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ABSTRACT 

Latin Square (LS) designs have long been advocated for field crop 
experiments on the grounds that '. o. soil fertility and other variations 
in two directions are controlled.' As counter-evidence, the published 
standard analyses of eight LS experiments showed that in only two did the 
sum of squares for both between-rows and between-columns account for 
appreciable background variability. 

Regarding the background concomitant variability as a continuous 
surface to which treatment effects are additive, it is suggested that a 
contributory shortcoming of the standard model is that it admits only a 
restricted class of surfaces because parameters for warp, or row x column 
interaction, components are excluded. 

It is shown that, at the loss of some orthogonality between 
background and treatment effects, the deficiency can be remedied by 
fitting a more general polynomial surface. The principle is exemplified 
using a backward selection mUltiple regression procedure to analyze LS 
data in Cochran and Cox (1957). The procedure gave a considerable 
reduction in the coefficient of variation, from 12.9 to 6.3%, and 
permitted more sensible inferences than those (null) from the standard 
analysis. 

A note on medieval cultivation practices and experimental design is 
appended. 

1. Introduction 

The Latin Square has achieved a time honored eminence as an 
experimental design with a wide variety of application areas as a result 
of its balance and the associated statistical efficiency. In a standard 
exposition, Cochran and Cox (1957), it is stated "The effect of the double 
grouping is to eliminate from the errors all differences among rows and 
equally all differences among columns, ... , The experimental material 
should be arranged so that the differences among rows and columns 
represent major sources of variation." This could be realistic if the row 
and column components were each discrete, individually uniform and 
non-interacting entities giving additive effects as the background for the 
observation of additive treatment effects. The authors were at least 
implicitly aware that statistical models should be veridical and, more 
cautiously, continue: "In field experiments the plots are usually laid 
out in a square formation so that soil fertility and other variations in 
two directions are controlled". Relatedly, of the background response in 
such contexts and in the absence of discontinuities Cox (1958) - remarked 
that if this is taken as a continuous function of distances along rows and 
columns, the mathematical (statistical) model could be regarded as 
representing a response surface passing through one set of parallel curves 
for the rows and another set of parallel curves for the columns. The 
curves were those definable in terms of the linear, quadratic 
components of the inter-row and inter-column contrasts. 
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In an initial discussion of linear model relevance two aspects were 
also noted in Cox (1958), one relating to the adequacy with which the 
background response was represented, the second being concerned with the 
validity of the model-implicit assumptions, additivity in particular, for 
the behavior of the treatment responses; a third aspect, of course, 
concerns the assumptions that the residual terms are additive with some 
specified distribution. 

It was further suggested that, in some applications, the usual Latin 
Square model could be implicitly over-parameterized in the sense that some 
of the inter-row and inter-column contrasts might not estimate realistic 
non-zero parameters of the background changes and might more efficiently 
be incorporated to improve the residual variance estimate. The 
examinations presented below of some published Latin Square analyses also 
suggest that only rarely does the design succeed in removing significant 
background or concomitant variability attributable to both the rows and 
the columns. Conversely, another possible source of non-veridicality in 
some cases is that 'warp' or row x column cross-product or interaction 
components do not appear in the structural part of the conventional model 
leading - if their effects are not zero - to parametric contamination of 
the residual variance estimate and hence to possibly biased and 
inefficient estimations. 

When an observed response, or some transformation of it, is described 
in terms of parametric and aleatory components, the term 'model' is widely 
used for the former, the parametric structure assumed for the expected 
value of the response. Many considerations of model adequacy, however, 
require discrimination between variability sources reasonably identifiable 
as 'structural' and those to be designated as 'unexplained' or residual 
variability. Because, as exemplified in multiple regression 
determinations, the aleatory components are often conditional on the 
structural, and conversely, it is suggested that the term 'statistical (as 
distinct from mathematical) model' should be extended to include the 
expression of the particular distributional attributes being posited for 
the residual variability. In principle, it should then be possible to 
assess model adequacy by comparing data generated by a computer programmed 
by the model with the actual observations under study. Here it will be 
shown that a multiple regression linear model can have advantages over the 
regular model for analyses of field-plot experiments. It will be apparent 
that the procedure is extensible to other areal layouts although only 
latin square designs are considered in detail. 

