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DESIGNED EXPERIMENTS IN THE PRESENCE OF SPATIAL CORRELATION 
David B. Marx 

University of Nebraska-Lincoln 

ABSTRACT 
Soil heterogeneity is generally the major cause of 

variation in plot yield data and the difficulty of its 
interpretation. If a large degree of variability is present 
at a test site, some method of controlling it must be found. 
controlling experimental variability can be achieved either by 
good experimental design or by analysis procedures which 
account for the spatial correlation. Classical designs are 
only moderately equipped to adjust for spatially correlated 
data. More complex designs including nearest neighbor 
designs, Williams designs, and certain restricted Latin square 
designs are developed for field experimentation when spatial 
correlation causes classical designs to be less desirable. 

The designs, both classical and nearest neighbor type 
designs, are analyzed using the classical statistical analysis 
approach and a strategy using general linear mixed models 
which takes into account that there is spatial correlation 
present. The results indicate that properly designed 
experiments may be analyzed either by the usual statistical 
techniques or more complex methods which adjust for spatial 
correlation. However, if no serious thought is used in 
constructing the design of the experiment then the usual 
analysis techniques are no longer valid. 
Keywords: spatial variability, geostatistics, optimal designs 
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Introduction 
Soil heterogeneity is generally the major cause of 

variation in plot yield data and the difficulty of its 
interpretation (1, 4, 15). If a large degree of variability 
is present at a test site, some method of controlling it must 
be found. controlling experimental variability is the major 
purpose of a good experimental design (18). However, adequate 
control of soil variability may require complex designs which 
may be difficult to implement, due to constraints on 
randomization or because of the need for knowledge which is 
not available, and they are often diff icul t to analyze. 
Measuring related variables and using analysis of covariance 
has been shown to be a good analysis technique to improve a 
design's efficiency (17, 18, 19). If a plot is surrounded by 
neighbors who are doing well, it can be expected that it will 
do well also. If this plot does in fact do well, that fact 
does not necessarily mean that the treatment which was applied 
to that plot is doing well. conversely, if a plot is 
surrounded by plots who are doing poorly, then the treatment 
applied to that plot might be considered relatively good even 
if the response to the treatment is inferior when viewing that 
plot in isolation. 

Nearest neighbor (NN) analysis was first introduced by 
Papadakis (15) and then reviewed by Bartlett (3) in a more 
mathematically critical paper. NN allows for the recovery of 
information from replicated field experiments with large 
blocks (2). This is especially useful in cultivar trials or 
other experiments where large numbers of treatments or 
cultivars are used. Generally, the procedure calls for the 
development of a covariate for a particular plot by averaging 
the yields of surrounding plots. 

Researchers can also adjust the analysis of spatially 
dependent variables through the theory of regionalized 
variables developed by Georges Matheron (11, 12). The 
application of Matheron's theory to problems originating in 
mining and geology led to the more popular name of 
geostatistics (7). The quantifying of the spatial correlation 
is done by constructing a semivariogram which describes the 
spatial relationship through the parameters of nugget, range, 
and sill (5). Using the geostatistical representation of the 
spatial data in conjunction with general mixed model theory in 
statistics allows for a more general solution of the spatial 
analysis problem (13, 20). 

Besides yield data many variables of interest to crop and 
soil scientists are spatially dependent (6, 21). These 
include soil nutrients, soil physical properties, plant 
nutrients, and plant physical properties (23, 24). In most 
courses on design of experiments offered to graduate students 
in agriculture, the emphasis is on classical experimental 
design and the resulting analyses. These courses typically 
create the impression that the designs should always be 
balanced and randomized and that blocking is usually 
effective. However, in agricultural field experimentation 
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often there is a correlation between adjacent plots. This 
spatial correlation violates the assumption of independent 
observations which is necessary for ordinary least squares 
analyses to have valid statistical tests of hypotheses, which 
is the basis of classical statistical analysis. 

It is necessary to account for this spatial correlation 
in the data when analyzing data from highly correlated plots. 
There are several ways to modify the analysis so that the 
spatial correlation can be taken into account. We will begin 
with the classical method of accounting for spatial 
correlation and then develop some more sophisticated methods 
of analysis which are now possible with the use of a personal 
computer. 

