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THE EFFECT OF DESIGN AND DOSE LEVEL CHOICE ON ESTIlVJATlNG THE 
OPTIMAL DOSE IN A QUAltTITATJVE DOSE-RESPONSE EXPEPJMENT 

Henry R. Rolka 
George A. Milliken 
James R. Schwenke 
Marta Remmenga 

Kansas State University 
Department of Statistics 

Manhattan, Kansas 66506 

ABSTRACT 

D-optimality is a commonly used criterion to evaluate a design with respect to parameter 
estimation. The variance of the optimal dose estimate is another criterion for evaluating a design. 
The quantitative dose-response experiment involves fitting a model to data and estimating an 
optimal dose. Two techniques for estimating an optimal dose and three models are used to 
compare the variances of optimal dose estimates over nine equally spaced balanced designs and 
five fixed unequally spaced six-point designs. Tne results show that a design which is more D­
optimal than another design does not necessarily produce optimal dose estimates with less 
variance. 

Keywords: Dose-response, optimal design, optimal dose. 

1. U-lTRODUCTION 

The dose-finding trial is a critical element in L1J.e successful development of most new 
pharmaceutical products. The importance of the correct determination of the most useful dose 
or dosage range for a new drug is well documented (Turri, 1986). Several methodologies are 
commonly used, depending on the nature of the product under evaluation. The product focus 
under consideration for the present study is<livestock growth promotion substance. 

In the process of establishing a dose at which to market a new growth promotion drug, 
there are economic and safety factors to consider. The company manufacturing and selling the 
product has the incentive to encourage use at a dose which will enhance the competitive 
marketability of the product. The Federal Food and Drug Administration has explicit regulatory 
responsibility for approving the recommended dose. The FDA is expected by the public to 
carefully consider safety and to discourage excess introduction of manufactured substances into 
the environment. In the process of striking a balance to these inherently conflicting incentives, 
the language and techniques of dose finding evolve. 

Ideally, what is sought is an "optimal dose" such L'Jat any increase in the amount 
prodUCeS no detectable improvement in the gro\\th rate and any decrease produces a dramatic 
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drop in the growth rate. More realistically, an "optimal range" of doses wodd be considered 
such that increasing the dose above the range provides no significant increase in growth rate and 
dosing animals below the range resuits in a significant decrease in the growth rate. In this study, 
the term "optimal dose" will be taken to mean any dose within an "optimal range" as described. 
The term "dose-finding" will refer to any systematic procedure for identifying optimal doses. 
A more extensive discussion of the various "optimal dose" tenns used can be found in Remmenga 
(1991), Turri (1986) and Preclearance Guidelines for Production Drugs (1975). In most 
instances, the characteristics of the product (ie. grov,,'t.'1 promoter, therapeutic agent, toxic vs 
otherwise inert, etc.) determines the nature of the optimal dose and the subsequent dose-flllding 
methodology. A review of these methodologies can be found in Remmenga (1991). 

A concern common to any dose-finding procedure based on data from a controlled study 
is how to decide what levels of dose to evaluate. It is first necessary to obtain a range in which 
the drug is known to be effective near the higher doses and not effective at the low end of the 
range. It is recommended by FDA guidelines that u1is information be obtained during Phase I 
dose ranging studies (Freston 1986). For the present inquiry it is assumed that u~e effective ra.'lge 
of the product is over dosages from zero to three. Therefore, the estimated optimal dose is 
expected to be between 1.5 and 3. It has also been suggested that a zero dose be included with 
three to six non-zero levels (preclearance Guidelines 1975), (Robson 1973). The FDA guidelines 
recommend either equal spacing between zero and t~e highest dose or equal spacing between the 
lowest non-zero dose and the highest dose. It is acknowledged, however, that for some 
situations "conferences should be held to determine the 'best' non-zero levels." This can be taken 
to mean that in some situations th.e response distribution over the dosage range is not totally 
unknown. Conditions simulated in tr'lis study include a zero dose and three equally spaced non­
zero doses, as well as a zero dose with five non-zero doses which are not all equally spaced. It 
is assumed that the form of the underlying response distribution is known (or is well 
approximated by a model) to the investigators. What is sought is a set of values for the 
parameters which best accommodates the data and a subsequent target dose. Since in many of 
the dose-finding techniques the optimal dose is dependent on the model fitting process as well as 
the data, the number of observations at the various dose levels becomes a primary consideration 
in designing a dose-finding experiment. The general goal of the current study is to provide some 
insight into the optimal allocation of the observations in the dose-response experiment. 