2. Examples of Latin Square analyses 

Some published analyses were examined for evidence on the above 
indication that the rows and/or columns sets in latin square models for 
crop experiments may contain redundant parameters. The results are given 
in Table 1. 

The examples in Table 1 are merely those most conveniently available 
and it is not suggested that they constitute a random sample. Taking them 
as a haphazard sample, however, they do not support the commonly suggested 
view that two-way background variability is removed; it can be seen that 
both row and column mean squares achieved 5% significance in only two, 
Fisher (1947) and Rayner (1967), of the eight cases. Both these examples 
appear to use data obtained under the auspices of the Department of 
Statistics at Rothamsted Experimental Station in which context the remark, 
Fisher (1946), is interesting -- "Such a double elimination may be 
especially fruitful if the blocks of strips coincide with some physical 
feature of the field such as the ploughman's "lands" which often produce 
a characteristic periodicity in fertility due to variations in depth of 
soil, drainage and such factors." It could therefore be that, instead of 
holding for designs laid out arbitrarily or with primary concern for 
cultivation convenience, the successful removal of Cartesian two-way 
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background variability requires the exploitation of prior knowledge about 
the particularities of the experimental plots. Such knowledge might well 
be expected at Rothamsted where experimental areas have long been closely 
studied thus facilitating the recognition of associations between the 
topography of field systems, cultivation practices, environmental 
influences such as wind-sheltering, and crop yields. 

It is accordingly apparent that, as results of both geological history 
and cultivation practices, field physiography will importantly influence 
crop production - commonly because of induced changes in the percolation 
and retention rates of soil moisture. Neither such general factors nor 
those which can be more crop specific, such as soil density and pH, will 
necessarily follow a simple Cartesian structure so that the adequacy of 
the conventional Latin Square model must, even as a first approximation, 
be suspect in this context. I noted in Cox (1974) that it was surprising 
that the issue had not been further pursued by Fisher in view of his 
remark, Fisher (1946) , ... ; the peculiarity of agricultural field 
experiments lies in the fact, verified in all careful uniformity trials, 
that the area of ground chosen for the experimental plots may be assumed 
to be markedly heterogeneous, in that its fertility varies in a 
systematic, and often a complicated manner from point to point.' 

3. Model specification 

It will be immediately clear from the foregoing that the specification 
of anything approaching a fully veridical model will be formidably 
complicated. One approach, for example, would involve parametrically 
nonlinear functions admitting plot location effects, treatment effects, 
their possible interactions, effects due to differential crop maturation 
rates together with differential, possibly non-Gaussian and non-additive 
aleatory effects. Less ambitiously here we have tried to preserve the 
heuristic utility of the conventional model while admitting, towards 
improved adequacy, the simplest change - the introduction of cross-product 
terms in the row and column dimensions. The use of polynomial functions, 
per se, is not new; for example, comments by R. A. Fisher, on research in 
1912-25, and A. Hald, on research in 1948, are reported in Cox (1950). 
Some agricultural - as distinct from experimental design - precedents for 
this approach have also been described by, as examples, Eden and Maskell 
(1928), Wiebe (1935) for wheat, Hutchinson and Panse (1935) for cotton and 
Cox et al.(1958) for a ryegrass-clover ley. The comment by Fisher (loc. 
cit.) 