Blocking and Classical Experimental Designs 
Classical experimental designs are based on the principle 

of blocking. Blocking involves arranging homogeneous 
experimental units (in our case plots) into groups so that the 
variability between experimental units within a group (block) 
is less than the variability between experimental units of 
differing blocks. This allows more precise comparison of 
treatments by eliminating large differences between 
experimental units in different blocks. Information from 
blocked experiments is predominantly based on the comparisons 
that can be made between treatment observations within the 
same block. Although not with the same degree of efficiency, 
comparisons can also be made between treatments not in the 
same block. 

In field plot designs, blocking usually proceeds by 
grouping soil types together, blocking by aspect or elevation, 
blocking by proximity to a river or stream, or simply blocking 
by taking groups of adjacent plots and assuming that plots in 
close proximity to each other are more similar that plots 
which are farther apart. 

The most commonly used experimental design is the 
randomized complete block (RCB). A randomized complete block 
design is one in which each treatment or treatment combination 
(in the case of factorials) appears exactly once within each 
block. We choose blocks so that they represent relatively 
homogeneous sources of variation before the treatment is 
applied. Common examples of blocks are fields, years, 
littermates, batches of chemicals, or environmental 
conditions. When blocking is to be done in two directions (or 
to account for heterogeneity in two uncontrolled variables), 
the design can be laid out as a Latin Square. 

The difficulty with either of these classical techniques 
is that often the number of treatments is large requiring many 
experimental units to be similar. This is seldom the case and 
thus the heterogeneity between experimental units within a 
block is great when the block is large. Balanced incomplete 
block designs (BIBD) help to alleviate this problem. Here 
blocks have fewer units than there are treatments. Thus not 
all treatments can be contained within one block. The 
advantage is that by limiting the number of units per block, 
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the units within each block can be quite similar. The 
disadvantage is that not all treatments appear within a block 
so that comparisons between treatments are made with less 
efficiency than would be the case if homogeneous complete 
blocks were possible. If the variability within a block is 
reduced enough by restricting its size, this disadvantage is 
offset. If not then an RCB is preferable. In general, the 
larger the number of treatments, the more likely an incomplete 
block design will be more efficient than an RCB design. 

A second difficulty with the RCB is that in the presence 
of spatial correlation, not all treatment differences are 
measured with equal precision. For example, if a Randomized 
Complete Block Design is to be run with four treatments and 
four replications, one such design could be derived through 
the use of a random number table or have been obtained through 
a design package (such as SAS) on computer. Figure 1 
represents such a design. If the treatment placements are 
taken into account then the comparisons of treatments are made 
at different average distances. These are given in Table 1. 
In this example the average treatment comparison (over all 
treatment pairs) distance is 5/3 = 1.667. Our average 
distances for particular treatment comparisons, in this case, 
range from 1.00 (B vs D) to 2.25 (A vs D). Since when using 
a usual analysis of variance all treatment comparisons are 
judged against the same standard error, we will be using too 
large an error term for the B vs D comparison and too small an 
error term for the A vs D comparison. This is true only if 
the spatial correlation extends the length of each block. 

An extension to the Latin square which is not as well 
known is the Youden square or incomplete Latin square. In 
this design the rows are complete blocks and the columns are 
incomplete blocks. For example a Youden square for seven 
treatments with three replications is given in Figure 2. Note 
that each row forms a complete block in that each treatment 
appears exactly once. The columns form incomplete blocks 
which are balanced since each treatment pair appears within a 
column exactly once. Thus the columns form a BIBD. 

Pearce (16) has extended the concept of several blocking 
schemes to "row and column" designs. Blocks can generally be 
made of any size but the restrictions on the field size and 
shape may determine the number of plots in each row and 
column. In this case the number of plots in each row or 
column may be more or less than the number of treatments. 
Mead (14) suggests that in constructing row and column designs 
the allocation of treatments to rows and columns may be 
considered separately. For each blocking system the 
distribution of treatments should be made to be orthogonal if 
possible and if not they should be balanced. If even balance 
is not possible, then the joint occurrences in blocks should 
be made as nearly equal for all treatment pairs as possible. 
Where two treatments have an unusually high occurrence for one 
blocking scheme, say rows, then the two treatments should be 
arranged so that they have an unusually low occurrence for the 
other blocking scheme, say columns. When the row and column 
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apportionments are complete the joint allocation is 
constructed to be compatible with the separate apportionments. 