2. BA CKGROUlvD 

This study is part of a more comprehensive research endeavor to characterize and 
compare properties of several techniques, models and experimental designs used in dose-finding. 
The Bureau of Veterinary Medicine has established previously referred to guidelines for 
conducting experiments to determine all optimal dose at which to market a new drug. Among 
other things, these guidelines suggest techniques, models and spacing of doses to be used in trials. 
A report on the inquiry into the various techniques and four of the typical models (one linear in 
the parameters and three nonlinear, including spline models) used in dose response studies can 
be found in Remmenga (1991). In t..llat report it was concluded: (i) that the range of response 
does not affect the performance of the estimation technique, (ii) that increasing the population 
standard deviation causes the techniques to produce lower maximum effective dose estimates, (iii) 
that although there are some difficulties associated wit.~ the Mitcherlich model (described later), 
it very likely represents many true dose-response relationships, and (iv) that the model selected 
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to fit the data has a formidable influence on the target dose estimates. Consequently, t).le 
importance of careful model selection is suggested. 

In an attempt to more precisely estimate the parameters of a given nonlinear model, L1e 
concept of "optimal design" enters the picture. The term "design" is defined to be any specified 
allocation of treatments to experimental units (Hedayat 1988). In the dose-response experimental 
setting, the treatments are dose levels and the experimental units are usually the individual 
animals or groups of animals. "Optimal" will be taken to mean "most efficient" or simply "best" 
with respect to estimating parameters in the model. It is important to keep in mind that although 
optimal dose estimation is dependent upon the estimated model parameters, a design which is 
optimal for estimating the model parameters may not be so for estimating the optimal dose. This 
idea is central to this report. 

For arlY modeling situation, it is desirable to incorporate a design which minimizes the 
variance about L1e parameter estimates. D-optimality is a criterion for evaluating a design ~~Tith 

respect to para..T}1eter estimates. Consider a model \viL~ additive error structure: 

and 

. - 1 1 - " ... , n. 

where Yi is the ith response, 

K'j = [XiI' Y'j2, ... ,Xiq] is a vector of known constants, 

fi = US'l, (32' ... , (3p] is a vector of p unknown parameters 
(::.. .. ·h r1 . th 0 rl . ')T 
~ IS dlstrluuteu \-Vl t 1 mean :- anu varIance (j.!.. 

af~., !D 
Let the matrix D have elements d·· = 1 i = 1, ... n; J. = 1, ... p. Note that for the - ~ a~· 

J 
linear model, D is a matrix of constants where for a model nonlinear in the parameters, D 
depends on fi. The design which minimizes r? I O2'.Qyl I (equivalent to maximizing 
r? I O2'm I is said to be D-optimal. Further, a p-parameter model has a D-optimal design with 
p design points. 

Extensive comparisons of optimality criteria can be found in Federov (1972), Pazman 
(1986), and St. John and Draper (1975). Unfortunately, an approach to developing an 
experimental design which simultaneously satisfies all optimality criteria doesn't appear to exist. 
Since the D-optimality criterion compares the results of an experiment over different spacings of 
the independent variable (given the model), it is an appropriate evaluative consideration for 
determining the optimal design in a dose-finding experiment when employing a regression based 
approach. A design is D-optimai if and only if it is G-optimai (St. John and Draper, 1975), 
where G-optimality ensures that the particular design minimizes the maximum variance for any 
predicted value over the range of doses in the design. It has also been documented that designs 
which are D-optimal are nearly optimal with respect to many other criteria (Dodge, Federov, 
Wynn 1988). Hill (1980) showed that when a model is linear in some of its parameters, the D­
optimal design is independent of the values of those parameters. 

An application of the D-optimality criterion for selecting a design to evaluate the grade 
of beef by modeling post-slaughter pH decline is described in Kendall (1990). The nonlinear 
decay model and initial parameter ranges are assumed to be known. An algorithm is successfully 
employed to select design points so as to minimize the variance about u'1e parameter estimates 
using the D-optimality criterion. The procedure seems to work for parameter estimation and 
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maximizing local power for the F-ratio in tests about the parameters (\Vald 1943), but how 
useful is this parameter estimation design criterion in relation to optimal dose estimation? In an 
attempt to answer t.1is question, different models aIld techniques for estimating optimal doses 
were examined over a variety of designs with respect to the variance about optimal dose 
estimations . 