, The principal difficulty was that fitted polynomials in two 
dimensions might easily absorb so many as 20 or 30 degrees of freedom 
without removing a corresponding proportion of the residual sum of 
squares' 

was made before the concept of model adequacy was introduced in Cox (1958) 
and is a reminder that over-parameterization was once regarded as an 
unavoidable nuisance. It is shown by the example in Section 5 here that 
the nuisance can be much reduced by the use of stepwise regress ion 
methods. 

The contour studies on soil moisture and crude protein percentage in 
Cox et al. (1958) suggest beginning with representation of a differential 
element of the background effect as 

4>(x,z)dxdz = L: L: 
r s 

r, s=O,l, ... , 

at the point (x,z) with respect to Cartesian axes parallel to the rows and 
columns respectively and, in principle, the definite double integral of 
this could be used for the background contribution over the (i,j)-th plot. 
Hence, on the assumptions that: 
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i) the background changes over each plot are sufficiently symmetrical 
with respect to the plot centers, 

ii) there are no discontinuities over the whole experimental area, 

iii) the experimental layout is made up of equally spaced plots of the 
same size and shape; 

the mean value theorem permits the yield, Yij' of the plot in the ith row 
and jth column, to be expressed as 

Yij = ~ ~ ~rsxrzj + 8ij + Eij' r, s = 0,1, ... 
r s 

(1) 

where 8 ii is the effect of the treatment on the i,jth plot of which the 
coordinates of the center are (xi,Zj) and Eij is the residual aleatory 
element. 

4. Analysis 

If, apart from the parametric coefficients, the form of the background 
surface is known, a standard linear model program can be used for the 
analysis. As an alternative for small squares, a simple multiple analysis 
of covariance can be carried out. Orthogonal polynomial coefficients can 
be used for the purely row and purely column terms and products of the 
coefficients will provide the cross-product position covariates. The 
purely inter-row and inter-column sums of squares (SS) can be isolated 
first but the SS for the inter-treatment and the background cross-product 
quantities will not be orthogonal. Accordingly the ANOVA SS for 
treatments is that accounted for by the treatment parameters after the SS 
accounted for by all the background parameters have been calculated; it 
can conveniently be designated in the ANOVA as 'treatments adjusted' - for 
the background parameters - following Cochran and Cox (1957). 

As different from the standard analysis based on the tacitly known row, 
column, treatment, additive model, the alternative involved here 
essentially raises the question of model adequacy first discussed in the 
one dimensional case, by Cox (1958). In some cases previous experience 
may be available to assist in model determination; a Bayesian approach for 
this has been investigated by Meeker (1975). When, however, the 
determination is to be made solely on the basis of a single experiment 
under analysis, stepwise regression procedures are indicated. If, for an 
n x n latin square, a background polynomial surface of degree p, with no 

non-zero coefficients, is fitted, there will be n 2 (n-l) 

(1/2)(p+l) (p+2) degrees of freedom (df) for the estimate s2 of 0 2 = V(Eij) 

as compared with the (n-l) (n-2)df provided by the standard model. A cubic 
surface could be fitted for a 5x5 square, for example, leaving lldf as 
compared with l2df for the residual variance estimate. The 'warp-model' 
would be expected to be superior in this case therefore, if the 
expectations of the quartic row and column terms, but not those of lower 

order cross-product terms, are equal to 0 2 . 

Lastly here, a loss in simplicity by comparison with the usual model 
is to be noted that estimates of the parameters are no longer 
independent. Accordingly it will be necessary to select the appropriate 
elements from the inverse of the model specification matrix (X'X) for 
determinations of, for example, confidence intervals for inter-treatment 
contrasts. 
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5. Example 

As part of an extensive investigation of millet cultivation reported 
by Li, Meng and Liu (1936), a Latin Square experiment was carried out to 
investigate the effects of different inter-row spacings on the grain 
yield. The data, which have long been used to illustrate the standard 
latin square analysis in the text Snedecor and Cochran (1989), are 

reproduced in Table 2 wherein A,B, ... ,E denote inter-row spacings from A 
= 2" to E = 10" in steps of 2". 