Thus although spatial correlation is present to some 
degree in all field experiments, whether on a micro or macro 
scale, it is important to recognize this correlation and try 
to accommodate for it by 

1. Adjusting the design of the experiment 
2. Modifying the analysis of the resulting data 
3. Some combination of both 1 and 2. 

Designs which Control for spatial Variability 
Some other designs which help control for spatial 

correlation include nearest neighbor balanced designs and 
Williams designs (8, 9, 22). Using the idea of determining 
the average distance between treatments for each treatment 
pair as suggested earlier, different designs can be compared. 
Figures 3 through 7 show some incomplete block, Williams, and 
nearest neighbor designs. Although these designs are for 
different numbers of treatments and replications, we would 
normally choose a design which had, as close as possible, the 
same average distance between all pairs of treatments. In 
practice this is quite hard to do, especially if the number of 
treatments is large and the number of replications is to be 
kept relatively small. The question then becomes, how do we 
determine which designs are "good" or which of several 
competing designs is the "best"? 

There are several criteria which are used in classical 
statistics. These include: 

a) standard error of the mean 

where 

Ee(RCB) = mean square error for RCB 

b) efficiency of a design 

where Ee(CRD) = mean square error for a CRD based upon a 
RCB analysis and from the RCB nb, ~, and ne are the degrees of 
freedom for blocks, treatments and error respectively with 
mean squares for blocks and error being Eb and Ee respectively. 

Ee ( CRD ) ( ne(RCB) + 1 ) ( ne(CRD) + 3) 
E(RCB to CRD)= 

Ee (RCB ) (ne(CRD) + 1) (ne(RCB) + 3) 

where ne(CRD) and ne(RCB) are the degrees of freedom for error 
associated with the CRD and RCB, respectively. 
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c) standard error of the difference between two treatments 

d) if the data are unbalanced use the average of the standard 
error of the differences between the means 

average 

Although these are all valid measures of good design the 
calculation of the standard error of the differences between 
the means is tedious when spatial correlation is present. In 
addition, some assumption about the spatial variability must 
be made in order to obtain these standard errors accurately. 
The usual formulas for efficiency are valid for independent 
observations, but obtaining the mean square errors in the 
presence of spatial variability is difficult. 

Another method of comparing designs is to use one of the 
optimality criteria. For independent observations 
A-OPTIMALITY is defined as: 

A-OPTIMALITY = L (l/AJ , where Ai = i th eigenvalue of X I X and 
X is the design matrix. A-OPTIMALITY minimizes: 

i) the average variance of the treatment effects. 
ii) the average variance of an estimated difference in 

treatment effects. 
iii) the expected value of the treatment sum of squares 

when there are no treatment differences. 
A second optimality criteria is also sometimes used. 

D-OPTIMALITY is defined for independent observations as: 
D-OPTIMALITY = IThi • 

i) is proportional to the volume of the confidence 
ellipsoid. 

ii) minimizes the maximum variance of predicted 
responses (generally in regression). 
Thus D-optimal designs correspond to a design matrix, X, such 
that IX'xl (or n\) is maximal. 

Other criteria also include: 
i) maximum standard error of treatment differences. 

ii) minimum standard error of treatment differences. 
iii) variance of standard errors of treatment 

differences. 