3. METHODOLOGY 

3.1 MODELS 

Three models were utilized in this study. They are: 

(ii) Mircherlich model: y = f30 - f3cJ31 e -{32X + E 

(iii) Linear-Linear Plateau model: 

y = { f3 0 + f31X + E 

f3 0 + f3 j f32 + E , 

if X < f32 

if X ~ f3 2 

These functional forms were selected because they are commonly used for representing 
the quantitative dose response relationship. Parameters for generated response levels were 
selected to represent the stage of a drug evaluation study where the range of doses within which 
the dose that elicits the maximum is located has already been determined (or for the Mitcherlich 
model, the response has at least leveled off near the upper end of the dosage range). Without 
loss of generality, a dosage range of X = 0 to 3 was used and the parameter values selected for 
the simulation portion of the study were based on having responses range from 10 to 20. 

3.2 TECHNIQUES FQR OPTIMAL DOSE ES77MA770N 

In order to assess the effects of design choice on optimal dose estimation, it was 
necessary to select techniques for dose finding. Selection of the techniques was based on results 
of a previous study which compared a variety of such techniques across different models, 
variances and response levels (Remmenga 1991). Two of the techniques that were found to 
perform reasonably well in most cases are the Test for Slope Equal to Zero technique (TSZ) and 
the Lower Limit of the Maximum Response technique (LLM). These two techniques were used 
in this study. 
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The TSZ approach is based on considering an optimal dose to be the dose above which 
no further improvement in growth is obtained. The estimated optimal dose obtained by this 
technique is called X Where the Slope Equals Zero (XSEZ).· The XSEZ is found by fitting a 
model to the data and establishing which dose is such that any further increase in the dose causes 
the slope of the response curve to no longer be significantly different from zero at the a = .05 
level. The TSZ technique is especially useful when a model such as the MitcherlichmodeI" is fit 
which has an asymptotic maximum. Note that in the Linear-Linear Plateau model, the join-point 
is comparable to XSEZ. 

The LLM technique results in the lowest dose which may elicit the maximum response 
of the fitted model. The resulting optimal dose estimate is referred to here as the X Which Elicits 
the Lower Limit of the Maximum Response (XLMAX). The XLMAX is found by first fitting 
the data to a model and then constructing a confidence interval about the maximum of the fitted 
model. Then the inverse of the response function is solved for the dose which elicits the lower 
limit of the confidence interval about the maximum response. That dose is the XL MAX . 

3.3 DESIGNS 

In order to reduce the number of factors to be considered, an assumption was made to 
have a total sample size of N = 60. The number 60 can be factored in a variety of ways which 
enabled comparison of many equally spaced designs. Two general approaches for allocating 
observations were employed. One approach (Method A) divides the design space into increasing 
numbers of segments with decreasing numbers of observations at each design point as shown in 
Table 1. 

The other method (Method B) considers a fixed number of design points at fixed doses 
and varies the numbers of observations at each of the fixed design points as shown in Table 2. 
For example, D13_ 4 is a fixed six-point design which has n = 13 observations at the control 
dose, and doses of 1, 2 and 3, with n = 4 observations allocated at doses of 0.5 and 1.5. 

4. PROCEDURES 

Interest was in exploring design selection for allocating 60 observations in a way that 
maximizes model estimation accuracy, to include testing for lack of fit, as well as precisely 
identifying an optimal dose. D-optimality criteria and the variances about typical optimal dose 
estimators were obtained for the designs produced by Methods A and B and the models shown 
in section 3.1. Without loss of generality, c? was assumed to be one for calculating variances 
about estimators and D-optimality criteria. 

Since the dose which theoretically elicits the maximum in the Mitcherlich model is at 
infinity, the variance about the slope of the response function was used for comparison at am 
arbitrary dose (x = 2) toward the upper end of the dosage range (0-3), instead of using the 
variance about a maximum response. The variance about the join-point was used to compare the 
Linear-Linear Plateau model. For the Quadratic model, the dose that elicits the maximum 
response was obtained directly by setting the first derivative to zero and solving for X. The 
variance about the resulting Xo was then calculated for each design. For the designs in Table 1, 
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three different maximum doses and join-points were used in the Quadratic and Linear-Linear 
Plateau models, respectively. 

