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MuLTI-PRODUCT DRY HILLING YIELDS PREDICTION 
WHEN PRODUCTS ARE NOT INDEPENDENT 

Aziz Bouzaher and Alicia L. Carriquiry 
Iowa State University 

Abstract 

The yield of products in the dry milling industry is largely 
determined by the physical properties of the corn kernel. The main 
objective of this paper is to investigate several statistical models of 
dry milling yield prediction based on physical characteristics of corn. 
Data consisting of one hundred corn samples representing a range of 
genetic traits and quality differences are used. For each corn sample, 
sixteen physical and chemical properties together with six dry milling 
product yields were measured, in a controlled laboratory environment. 

For each corn sample, we consider a vector of dry milling product 
yields, and a vector of physical corn characteristics. Several single 
product models are investigated, two of which implicitly take into account 
the simplex sample space of product yields. A multivariate model is 
considered which consists of mapping the sample space from a simplex to 
unrestricted Euclidean space. Comparisons are performed using a j ack
knife like approach. 

Keywords: Dry milling, Quality characteristics, Yield prediction, 
Production function, Linear models, Compositional data, Cobb-Douglas, 
Translog, Continuation ratios, Jack-knife, Multivariate analysis. 

1. INTRODUCTION 

The dry milling industry in the United States consumes approximately 
160 million bushels of corn annually (USDA 1982). It is an important link 
in the food chain linking farmers to consumers. The yield of dry milling 
products is largely determined by the physical properties of the corn 
kernel. Kernels with a high proportion of hard vitreous endosperm and 
minimum of internal stress cracks provide the highest yield of the more 
valuable flaking grits. Larger kernels, ease of separation of the germ 
and endosperm, and a minimum of bran also increase the yield of larger 
grits. Most of these traits, with the exception of stress cracks, are 
genetically determined. Although some dry milling firms contract with 
growers to control variety and handling practices, most continue to buy 
No.2 corn in the market and to search for measurement technology to 
determine desirable physical properties. If some easily measurable 
quality traits are found to be reliable predictors of dry milling yields, 
corn with those quality traits could be bred and the market would be used 
to segregate corn on the basis of its potential yield of products. 

This paper develops and compares several models for predicting the 
yield of dry milling products from easily measured physical 
characteristics. Dry millers can use these measurements to select the 
corn best suited to meet their contract requirements. The quality of corn 
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to produce maximum grit size differs from corn that produces maximum white 
goods with fewer flaking grits. Such a model will open the door to an 
economic evaluation of individual quallty characteristic which will 
indicate the premiums that could be paid to farmers for producing 
different corn varieties. Farmers will in turn encourage plant breeders 
to invest more research toward corn suited for dry milling. 

For the dry milling industry, non-uniform stream of incoming corn, 
in addition to fluctuations in its intrinsic properties, requires 
continuous adjustments in mill technology and implies wide variations in 
the yield of milling products. Identifying the characteristics that 
determine the yield of primary products could reduce maintenance and set 
up costs for the dry milling industry and introduce price efficiency in 
the industrial corn market. Early work by Ladd and Martin (1975) pointed 
to the importance of not assuming product homogeneity. They developed an 
economic model for evaluating the current corn- grading system. 
Manoharkumar et al. (1978) were among the first to seek to relate milling 
perforITtance and physical and chemical characteristics using laboratory 
experiments; they reported mainly correlatlons among the various 
measurements. Other research identified a positive relationship between 
densi ty and dry milling yield, and a negative relationship between 
breakage susceptibility and the yield of dry milling products (Paulsen and 
Hill 1984, Pomeranz et al. 1986, and Stroshine et al. 1986). However, all 
this research was essentially confined to revealing important correlations 
between some corn products and individual physical traits, with no attempt 
at developing a statistical yield prediction model. Initial 
investigations of such an approach were conducted by Bouzaher (1987). 

The research proposed in this study provides an extension of 
previous research by simultaneously including all dry milling products and 
a significant number of measures of quality, using a data set built 
specifically for this purpose. 