If spatial correlation is present, how do we find an 
"optimal" design? How do we define spatial correlation? 
Martin (10) has proposed an extension to both the A-OPTIMALITY 
and D-OPTIMALITY criteria for spatially correlated data. His 
criteria simply use the (X I V·IX) matrix instead of the (X I X) 
matrix. For example, if one assumes a spatial structure which 
produces a spherical semivariogram as seen in figure 8, then 
the generalized optimality criteria can be defined by: 
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A-OPTIMALITY = L: (l/Ad and D-OPTIMALITY = IIAi , where Ai = 
iili eigenvalue of (X'V1X), X is the design matrix, and Vi is 
the inverse of the covariance structure of a spatially 
correlated design. V = [vij] where [Vij] = C{ 1 - 1. 5*h/r + 
.5*h3/r3}, h is the distance between observation i and 
observation j, and r is the range of the spherical 
semivariogram. Here the covariance matrix for the stochastic 
error term of the linear model, V, is defined for a spherical 
spatial structure but any other spatial structure could be 
incorporated into V just as easily. 

Note that in almost all spatial structures the 
correlation tends to decrease with distance. Since most 
structures are fairly linear at smaller distances the choice 
of a structural model is important but not as critical as 
recognizing that spatial structure exists. 

Standard errors of all the treatment differences are 
calculated by: 

k'*(X'V-1X)-1*k where k = (1, 0, 0, ... , -1, 0, ... )', 
for all possible k's. These standard errors can then be 

calculated and compared for designs when spatial structure is 
present. 

simulation Procedure 
Now that we have optimality criteria for data with 

spatial variability, a simple simulation study for Latin 
square designs in the presence of a spherical semivariogram 
spatial structure was run. Unlike classical statistical 
designs not all Latin squares are created equal. For 5 X 5 
Latin squares there are "good" designs and "poor" designs. 
For the first part of the simulation 2,000 randomized 5 X 5 
Latin squares were observed to determine which were "good" 
designs and which were "poor" . The average scores for 
different criteria are given in table 2 for both a range of 
2.5 and a range of 10.0. In all cases there was no nugget 
effect and the sill was 100 for the spherical model. From the 
individual results a "good" design was selected as well as a 
"poor" design based upon the A-OPTIMALITY criteria. Although 
A-OPTIMALITY is used since it is intuitively more appealing, 
both criteria gave in this simulation example the same result. 
These designs are the knight's move design and the diagonal 
design respectively as given in figure 9. 

These designs were then compared with 100 simulations of 
data with the following structure for the spatial correlation: 

1. spherical structure 
nugget = 0.0 
range = 2.5 or 10.0 
sill = 100.0 

2. add treatment effects to spatial "floor" 
treatment means A = B = C = 0.00 

D = 10.0, E = 20.0, 
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F = 30.0 (used only for the 6 X 6 
square) 

The simulation first developed experimental units which 
were spatially correlated with the spherical structure (call 
the "floor" above) and then the treatment effects were added 
(with no additional error component) to these experimental 
units according to the appropriate design. 

The simulations were run for: 
1. two ranges (2.5, 10.0) 
2. two sizes of Latin squares (5x5, 6x6) 
3. two squares of each size ("good", "poor") 
4. 100 simulations for each of the 8 cells 

Simulation Results 
The results are given in table 3. Note that the diagonal 

Latin square is very poor in comparison to the knight's move. 
In addition, based upon the means from table 2, there seem to 
be a number of fairly good Latin square designs although the 
knight's move is the best under the spatial correlation 
structure proposed. 

Table 4 shows a comparison between treatments A and B as 
well as A and C. These comparisons were chosen since they 
have the largest and smallest standard errors of differences 
between treatment means. Note that for the knight's move 
design the difference between the standard errors is very 
small. However, for the diagonal design the difference 
between the standard errors is over 25%. Thus the knight's 
move design also does a good job of estimating treatment 
differences with good precision for all pairs of treatments. 
Table 5 gives the results of the simulation when the data 
(including both "good" and "poor" designs averaged) were 
analyzed using a mixed model program assuming a spherical 
correlation structure and also analyzed using the classical 
Latin square analysis. These results indicate that the 
classical analysis will underestimate the error variance in 
the presence of spatial correlation and the larger the range 
the greater the bias in the estimation. 

For the 6 X 6 Latin square no knight's move design exists 
but the best design found along with the worst (again a 
diagonal design) is given in figure 10. The simulation 
results for the 6 X 6 Latin squares were essentially the same 
as for the 5 X 5 Latin square and thus are omitted here. 