The programs were written in GAUSS (Aptech Systems, Inc.) version 2.0 programming 
language and were run on a Compaq Deskpro 386/2Oe personal computer. Copies of these 
programs can be found in Rolka (1991). 

5. FINDINGS 

Since the point at which the "slope equals zero" is comparable in the Mitcherlich model 
to the join-point of the Linear-Linear Plateau model, the variance about the slope at a particular 
dose in the Mitcherlich was compared to the variance about the join-point over the fixed six-point 
designs of Method B. The data were generated by calculating linearized approximations to the 
variance of the slope using f30 = 20, f3 1 = 0.5 and i32 = 1.28 in model (ii). Variances for the 
slope and the D-optimality criteria for the Mitcherlich model are shown in Table 3 for the designs 
produced by Method B. 

The Detill'I2y I gets larger as the number of observations at the intermediate doses (ie. 
X = 0.5 and X = 1.5) increases. If one were to use the D-optimality criterion to select a design 
from the six evaluated, either D15_0, D14_2 or D13_ 4 would be the most likely choices because 
the determinant is the same out to 8 decimal places for those three designs and is smaller than 
the determinant for the other 3 designs. But when considering the minimum variance about the 
slope of the curve as an evaluative criterion, D 11_ 8 performs best. This can be seen clearly in 
Figure 1. 

Table 4 shows the D-optimality criterion and variance of the join-point for the Linear­
Linear Plateau model across the designs of Method B. The parameters used for the 
parameterization shown in model (iii) were f30 = 10, f3 1 = 6.6667 and f32 = Join-Point = 1.5. 
The variance of the join-point was calculated by selecting out the element of ill'Dr! which 
corresponded to the parameter that represented the join-point. For this model, the D-optimality 
criterion decreases with an increasing number of observations at intermediate doses, as does the 
variance about the join-point (see Figure 2). 

Take notice that one of the intermediate doses (ie. X = 1.5) is located at the join-point. 
This raises the question of whether the variance about the join-point estimate would be influenced 
over designs if this were not the case. 

In order to address this question, the Linear-Linear Plateau model was used with the 
designs produced by Method A. (Those were equally spaced and varied the distance from the 
dose that elicited the maximum response (JP) and the nearest design point.) Since the Mitcherlich 
model did not have a tangible value which elicited the maximum response in the dosage range, 
for the sake of comparison across designs of Method A the Quadratic model was used, since a 
'maximum dose' could be easily determined for a given set of parameter values. 

Table 5 shows the join points, number of design points, D-optimality criteria and 
variances about the join-point estimates for the 9 designs produced by method A. 
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Recall that each of L.1e 9 designs were equally spaced and the design points were different 
from design to design. Notice that for the case where the join-point parameter was -1.5 in the 
equally spaced 6-point design, DetQ2'!2t 1 = 0.000003472 ai1d the variance for the estimator 
of the join point = 0.004031250. This design had 10 observations at each of doses 0,0.6, 1.2, 
1.8, 2.4 and 3. The design with 10 observations at doses 0, 0.5, 1, 1.5, 2 al1d 3 (fable 4) with 
the Linear-Linear model having a join-point at 1.5 had DetQ2'm- J = 0.00000225 and a variance 
about the join-point estimator of 0.0027. If the join-point is at 2.5 for the equally spaced 6-point 
design, DetCQ'm- 1 = 0.000003472 and VarGoin-point estimator) = 0.010434028. There were 
differences noted in both the D-optimality criteria and the variances of the join-point estimator. 
Thus the variance of the join-point estimator is not only sensitive to the particular value of the 
estimator at which it is evaluated, it is also dependent on how close to that value an observation 
happens to fall. This finding can be seen in Figure 3. The variance of the join-point is labile 
in the Linear-Linear Plateau model with respect to equally spaced designs when the number of 
design points is less than 10. 

Table 6 sho\vs L~e dose \vhich elicits the maximum response ('1\1ax-Dose'), t.~e number 
of design points, DetQ2'Dyl and VarCMax-Dose' estimator) for Quadratic models with 3 
different maximum response locations for the 9 designs of method A. Figure 4 shows that for 
the Quadratic model the variance of the estimated dose that elicited the maximum response (ie. 
'Max-Dose') depended on the value at which that estimator was evaluated, however, there was 
much more stability with respect to the designs. 