The paper is organized as follows. In section two we present the 
data set and describe the response variables and the set of potential 
yield explanatory variables. In section three we present various 
univariate models, including two models that attempt to implicitly account 
for the sample space restriction. In section four we present a 
multivariate approach based on compositional data theory. In the 
concluding section we discuss the merits of the various models and 
summarize our findings. 

2. DATA DESCRIPTION 

A very unique data set was collected over a period of two years for 
the purposes of estimating a model of product yield prediction from 
measured quality characteristics. In all, one hundred samples were 
collected. Thirty two samples of flint and dent inbred crosses planted at 
two locations with a high and low nitrogen application rate were selected 
to provide a wide range of genetic differences in percent of hard 
endosperm. An additional ten samples were obtained from superior 
varieties selected by a dry milling plant. Thirty nine more samples were 
provided by a commercial corn breeder, selected to represent a range of 
genetic characteristics and quality differences related to dry milling. 
Finally, nineteen samples were collected from farmers and elevators, most 
of them consisting of a mixture of different varieties and a range of 
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harvesting and drying practices. 
A set of seventeen physical and chemical tests were performed on 

each of the samples, in the Agricultural Engineering Laboratory at the 
University of Illinois: Test Weight (TW,lbsjbushel), Wisconsin Breakage 
(WBT, susceptibility of corn to breakage, %), Stein Breakage (STEIN, a 
different test for breakage susceptibility, X), Moisture content (MOIST, 
%) Stress Cracks (SCI, measures extent of high temperature drying on a 
scale from 1 to 5), Density (DENS, ethanol column test, grm/cm3 ), Floaters/ 
sinkers (FLO/SINK, indirect measure of density, %), four Stenvert 
measurements (based on a grinding resistance test; STIME, time to grind; 
SCMF, ratio of coarse to medium + fine; SCF, ratio of coarse to fine; 
S3550, column height at 3550 r.p.m.), Pycnometer (PYCN, another density 
test, grm/cm3 ), Starch, Oil, Protein, and Moisture contents by Near 
Infrared Reflectance (NSTAR, NOlL, NPROT, NMOIST; %), and percent flint 
(FLINT, percent inbred with dent varieties). 

In addition, each sample was dry milled in a short flow pilot 
mill the in the Department of Food Science at Purdue University to obtain 
a product distribution similar to that obtained from commercial mills. 
Products were separated by flaking grits, brewers' grits, meal, flour, 
oil, and feed (Table 1). The yield of each of the six products is 
reported as the percentage of the total milled corn sample retained on a 
sieve of a specific mesh size. 

Table 2 summarizes all the correlations between product variables 
and explanatory physical variables (correlation values higher than ABS ( .5) 
are shown in bold). Similar correlations between the physical variables 
reveal, as expected, a high degree of association between several 
variables, and in particular, the various density measures. Figure 1 
presents a 3-dimensional scatter plot of the yield data where the 
variables plotted are percent grits (FG + BG + MEAL), percent flour 
(FLOUR) and percent oil (OIL). We notice the absence of observations with 
low flour-low grits and high flour-high grits; this is because of the 
complementarity between the two types of products within the corn kernel. 
More details and descriptive analysis of the data set can be found in Hill 
et al. (1990). 

Consider the corn multiproduct yield data in this study. If the 
yield of each of the six products shown in Table 1 is expressed as 
percentage of total yield in each of the 100 corn samples, then the data 
are a composition, in the sense of Aitchison (1986). A composition 
consists of observations on the same experimental unit, which are positive 
and add up to 1. Other instances in which data are compositions are 
household expenditure data, geoc6emical composition of rocks, and feed 
rations. 

Compositional data have certain characteristics which must be 
addressed in the statistical analysis. The most important refers to the 
compositional sample space. Clearly, the appropriate sample space for the 
elements of a composition is a restricted part of real space called a 
simplex. We define the simplex as a set in which each element of the 
composition is positive, and the sum of all elements equals one. We give 
a formal definition of a simplex in the next section. 