If a general surface background model can be specified independently 
of the particular data, inter-row and inter-column contrasts up to degree 
(n-l) for an n x n square can be isolated in the analysis of variance 
either individually or in two sets as in the usual analysis. The joint 
sum of squares for treatments and the xrz s cross-product terms can then be 
subdivided to obtain the sum of squares for treatments eliminating the 
cross-product terms by covariance analysis as noted earlier. Thus, for 
the term in xz, the covariate Wij for the plot in the ith row and jth 
column can be generated from the simple vector product 

[Wij) = [-2 -1 0 1 2)'[-2 -1 0 1 2). 

Covariates for higher order cross-product terms can be similarly generated 
and a relatively simple forward model building analysis of covariance can 
be carried out to the degree required. When, however, the degree must be 
determined from the particular data, as in this example, a backward 
stepwise deletion procedure is recommended. 

A convenient SAS program for this allowing the between-treatment sum 
of squares to be isolated at each stage, as is required, has been written 
by author J.B.M. With this, no coefficient was admitted into the general 
polynomial background function without achieving an F-ratio exceeding 3.0; 
for the data here this criterion gave the same model as that given on the 
basis of individual significance tests using a uniform exceedance 
probability level Q, of less than 0.10. The ANOVA for the general 
polynomial model so obtained and the standard model are given in Tables 3 
and 4 respectively. 

Considerable differences between the two analyses and the corresponding 
inferences are indicated as a result of the appreciable reduction in the 
residual mean square; the coefficients of variation are 6.3% and 12.9% for 
the general polynomial and the standard models respectively. Notably 
also, neither the between-all-treatments mean square nor any of its 
individual, one degree of freedom, contrasts achieved 5% significance in 
the standard analysis whereas the between-all-treatments mean square in 
Table 4 was highly significant (P < 0.005). Further, partitioning the sum 
of squares gave values of 4313.08, 1825.28, 959.77 and 130.47 for the 
individual, Type 1 mean squares, for the linear, quadratic, cubic and 
quartic components of the response to spacing so that both the linear and 
quadratic components of the regression of yield on spacing achieved 
significance using the general polynomial model. 

Estimates of mean yields are given in Table 5 and illustrated in Figure 
1. 

By comparison with the general polynomial model it appears that the 
usual model gave appreciable underestimates of the yields for the 6 and 
8-inch spacings and an overestimate for the yield at the 10-inch spacing. 
Relatedly the usual model suggests that the yield decreased linearly with 
increased spacing from a maximum at the 2-inch spacing; the regression 
coefficient is significantly different from zero if 65, from the 
quadratic, cubic and quartic components, is taken as a denominator mean 
square. The significance achieved for the linear and quadratic components 
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is particularly supportive of the general polynomial model because, 
together, they indicate that the maximum yield was achieved at the 6 inch 
spacing in agreement with the comment by the experimenters, Li et al. 
(1936) that this was the spacing commonly used for this crop - perhaps as 
a consequence of empirical sequential optimizations. Also supportive of 
the general surface model is the pragmatic and somewhat prescient comment 
(attributable to Cochran) on the standard analysis - 'The results of this 
experiment are probably disappointing. In trying to discover the best 
width of spacing, an investigator hopes to obtain a curved regression, 
with reduced yields at the narrowest and widest spacings, so that the 
range of spacings straddles the optimum. As it is, assuming the linear 
regression real, all that we have learned is that the best spacing may lie 
below 2 in.' - Snedecor and Cochran (1989). 

The residuals from the two fitted models are given in Tables 6 and 7, 
those for the general polynomial model being based on the estimate 

background polynomial = 29.69 + 85.93x - l8.43x2 

+203.29z - 87.69z 2 + 10.65z 3 

-16.29xz + 4.62x2z 

based on axes g~v~ng x = 1, ... , 5 for plots along the top row and z = 1, 
... , 5 for those down the left column and quasi-estimates 47.77, 40.86, 
55.09, 41.47 and 0 for treatments A, ... , E respectively, obtained from 
the SAS General Linear Models Procedure. 

