documentation, SAS Technical Report P-229. Three cultivars (CULT) of 
winter wheat are randomly assigned to rectangular plots within each of three blocks 
(B). The nine plots are located side-by-side, and a line-source sprinkler is placed 
across the middle of them. Each plot is subdivided into twelve subplots, six to the 
north of the line-source, six to the south. The subplots closest to the line-source 
represent the maximum irrigation level (IRRIG=6)' the two next-closest the next­
highest level (IRRIG=5), and so forth. The data are listed spatially in Table 1 

4 A Collection of Mixed Models 

Several types of mixed models are now applied to the example data set. Obviously 
some of the simpler models may not be appropriate because of the spatial nature of 
the data, but they are included for sake of illustration. For simplicity, the North vs. 
South effect is ignored throughout the analyses. 
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4.1 Split-Plot Models 

The traditional split-plot design with block B, whole-plot CULT, and subplot IRRIG 
is fit in PROC MIXED as follows: 

proc mixed; 
class b cult irrig; 
model y = cult irrig cult*irrig; 
random b b*cult; 

run; 

The syntax for PROC MIXED is similar to that of PROC GLM, although the RAN­
DOM and REPEATED statements are different. In PROC MIXED, the fixed-effects 
modeling in X takes place in the MODEL statement, the random-effects modeling in 
Z and G takes place in the RANDOM statement, and variance modeling in R takes 
place in the REPEATED statement. The G matrix for this model is diagonal and 
contains the variance components for Band B*CULT. The R matrix is of the trivial 
form (J'2 I-this is the default when you do not provide a REPEATED statement. The 
above code will compute REML estimates of the two variance components and (J'2. 

The general mixed-model testing procedure described in the PROC MIXED doc­
umentation replaces the typical construction of "Error A" and "Error B" to test 
whole-plots and subplots, respectively. In fact, the use of REML eliminates the 
need for a traditional ANOVA table, and PROC MIXED prints only the Type III F­
statistics. Bear in mind that, except in special balanced cases, these F -statistics have 
only approximate F-distributions. The approximate F-tests are usually adequate, 
although further research is needed. 

An equivalent way of specifying the the above model is the following: 

proc mixed; 
class b cult irrig; 
model y = cult irrig cult*irrig; 
random int cult / subject=b; 

run; 

In this code, B has been "factored out" of the random effects and made into a special 
SUBJECT= effect. The SUBJECT= effect defines blocks of G, and this job may 
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run faster than the previous 011e for larger problems. TIlt' estimates from both runs 
will be identical. 

An interesting alternative to the tra,ditional split-plot analysis is the following: 

proc mixed; 
class b cult lrrlg; 
model y = cult irrig cult*irrig; 
random int cult irrig / subject=b; 

run; 

Note that B*IRRIG has been added as a random effect. Both George Milliken and 
Gary Richardson commented that would be appropriate for a strip­
block design. Deborah Boykin and Brian Allen suggested that the inclusion of tilt' 
extra term may he appropriate even 111 the usual split-plot situations. 

4.2 Repeated-Measures Models 

We now analyze the data as repeated measures within a row, with each row inde}wn­
dent. Thus R is assumed to be block diagonal, with each 12 x 12 block corresponding 
to a row. A typical analysis in this situation proceeds along the lines described in 
.1ennrich and Schluchter (1986). That is, we select a covariance structure to model 
the variability of the data within a row. The following two examples fit structures 
corresponding to compound symmetry and ullstructured: 

proc mixed; 
class b cult irrig; 
model y = cult irrig cult*irrig; 
repeated / type=cs subject=cult(b); 

run; 

proc mixed; 
class b cult irrig; 
model y = cult irrig cult*irrig; 
repeated / type=un subject=cult(b); 

run; 
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Notp that SUBJECT=CULT(B) defillPS tllP rows as tllP blocks of R. 
\ I 

Thesp two analyses correspond to tllP traditional univariatf' and multivariate ap­
proaciws, respectively, to repehted mpaSllreso TIlt' mixed model method thus ac-
cOl1lOdates thes(-c two approaches cases, However, for examplf', the 
12 X 12 ullstructured matrix has , and is not practi More 
parsimonious strnctuIPS include l\R( 1). and Toeplitz .. 