Lastly, one more simulation was done to compare a 
completely randomized design and four 5 X 5 Latin square 
designs in the presence of spatial variability. For the 5 X 5 
Latin squares a pair of "opposite" diagonal squares was 
replicated for a total of four squares. The designs are given 
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in figure 11 and you will note that by using these opposing 
diagonal squares that the average distance between treatment 
pairs is about the same for all treatment pairs. Thus, 
diagonal squares may be good designs for dealing with spatial 
variability, but only when used in pairs which when viewed as 
an overall design average out the distance between treatment 
pairs. 

Table 6 shows the results of the simulation of the 
designs of figure 11. Note that when the CRD is analyzed the 
analysis accounting for the spatial structure correctly 
assigns differing standard errors of treatment differences for 
varying pairs of treatments. The classical analysis fails to 
do this and in fact gives inflated standard errors. However, 
when an appropriate design for spatial structure is used the 
analysis is not as important. As can be seen the classical 
analysis and the generalized least squares analysis give 
approximately the same results for the four Latin squares. 

Although the simulations used here assumed a point to 
point semivariogram and actually, since plot designs have been 
discussed, the covariance values in the optimality criteria or 
in the generalized linear model structure are only 
approximations. The actual covariance values needed for both 
the calculation of the optimality criteria and the generalized 
least squares analyses should be the covariance function which 
is averaged between all points from one plot to the next. 
This involves a four fold integral of the covariance function. 
Often the most effective solution is to choose sixteen gridded 
points in each plot and average the 256 pairs of points for 
the average covariance as shown in figure 12. However, the 
point to point covariance approximation used here should be 
fairly close to the exact values for the semivariogram 
constructed by using areas. 

Conclusions 
If spatial correlation is not present, randomize Latin 

squares in the usual manner and conduct the usual analysis. 
Usual blocking techniques will be helpful in eliminating 
excess variability among experimental units. However, if 
spatial correlation is present, then use a "good" design or 
use proper analysis techniques or use a "good" design and use 
proper analysis techniques. 
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Figure 1. 

Example of RCB with distances between treatments indicated. 

C A B D I 
d 

B D C A 

I 2d I 

A B D C 

II 
3d 

II 
D B C A 

II 

Table 1. 

Distances between treatments. 

Comparison Block 1 Block 2 Block 3 Block 4 Average 

A vs. B 1 3 1 2 7/4 

A vs. C 1 1 3 1 6/4 

A vs. D 2 2 2 3 9/4 

B vs. C 2 2 2 1 7/4 

B vs. D 1 1 1 1 4/4 

C vs. D 3 1 1 2 7/4 

I Average I 5/3 I 5/3 I 5/3 I 5/3 I 5/3 I 
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Figure 2. 

Youden square for seven treatments 
with three replications 

A B C D E 

G A B C D 

C D E F G 

Figure 3. 

Incomplete Block Design 
with four treatments 
and two plots per block 

Rep I A B C D 

Rep II A C B D 

Rep III A D B C 

F 

E 

A 

Note that within block comparisons are made with treatments 
all being one plot away from each other. 

Figure 4. 

Incomplete Block Design 
with four treatments 

and three plots per block 

A B D 

D B c 

B c A 

A D c 

In this particular randomization the average difference 
between treatments is either 1.0 or 1.5 plot units. 

Figure 5. 

G 

F 

B 
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Williams Design 
with three treatments 

c A B 

A B c 

B c A 
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Note that this design is balanced for nearest neighbors in 
both rows and columns in that all treatment comparisons are 
an average of 4/3 plot units apart. 

Figure 6. 

Balanced Nearest Neighbor Design (4 treatments) 
average distance apart is 5/3 plot units 

D A B C 

A B C D 

C D A B 

B C D A 

D C A B 

C A B D 

B D C A 

A B D C 

D B C A 

B C A D 

A D B C 

C A D B 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1992/proceedings/10



118 

Figure 7. 