The residuals in Table 7 are naturally in general smaller than those 
in Table 6 exceptions being the residuals in column 2. From Table 6 
something of a pattern emerges in that over-estimates are found in the SE 
and NW corners of the square with under-estimates in the NW and SE 
corners; the pattern does not appear in the residuals in Table 7. 

Finally, from an agronomic view it is of interest to estimate the mean 
yields per individual plant since these can be expected to change because 
of the relaxation of competition as spacing increases. The values 
obtained from the two models are compared in Figure 2. The difference is 
seen to be that, whereas on the basis of the row-column model the increase 
in yield per plant due to reduction in competition continues 
undiminishingly up to at least the 10-inch spacing, the background 
polynomial model suggests that the yield per plant asymptotically 
approaches a maximum at slightly more than the 10-inch spacing. This 
latter seems the more intuitively convincing behavior and it is noteworthy 
that the response curve itself could belong to either of the families of 
curves to which such relationships 'tend to conform qualitatively ... ' 
illustrated and discussed in Seber and Wild (1989). 

6. Discussion 

Since the original presentation of this material, considerably more 
sophisticated and computationally intensive procedures have been advanced 
for treating the persistent and ubiquitous problem of identifying 
background effects, signals, and noise. The spatial, nearest neighbor and 
smoothing approaches, Wilkinson et al. (1983), Green (1984), Green et al. 
(1985) are highly relevant to the agronomic context. Green (1984) noted 
that '... the various methods proposed are based on differing statistical 
principles, so that comparison between methods has been difficult.' One 
such difficulty may be the assessment of just what is tacitly contributed 
to (or imposed on) the situation via assumptions such as isotropic or 
dominant direction inter-plot correlation. In this respect a ' good' 
linear model has pragmatic appeal because it can be regarded as a first 
order Taylor series approximation to a more fully veridical nonlinear 
model towards which sequential improvements can be envisaged. Relatedly 
the linear model approach gropes heuristically towards causes of phenomena 
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of which correlation procedures are essentially descriptive; a distinction 
analogous to that between investigations on genotypes and descriptions of 
phenotypes. A connection between the two approaches was, in fact, 
obtained in Cox (1962) where, with time instead of space, it was shown 
that correlations between observations on individuals (cows) at different 
times, could be 'predicted' from, or 'explained in terms of', their 
individual linear regressions. The polynomial background fitting 
described here is itself, of course, a smoothing procedure and other types 
of smoothing in the hands of versatile practitioners can also doubtless 
provide good description; both information and infants can, however, be 
suffocated by over-zealous smoothing. 

The objective of the preceding exposition is to suggest that there are 
promising possibilities for the use of mUltiple regression and model 
adequacy testing procedures in analyses of data from compact yield 
experiments. The three main differences from the standard procedure are: 

1) As initially noted by Hald (in Cox, 1950) the background polynomial 
model obviates a basic assumption of the standard model that the 
background response is constant over each plot. 

2) As shown in Table 1, redundant-rowand/or column parameters commonly 
occur in the standard model. The ensuing inefficiency may then 
partially explain the relatively rare use of Latin Square designs in 
field experiments; Cox (1950), for example, reported that, of 6317 
experiments at North Carolina Experiment Station during 1942-48, only 
91 (1.4%) used Latin Square designs. 

3) The standard model excludes some 'warp/-parameters which can explain 
important components of background variability and reduce bias in the 
estimates of treatment effects and residual variance. 