4.3 Combination Mixed Models 

Split-plot and repeated-measures designs can be combined as follows: 

proc mixed; 
class b cult lrrlg; 
model y = cult irrig cult*irrig; 
random int cult irrig / subject=b; 
repeated / type=ar(1) subject=cult(b); 

run; 

Other examples of combination mixed models are given by Stroup (1989) for these 
data and by Brian Alh~n at this conference for tree ring chronologies. 

4.4 Spatial Models 

For a description of spatial (kriging) models, see Marx and Thompson (1987) and 
Zimmerman and Harville (1991). The following is an example that models a spherical 
spatial correlation across the entire data set: 

proc mixed; 
class b cult irrig; 
model y = cult irrig cult*irrig; 
repeated / type=sp(sph)(plot subplot) subject=int; 

run; 
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PLOT alld SFBPLOT are llsf~d as tu lucaJ,e tlw individual data POIutS. 
In SOUl<' cases these coordillates to produce more sensible opti­
mization problems. SUBJECT=INT is a device to specify the non-hlock-diagona.l 
108 X 108 R matrix. 

You can fit the quadratic surface model pn~sellted by Phil Cox at this conference by 
including the appropriate terms in the MODEL statement. 

5 Model Comparison 

\lVe now fit several mixed models to the line-source sprinkler example data set and 
compare them using Akaike's information criterion (AIC, Akaike, 1974; Amemiya, 
1980) and Schwarz's Bayesian criterion (SBC, Schwarz, 1978): 

AIC 

,siBC 

LoyLihlihuod - q 

LO(JLik:elihood - 2.100' n 
L 2 b 

Here q is the numher of covariance parameters and n is tIlt' mllnb(~r of observations. 

Larger values of the criteria are preferred., and SBC favors more parsimonious models 
than does AIC. You can also perform likelhood ratio tests between models that are 
nested within each other by subtracting -2 times their respective log likelihoods. 

Table 2 lists AIC, SBC, and -2 log likelihoods corresponding to REML and ML for 
a variety of mixed models fit to thf~ example data. All of the mixed models have 
CULT, IRRIG, am! CULT*IRRIG as fixed effects, and the various structures for R 
and G are listed in the first two columns. In the first column, which describes the 
R ma.trix, I stands for tlw identity matrix times a residllal variance componellt, CS 
for compound symmetry, AR( 1) for first-order autoregressive, TO EP for Toeplitz, 
UN for ullstructured, and SP for spatial. The symbol AR(1 )1:CULT indicates a 
heterogeneous R matrix consisting of separate AR( 1) parameters for each cultivar. 
This heterogeneity is specified ill PROC MIXED by using the GROUP=CULT option 
on the REPEATED statement. TOEP(4) is a Toeplitz matrix containing as in all 
but the first four principal bands. UN (1) in an unstructured matrix containing Os 
everywhere except the main diagonal. All of the structures, including the spatial 
ones, are described in the PROC MIXED docllmentation. The G matrix for all of 
the models is either nonexistent or diagonal containing variancf' components. 
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In actually comparing the models, REML AIC prefers the Toeplitz Rand B B*IRRIG 
G, while ML AIC prefers just the Toeplitz R with no G. vVe encoulltered some 
difficulties with local maxima when llsil1g the Toeplitz structure, so these values may 
not be reliable. Both REML and ML SBC prder the spatial power-law structure. 
which seems to be a reasonable mudel for data. 