In order to substantiate the patterns of variance changes over designs produced by Method 
B (chnwn in "j:;'j<TI1TOC 1 <lnd '?) a ~l'muI'Otion \"as conrlll ctpn tr. ronr"sent a sorl'os of "'stim<>tinn ~.l v .II. a. J. A. "SUA.. ...... ~ .... '-4-ll'- "-', tJ J U.\'l J..l 'Oi "'~\.oI. '-'""'-"- I,.-V l. ""'1-'11. ""'" J. ... ~ .... __ .......... ..1. .... lo'V''' 

events using the fixed 6-point designs with the Mitcherlich and Linear-Linear Plateau models. 

6. Sf MULA TfON RESULTS 

Mitcherlich data was generated with Po = 20, PI = 0.5 and P2 = 1.28 and random error 
added (at 3 variance levels which were increments of the control mean response: (J = 1.5, 2 and 
2.5) and fit with a Mitcherlich model by a least squares iterative technique. Optimal doses were 
then estimated by the TSZ and LLM techniques. Similarly, the process was applied to the Linear-

Linear Plateau model with Po = 10, Pl = 59° and P2 = join-point = 1.8. One thousand cases 

were generated for each model/design/variance combination. The cases for which a lack of fit 
test for the estimated model was significant at the .05 level were deleted. If the optimal dose 
estimates were greater than 4, missing 'values were assigned. This was done based on the 
assumption that the effective range of the drug had already been identified and if the optimal dose 
was so far above the identified range, the dose ranging study should be repeated using larger 
doses. If the optimal dose estimates were between 3 and 4, they were set to 3 (since the response 
data was generated over the range of dose values 0 to 3 and FDA guidelines would not approve 
a dose above the range of tested doses). The resulting sample sizes are shown in Table 7. The 
data generating programs, model fitting schemes with the optimal dose estimation programs can 
be found in Rolka (1991). The programs were adapted from a precursor to this study reported 
on by Remmenga (1991). She includes a comprehensive evaluation of the performance of the 
original programs in that paper. Figures 5, 6, 7, and 8 show the patterns of the optimal dose 
estimation variances over the 6-point designs of table 2, for the 2 models and 2 optimal dose 
estimation techniques. The patterns of L.'le variances generally support what was shown earlier; 
that are summarized in figures 1 and 2. There is less variance about the optimal dose estimates 
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for the Linear-Linear model than for the Mitcherlich model. It appears that variances about 
estimates are generally lower as the number of observations at the intermediate doses increases. 
The exceptions are for going from 8 to 10 observations at intermediate doses with the 
intermediate variance increment and the Linear-Linear model. Tl1ere is a slight increase noted. 
Also, for the higher variance increment, D12_6 does worse than D13_ 4 in each case. 

7. CONCLUSIONS 

A design that is more D-Dptimal than another design is not necessarily more efficient or 
better for estimating the optimal dose in a quantitative dose-response study. It was shown t,1at 
if N = 60, the Mitcherlich model with t.~e given set of parameters can adequately describe the 
data and an optimal dose is being estimated by the TSZ technique, the 6-point design with 8 
observations at 'intermediate' doses should be considered to minimize the variance about the 
slope. If the Linear-Linear Plateau model could be considered reasonable to represent some true 
state of nature, selection of a ~good' design for estimating the join-point depends on k_T10\ving 
where the join-point is located! The Quadratic model showed a stable pattern of variance about 
the dose that elicits the maximum response, over designs which increaSingly departed from t'le 
most D-Dptimal 3-point design. 

In summary, the true nature of the dose-response relationship, the form of the model 
under consideration and the region of the parameters of the selected model (if nonlinear) are 
factors in selecting a design to estimate an optimal dose. Increments of information that become 
available on any of l~ese factors in the process of dose ranging studies should be used to re­
evaluate the choice of design for the optimal dose estimation trial. 