The possible advantages are, however, not free and further research is 
required on, as examples, the procedure used to select the background 
polynomial parameters, the validity and possible relaxation of 
assumptions re homogeneity of variance, position x treatment interactions 
and, especially, to provide confidence and prediction intervals in 
particular contexts. This latter relates to questions of: whether and in 
what contexts, parameters are fixed or random?, what quantities are 
estimable? and on the discrimination versus estimation properties of 
designs discussed in Cox (1961), subsumed in the remark - 'A prerequisite 
for the formal analysis of the experimental data is a relevant conceptual 
"frame of reference" ... based on some explicit elementary or primitive 
assumptions' (Wilk and Kempthorne, 1957), that which F. Yates had 
described as 'The inductive basis' . 

Another important area for research is the prov~s~on of experimental 
designs specially adapted to the basis of a general polynomial background 
function. These might, by relaxation of the, each treatment equally often 
in each row and column condition, and by appropriate modification of 
randomization procedures, lead to improved adequacy testings and 
estimations. These might be particularly advantageous if a background 
function was demonstrably a durable, for example edaphic, attribute of the 
actual locale used for an experiment. 

Finally here we would suggest the addition of the parenthesized to the 
admonition, Hunter (1987) that -

'It is seldom wise to assume a postulated (and, £ priori, dubiously 
adequate) first order model to represent an unknown function exactly' . 
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Appendix A 

An interesting discussion of cultivation practices in relation to 
fertility is available in White (1962), liThe earliest plough was 
essentially an enlarged digging stick dragged by a pair of oxen. 
Its conical or triangular shape does not normally turn over the soil and, 
it leaves a wedge of undisturbed earth between each furrow. Thus 
cross-ploughing is necessary, with the result that, in regions where the 
scratch-plough is used, fields tend to be squarish in shape, " 
Because of generally heavier soils a new plough, the heavy plough, was 
developed for Northern Europe. White continues: " the heavy plough 
handled the clods with such violence that there was no need for 
cross-ploughing. . The new plough, by eliminating cross-ploughing, 
tended to change the shape of fields ... from squarish to long and narrow 
with a slightly rounded vertical cross-section for each strip field ... . 
These strips were normally ploughed clockwise, with the sod turning over 
and inward to the right. As a result, with the passing of the years, each 
strip became a long low ridge, assuring a crop on the crest even in the 
wettest years, and in the intervening long depression, or furrow, in the 
driest seasons." And, because it took eight rather than two oxen to pull, 
peasant cooperatives were formed and '" all the lands of a village had to 
be reorganized into vast, fenceless 'open fields' ploughed in long narrow 
strips." The above thesis is attributed by White to one Marc Bloch. 

With respect to experimental design in relation to ploughing practice, 
the suggestion is that, after the scratch-plough was superseded by the 
heavy plough, randomized block designs would be more appropriate than 
latin square designs (cf. Table 1). White, however, notes that Bloch's 
thesis has been authoritatively challenged and gives counter indications 
of narrow strips with scratch-ploughing and flat strips with heavy 
ploughing noting that strips were often related to inheritance divisions. 
Nevertheless he further remarks "Scholars like ... Bloch had a keen sense 
of fact and they observed the averages." Whatever the merits of Bloch's 
thesis, its basis changed with history and various enclosure acts until, 
according to Harris (1973), "By 1850, certainly by 1870, open fields had 
disappeared from all but a few rare villages." The photograph, Figure 3, 
adapted from Morgan (1975), shows residuals of peasants' strips at Stoke 
Newington, Oxfordshire, England. 

Summary 

Data are presented to suggest that the regular row, column, treatment 
additive structural model used to analyze Latin Square experiments is not 
necessarily veridical for field experiments wherein non-Cartesian edaphic, 
background variability components can occur to contaminate the residual 
mean square. Using only a simple criterion for term selection it is 
shown, and exemplified, that representation of the background by a more 
general polynomial can, by separating out row x column interaction terms, 
substantially reduce bias in the residual mean square. A note on medieval 
cultivation practices and experimental design is appended. 