Upon selection of a model, you can 
quadratic forms of the estimated 
and Type III F-statistics. 

construct appropriate linear combinations alld 
random effects, e.g. least-squares means 

Summary 

Dr. Stu Hunter challenged us at this conference to imprmrp our modeling of both 
signal and noise. With regards to' ,\VIC should very often 1)p searching for 
an appropriate differential equation. The linear fixed-effects term X b of the mixed 
model frequently provides an adequate approximation to this relevant theoretical 
signal. \Vith regards to noise, the random-effects-plus-error term Zu + e of the 
mixed model is a useful departure from the iid-normallitallY. Therefore, the gell(~ral 
mixed model is certainly a valuable tool in meeting Dr. Hunter's challenge. 
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Tablp 1 : LZnf-,,()UT'Cf ir1'ig a ti 0 rI data 

IRRIG 
B CULT q :3 4 !:: 6 ! 6 ;) 4 :3 L 1 ,:., .J 

1 Luke 2.4 2.7 5.6 '7 r-
I .;) 7.9 7.1 6.1 7.:3 7.4 6.7 :3.8 1.8 

1 Nugaines 2.2 2 . .1 4.:3 6.:3 7.9 7.1 I 6.2 5. :3 5. :3 S.2 5.4 2.9 
1 Bridger 2.9 :3.2 5.1 6.9 6.1 7.5 5.6 6.5 6.6 5.:3 4.1 :3.1 
2 Nugaines 2.4 2.5 4.0 5.8 6.1 6.2 7.0 6.4 6.7 6.4 :3.7 2.2 
2 Bridger 2.6 :3.1 5.7 6.4 7.7 6.8 6.:3 6.2 6.6 6.5 4.2 2.7 
2 Luke 2.2 2.7 4.:3 6.9 6.8 8.0 

I 
6.5 7.:3 5.9 6.6 :3.0 2.0 

:3 Nugaines 1.8 1.9 :3.7 4.9 5.4 5.1 !:: ,.. 5.0 .1.6 S.l 2.5 ! .). I 4.2 
:3 Luke 2.1 :L:3 :3.7 5.8 6.:3 6.:3 6.5 .1.7 5.8 4.5 2.7 2.:3 
:3 Bridger 2.7 2.8 4.0 5.0 5.2 5.2 5.9 6.1 6.0 4.:3 :3.1 :3.1 
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Table 2: Results jTOm fitting 7)anOU8 rni:ud modds to the linc-souTce spr'inklrr irTi-
gaton data 

Covariance Random REML REML REML ML ML ML 
Structure (R) Effects (0) AI(' SBC -2LL AIC SHe -2LL 
I -125.4 -126.6 248.8 -121.1 -122.4 240.1 
I B B"CULT t -116.2 -UO.o 226.4 -110.!) -114.5 215.0 
I B B*IRHJ(; -116.2 -120.0 226.4 -llO.!) -114.5 215.0 
CS - 1 - 121.4 2:3:),8 -114.6 -117.:3 22!).2 

AR(l) -114.4- -116.9 224.7 -108.5 -111.2 21:3.1 
AR(l)*CULT -117.4 -124.9 222.8 -111.4 -119.4 210.7 
AR(lYCULT + I + + + + 
TOEP -108.7 -12:3.7 19:3.5 -92.2 -108.:3 160.5 
TOEP(4) -11:3.2 -118.2 218.4 -106.5 -111.9 205.0 
UN + + + + 
lTN (1) -IU-LL -1:3:3.2 212.:3 -107.0 -12:3.1 189.9 
CS B B*IRRIG -IHi.6 -121.6 225.:3 -110.2 -115.5 212,4 
AR(l) B B*IRRIG -11:3.2 -118.2 218.5 -107.1 -112,4 206.1 
TOEP B B*IRRIG -105.8 -]2:3.:3 U~:3.7 -98.6 -117.4 169.2 
TOEP(4) B B*IRRIG -111.4 -118.9 210.8 -104.1 -112.2 196.6 
UN(1) B B*IRRIG t t 

t t 

SP(POvV) -107.1 -109.6 210.1 -99.5 -102.1 194.9 
SP(POWA) -112.9 -116.6 219.7 -106.1 -110.4 206.7 
SP(SPH) -111.0 -11 :3.5 217.9 -105.0 -107.7 206.0 
SP(GAU) -115.1 -117.6 226.2 -108.4 -111.1 212.8 
SP(LIN) t t 

i- t 

SP(POW) B -107.5 -111.2 209.0 -99.9 -104.0 19::L9 
SP(POWA) B -111.0 -llG.O 214.0 -104.1 -109.5 20lL3 
t VarianCf~ component for B*CULT is zero and n~moved from remaining models 
+ Did not converge 
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