*This project was partially supported by the Upjohn Company and the Animal Health Institute. 
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Table 1. Designs Produced bv Method A 

Number of Design Points 

3 4 5 6 10 15 20 

20 15 12 10 6 4 3 

Number of Observations 

Table 2 Designs Produced bv Method B 

D 
E 
S 
I 
G 
N 

f 

DI50 

D14 2 

D13 4 

D12 6 

Dll 8 

DJO 10 

0 

15 

14 

13 

12 

11 

10 

I 

0.5 1 

0 15 

2 14 

4 13 I 
6 12 

8 11 

10 10 

30 

2 

1.5 

0 

2 

4 

6 

8 

10 

Number of Observations 

6.0 

1 
1 

--, 
2 3 

15 15 

14 14 

13 13 

12 12-J 

11 11 

10 10 

Table 3. Ootimalitv Criteria for Mitcherlich Model over Desifms ProductJd bv Method B . . -'--'-

DET([2,[))-l 
A 

DESIGN VAR(Slope) 

DI5 0 0.00000009 0.03719762 
-----

D14 2 0.00000009 0.03523011 
-

D13 4 0.00000009 0.03389168 
-

D12 6 0.00000010 0.03306200 

Dl1 8 0.00000010 0.03160224 

DIO 10 0.00000011 0.03270008 
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Table 4 ODtimalitv Criteria for Linear-Linear Plateau Model over Designs Produced !/v 

Method B 

A 
DESIGN DET([2 '12)-1 VAR(]oin-Point) 

D15 0 0.00000333 0.00450000 

D142 0.00000283 0.00373491 

D13 4 0.00000254 0.00327374 

D126 0.00000237 0.00298295 

Dll 8 0.00000237 0.00290994 
I I 

DIO 10 0.00000225 0.00270000 

Table 5 ODtimalitv Criteria for Linear-Linear Plateau Model over Designs Produced bv 
Method A 

JOIN I DESIGN I A 
POUlT POINTS DET([2 '!2y1 F ARC] oin - Point) 

1.5 3 0.000001250 0.002250000 

2.0 3 0.000002222 0.005777778 

2.5 3 0.000003472 0.013194444 

1.5 4 0.000003333 0.004500000 
I 

2.0 4 0.000001975 0.004888889 

2.5 4 0.000003086 0.010243056 

1.5 5 0.000001929 0.002500000 

2.0 5 
I 

0.000003429 0.007407407 

2.5 5 0.000003215 0.010011574 

1.5 6 0.000003472 0.004031250 

2.0 6 0.000002778 0.005688889 

2.5 6 0.000003472 0.010434028 

1.5 10 0.000003750 0.003843750 

2.0 10 0.000002834 0.005317460 

2.5 10 I 0.000003875 0.010478671 
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JOIN DESIGN I 
POL\TT POINTS DET(J2 'J2;-l V ARCJ oin - Point) 

1.5 15 0.000003255 0.003147321 

2.0 15 0.000003300 0.005831650 

2.5 15 0.000004131 0.010665550 

1.5 20 0.000004052 0.003772727 

2.0 20 0.000003588 0.006186406 

2.5 20 0.000004267 0.010765591 

1.5 30 I 0.000004172 0.003760045 

2.0 30 0.000003513 0.005908104 

2.5 30 0.000004493 0.011058360 

1.5 60 0.000004302 0.003752503 

2.0 60 0.000003628 0.005952053 

2.5 60 0.00000464 3 0.011152128 

Table 6 Omirnafitv Critoria for Quadratic Model over Desi)!ns Produced bv Method -4 v 

DESIGN A 
'MAX-DOSE' POINTS DET(J2 ,wo1 VAR(Slope) 

1.5 3 0.000002743 0.000041088 

2.0 3 0.000002743 0.000320073 

2.5 3 0.000002743 0.002243953 

1.5 4 0.000003704 0.000049306 

2.0 4 0.000003704 0.000370370 

2.5 4 0.000003704 0.002551020 

1.5 5 0.000004645 0.000054785 

2.0 5 0.000004645 0.000415152 

2.5 5 0.00000464 5 0.002871960 

1.5 6 0.000005468 0.000058698 

2.0 6 0.000005468 0.000451124 

2.5 6 0.000005468 0.003142378 

1.5 10 0.000007748 0.000067236 
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I 
I 

DESIGN /\. 
'M4X-DOSE' POINTS DET([2 '12)"1 VAR(Slope) 