Acknowledgements 

We wish to thank historian Dr. Bart Hacker for contributions to 
Appendix A, to Dr. M. Marasinghe for the provision of P-values in Table 1 
and to the referee for comments leading to improvements in this paper. 

References 

Cochran, W. G. and Cox, G. M. (1957, 2nd Edition). Experimental Designs. 
John Wiley, New York. 

Cox, C. P. (1974). An alternative model for the analysis of latin square 
experiments. Department of Statistics Seminar. Iowa State University 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1992/proceedings/11



133 

Cox, C. P. (1962). The relation between covariance and individual 
curvature analyses of experiments with background trends. Biometrics 
18, 12-21. 

Cox, C. P. (1961). A practical application of a theoretically inefficient 
design. Biometrics 17, 646. 

Cox, C. P. (1958). The analysis of latin square designs with individual 
curvatures in one direction. J. R. Statist. Soc. B 20 193-204. 

Cox, C. P., Hosking, Z. D. and Line, C. (1958). Within-field changes in 
herbage composition and soil moisture. J. Brit. Grassland Soc. 13 187. 

Cox, G. M. (1950). A survey of types of experimental designs. 
Discussion. Biometrics Q 317-318. 

Eden, T. and Maskell, E. J. (1928). The influence of soil heterogeneity 
on the growth and yield of successive crops. J. Agric. Sci. 18 163. 

Fisher, R. A. (1946, 10th Edition). Statistical Methods for Research 
Workers. Oliver and Boyd, London. 

Fisher, R. A. (1947, 4th Edition). The Design of Experiments. Oliver and 
Boyd, London. 

Goulden, C. H. (1939). Methods of Statistical Analysis. John Wiley, New 
York. 

Green, P. J. (1984). 
cross-validation. 
Wisconsin. 

Linear models for field trials, smoothing and 
Tech. Report 2779. Math Res. Center. University of 

Green, P. J., Jennison, C. and Seheult, A. H. (1985). 
experiments by least squares smoothing. J. R. 
299-315. 

Analysis of field 
Stat. Soc. B 47, 

Harris, A. In Derby H. C. (Ed). (1973). A New Historical Geography of 
England. Cambridge Univ. Press. 

Hunter, J. S. (1987). Are some latin squares better than others? Ch. 9 
In Mallows C. L. (Ed) Design, Data and Analysis. John Wiley, New York. 

Hutchinson, J. B. and Panse, V. G. (1935). Studies in the technique of 
field experiments. Indian J. Agric. Sci. 2 523. 

Li, H. W., Meng, J. and Liu, T. N. (1936). J. Amer. Soc. Agron. 28 1. 

Meeker, J. B. (1975). The use of model information indicating more than 
one possible model. Ph.D. thesis. Department of Statistics, Iowa 
State University. 

Morgan, G. (1975). Life in a Medieval Village. Cambridge University 
Press. London. 

Rayner, A. A. (1967). Biometry for Agriculture Students. University of 
Natal Press, Pietermaritzburg. 

Seber, G. A. F. and Wild, C. J. (1989). Nonlinear Regression. John 
Wiley, New York. 

Snedecor, G. W. and Cochran, W. G. (1989, 8th Edition). Statistical 
Methods. Iowa State University, Ames, Iowa. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1992/proceedings/11



134 

Steel, R. G. D. and Torrie, J. H. (1960). Principles and Procedures of 
Statistics. McGraw-Hill, New York. 

White, Lynn, Jr. (1962). Medieval Technology and Social Change. 
Clarendon Press, Oxford. 

Wiebe, G. A. (1935). Variation and correlation in grain yield among 1500 
wheat nursery plots. J. Agric. Res. 50 331. 