Balanced Design with 5 treatments 

E B C A D 

D E B C A 

A D E B C 

C A D E B 

B C A D E 

E C D B A 

A E C D B 

B A E C D 

D B A E C 

C D B A E 

Note that this design is balanced for nearest neighbors in 
both rows and columns in that all treatment comparisons are 
an average of 6/3 plot units apart. 
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Figure 8 

Semlvar- logram 

randomizations) 

10.0 

D-OPTIMALITY 
A-OPTIMALITY 

·'''1/ 
nUQget 

range 

average std error of diff 
variance of std errors of diff 
minimum std error of difference 
maximum std error of difference 

Table 2. 

5 x 5 Latin squares 
(averages of 2,000 

range = 2.5 

27,467 
.952 
.185 
.000510 
.156 
.214 

range = 

1,869,330 
2.621 

.044 

.000014 

.040 

.048 
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Figure 9. 

5 x 5 Latin squares 

KNIGHTS MOVE DIAGONAL 

A B C D E A B C D E 
C D E A B B C D E A 
E A B C D C D E A B 
B C D E A D E A B C 
D E A B C E A B C D 

Table 3. 
(results of 100 simulations for each column) 

POOR 

D-OPTIMALITY 
965,847 
A-OPTIMALITY 
2.655 
Average std 
.058 
Variance of 
.000173 
Minimum std 
.044 
Maximum std 
.072 

10.0 

POOR 

average std 
3.257 

5 x 5 Latin squares 

range = 2.5 range = 10.0 
GOOD POOR GOOD 

41,600 8,990 2,338,735 

.903 1.164 2.612 

error .160 .291 .041 

std error .000025 .006478 .000000 

error .159 

error .162 

range 

GOOD 

error 4.314 

.210 .040 

.372 .041 

Table 4. 

5 x 5 Latin squares 
means of 100 simulations 

= 2.5 range 

POOR GOOD 

4.930 2.495 

= 
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minimum std error 4.293 4.306 2.472 
2.846 

maximum std error 4.336 5.580 2.512 
3.673 

std error (A vs B) 4.320 4.356 2.494 
2.919 

std error (A vs C) 4.311 5.469 2.475 
3.610 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1992/proceedings/10



122 

Table 5. 

5 x 5 Latin squares 
GLS (range) Classical LS 

(range) 

2.5 10.0 2.5 10.0 

estimate of 0 2 104.4 91.3 66.4 16.2 

estimate of range 2.599 4.292 

Figure 10. 

6 x 6 Latin squares 

NO TREATMENT A NEIGHBOR DIAGONAL 
OF ITSELF (no knights 
move exists) 

A B C D E F A B C D E 
F 

F D E A B C B C D E F 
A 

C A B F D E C D E F A 
B 

E F D C A B D E F A B 
C 

B C A E F D E F A B C 
D 

D E F B C A F A B C D 
E 
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Figure 11. 
Completely Randomized Design 

B B C D A C A C B B 
E A B E A B D A A B 
C D B B C C D D C E 
C A D D B D A D A D 
B E E A D E E C E A 

E C B E C C E A E A 
C E D B A B B D D E 
A E A D C B D E A E 
A E C B A D E A D C 
D C C B D C B B E C 

Four Diagonal Latin Square Designs 

E B C A D E C D B A 
D E B C A A E C D B 
A D E B C B A E C D 
C A D E B D B A E C 
B C A D E C D B A E 

E C D B A E B C A D 
A E C D B D E B C A 
B A E C D A D E B C 
D B A E C C A D E B 
C D B A E B C A D E 

Table 6. 
Completely Randomized Design 

Treatment 
Comparison 

A D 

B E 

4 Latin Squares 

Treatment 
Comparison 

A C 

B D 

Standard Error of 
Difference 

GLS CRD 

.189 .370 

.217 .370 

Standard Error of 
Difference 

GLS CRD 

.158 .159 

.154 .159 
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Figure 12 

• A 

• B 

• • • • • • • • 
• • • • • • • • 
• • C • • • .0. • 
• • • • • • • • 

from plot A to B is not v2 but should be averaged over the 
area in both plots. 

'Y(A, B) = S S S S 'Y(h) 
A B 

This can be approximated by using a 4 by 4 grid overlaying 
each plot and then averaging the semivariogram values for the 
162 = 256 resulting points as seen in plots C and D. 
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