1.5 3 0.000002743 0.000041088 

2.0 10 0.0000077 48 0.000540123 

2.5 10 0.000007748 0.003841025 

1.5 15 0.000009314 0.000071905 

2.0 15 0.000009314 0.000594887 

2.5 15 0.000009314 0.004286036 

1.5 20 0.000010237 0.000074350 

2.0 20 0.000010237 0.000625356 

2.5 20 0.000010237 0.004537556 

1.5 30 0.000011268 0.000076875 

2.0 30 0.000011268 0.000658139 

2.5 30 0.000011268 0.004810954 

1.5 60 0.000012422 0.000079482 

2.0 60 0.000012422 0.000693466 
I 

2.5 60 0.000012422 0.005108483 

Table 7 Sample Sizes and Om/mal Dose Estimation Means for Simulation 

I Mitcherlich Linear-Linear 

- - - -
DESIGN SIGMA n XSEZ n XUJAX X SEZ X LVlAX n XSEZ n XLMAX XSEZ X LMAX 
-

DIO 10 1.5 719 954 2.963 1.963 966 966 1.817 1. 711 

Dl1 8 1.5 684 931 2.958 1.979 950 950 1.813 1.712 

D12 6 1.5 690 945 2.948 2.005 957 957 1.816 1.719 

D13 4 1.5 717 942 2934 2.008 947 947 l.816 1.722 

D14 2 1.5 727 953 2.908 2.025 962 962 1.821 1.730 

D15 0 1.5 744 939 2.894 2.041 953 953 1.831 1.739 

DI0 10 2.0 923 953 2.734 1.734 958 958 1.827 1.684 

Dll 8 2.0 927 954 2.716 1.751 965 965 1.824 1.687 

D12 6 2.0 926 955 2.689 1.760 967 I 967 1.817 1.685 

D13 4 2.0 913 951 2.672 1.795 960 960 1.829 1.700 

D14 2 2.0 913 947 2.648 1.811 958 958 1.837 1.711 

D15 0 2.0 905 938 2.555 1.792 I 959 959 1.834 1. 708 
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Mitcherlich Linear-Linear 

- - - -
DESIGN SIG}'/~ n XSEZ n XLMAX X SEZ X LMAX n XSEZ n XLMAX XSEZ X LMAX 

DIO 10 2.5 939 939 2.391 1.537 957 957 1.819 1.637 I 
I 

Dll 8 2.5 939 943 2.397 1.570 96;5 966 1.834 1.655 I 
D126 2.5 947 956 2.361 1.580 956 956 1.839 1.667 

D13 4 2.5 944 948 2.365 1.604 958 958 1.848 1.681 

D142 2.5 935 939 2.320 1.611 954 954 1.843 1.683 

D15 0 2.5 953 958 2.276 1.621 966 966 1.858 1.694 
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VARIANCE OF SLOPE PLOnED ACROSS DESIGNS 
MITCHERLICH MODEL: 80=20 81 =0.5 82= 1.28 
DOSE RANGE: 0-3/ SLOPE EVALUATED AT DOSE = 2 
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fiGURE 1 

VARIANCE OF JOIN-POINT PLOnED ACROSS DESIGNS 
LINEAR-LINEAR MODEL: MAX. RESPONSE=20 
DOSE RANGE: 0-3 / JOIN-POINT DOSE = 1.5 
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V';Ri.';NCE OF JOI,N-PO!I'.)! PLonED ACROSS CESiG~~S 
UNEAR-UNE.AR MODE~: U0(. RESPONSE-20 DOSE RANGE: 0-3 
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FlGURE 3 

VARIAI~CE OF 't\~~YI1vjUi'v1 DOSE' PLonED ~,CROSS DESIGNS 
QUADRATIC f,J,ODEL: MAX. RESPONSE~20 DOSE PPJjGE: 0-3 
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RESULTS FROfJr SlkIULt\TION: 5-POINT DESIGNS 
'SLOPE = 0' OPTllviAL DOSE ESTlfvt<'lTION TECHNIQUE 
MITCHERLICH MODEL: 80=2081 =0.5 82= 1.28 
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RESULTS FROM SIMULATiON: 6-POINT DESIGNS 
'S~OPE = 0' OPTIMFL DOSE ESTHviATION TECHNIQUE 

LlNEAR-LlNE,bR fviODEL: JP = 1.8 
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FIGURE 7 

RESULTS FROM SI~viULATION: 6-POINT DESIGNS 
'MAX RESPONSE' OPTIf.1AL DOSE ESTIMATION TECHNIQUE 

Lli'~E/lR-LiNEAR MODEL: JP = 1.8 
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