Wilk, M. B. and Kemp thorne , O. (1957). Non-additivities in a latin square 
design. J. Amer. Stat. Assoc. 52, 218. 

wilkinson, G. N., Eckert, S. R., Hancock, T. W. and Mayo, O. (1983). 
Nearest neighbor (NN) analysis of field experiments (with discussion). 
J. R. Stat. Soc. B 45 151-211. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1992/proceedings/11



135 

Table 1 
Examples of latin square analyses 

Source F-ratios Residual 
rows columns treatments ms;df 

Goulden (1939) 4.99 1. 50 20.78 2.34;12 
5x5, wheat pa 0.013 0.263 

Fisher (1946) 8.14 1. 35 uniformity 130.3;16 
5x5, mango1ds P 9E-4 0.295 trial 

Fisher (1947) 7.10 3.20 162.53 1527;20 
6x6, potatoes P 6E-4 0.028 

Cochran & Coxb (1957) 2.39 4.00 10.38 26.2;12 
5x5, potatoes P 0.109 0.027 

Steel and Torrie (1960) 1.44 5.04 58.47 0.45;6 
4x4, wheat P 0.321 0.044 

Jowett (1967) 6.42 2.03 2.56 58.7;20 
6x6, sorghum P 0.001 0.118 

Rayner (1967) 34.54 13.38 19.07 16.84;12 
5x5, grain P 1.7E-6 2E-4 

Snedecor & Cochran (1989) 3.22 1. 45 0.98 1056;12 
5x5, millet pa 0.052 0.277 

aExceedance probability for the above F-ratio 

blndividua1 plot yields not given 

Table 2 
yield of millet per plot (g) 

column 
row 1 2 3 4 5 

1 B:257 E:230 A: 279 C:287 D:202 

2 D:245 A: 283 E:245 B:280 C:260 

3 E:182 B:252 C:280 D:246 A: 250 

4 A:203 C:204 D:227 E:193 B:259 

5 C:231 D: 271 B:266 A: 334 E:338 

The required subtotals are: 

1 2 3 4 5 

row 1255 1313 1210 1086 1440 

column 1118 1240 1297 1340 1309 

treatment 1349 1314 1262 1191 1188 

A B C D E 
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Table 3 
ANOVA of millet yield data, general polynomial model 

Source of variation df ms 

x 1 4646.48 

x 2 1 1462.86 

z 1 408.98 

z2 1 4657.73 

z3 1 8166.42 

xz 1 5387.56 

x 2z 1 1333.03 

treatments (adjusted) 4 1807.15 

residual 13 252.29 

total 24 1523.81 

Table 4 
ANOVA of millet yield data, standard model 

Source of variation df ms 

rows (z) 4 3400.3 

columns (x) 4 1536.5 

treatments 4 1039.1 

rlinear 1 3960 1 
I quadratic , 

I 

cubic, 3 65 I , 
J lquartic 

residual 12 1055.6 

total 24 1523.8 
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Table 5 
mean yield estimates (g) 

spacing (in) 
model 2 4 6 8 10 

general polynomial 262.89 255.98 270.21 256.59 2l5.12 

standard 269.8 262.8 252.4 238.2 237.6 

Table 6 
residuals from the standard row-column model 

column 
row 1 2 3 4 5 

1 23.92:B - 2.28:E 3.12:A 19.92:C -44.68: D 

2 24.92:D 6.92:A -10.28:E - 9.08:B -12.48:C 

3 -16.88:E 3.52:B 30.52:C 2.12:D -19.28:A 

4 - 3.28:A - 9.28:C 16.52:D -25.48:E 2l.52:B 

5 -28.68:C 1.12:D -39.88:B 12.52:A 54.92:E 

Table 7 
residuals from the general polynomial model 

column 
row 1 2 3 4 5 

1 4.36 - 9.98 - 9.33 18.39 l. 69 

2 -11.34 - 5.42 - 3.05 2.08 - 2.78 

3 11.62 17.40 16.96 - 8.49 - 6.72 

4 13.02 -14.23 l. 37 -12.29 - 8.38 

5 -18.34 16.78 -15.46 8.45 13.70 
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