Exploratory analyses of these data showed that correlations are high 
among several quality characteristics. It is therefore expected that 
severe multicollinearity problems may arise when the correlated variables 
are used as predictors in a model, causing an increase in the sampling 
variance of estimators. The problem of multicollinearity can be addressed 
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in various ways; in the present study, we chose a subset of the 
explanatory variables which did not exhibit high pairwise correlations, 
recognizing that this is not an in-depth treatment of the problem. 

3. UNIV~~IATE MODELS 

In this section we present five individual product models and 
discuss their relative predictability. 

3.1 Model specification 

we let xp represent the n x 1 vector whose elements are the yields 
of dry milling product p (p=l, ... ,D) and Wq the n x 1 vector with elements 
equal to the value of quality characteristic q (q=l, ... ,Q). Here, n=lOO 
observaLions, V=a products and Q=16 quality traits. The ith observation, 
then, consists of the vector pair (x, w). we then consider the following 
models: 

1. Univariate linear model on each xp (p=l, ... ,D): 

( 1) 

2. Restricted Cobb-Douglas on each xp (p=l, ... ,D): 

'{""'O 0: = 1, 0: ~_ > 0 
L...Jy-l q ~ 

(2 ) 

3. Translog model on each xp (p=l, ... ,D): 

E[log (Xp )] = 0: 0 + 0:11og (WI) + . 

(3) 

4. Univariate linear model on each log of continuat; on ratios 
(following Fienberg, 1977): 

~-2 
1 - J ,.; X· 

L-I]=1 ] (" ) 

5. Univariate linear model on logratios yp (p=l, ... ,D-l): 

with the logratio transformation: Yp 
X 

= log (--E) f p=l, " . D I D-l : 
x D 

(5 ) 
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The linear model is the easiest to estimate and interpret. the 
continuation ratios model and the linear model on logratios were chosen 
because they implicitly account for the interdependence between product 
yields, and the restriction in their sample spaces. The Cobb-Douglas and 
Translog models were chosen from a restricted class of functions to test 
the hypothesis that the relationship between products yields and quality 
traits can be described in terms of an economic "production function" 
whereby physical traits are used as inputs (like labor, capital, and raw 
materials) which are transformed into dry milling products (see for 
example, Chalfant, 1984; Chambers 1989; Mittelhammer et al., 1981). The 
interest in describing the underlying production technology by a 
statistical yield prediction model, if successful, can produce very rich 
information for further analysis of the existence of a market for quality 
traits in corn. The major restrictions embodied in the production 
function models, which are that of positive monotonicity and quasi
concavity in the input variables, essentially stipulate that (i) 
additional units of any input can never decrease the level of output and 
(ii) as the utilization of a particular input rises, holding all other 
inputs fixed, the associated marginal increment in output cannot increase. 

All models were estimated using SAS Stepwise or SAS GLM. The usual 
residual diagnostics were performed to verlty model validity. 
Multicollinearity among regressors was tested using a method by Belsley et 
al. (1980) and by inspection of variance inflation factors. In polynomial 
models, mul ticollineari ty was reduced by centering regressors, around 
their mean, and by inclusion of a subset of the explanatory variables in 
each model. 

3.2 Model predictability 

Predictability of each model was assessed by a jack-knife-like 
approach (Efron, 1981). For each model and each product, a predicted 
value for the ith observation was obtained by fitting the model to the 
remaining n-l observations. The "best" model for each product was the 
model with the smallest 0, where 

The analysis conducted consisted in first estimating 30 separate 
models (5 model types and 6 products). Very quickly it became clear that, 
because of the non-independence between products, no good models were to 
be obtained for all products separately, and in particular, for brewer's 
grits and oil. A grits variable was defined (as Grits = FG + BG + MEAL) 
to correspond to the total amount of the premium products which are 
extracted from the vitreous (hard) part of the corn kernel. A summary of 
the predictability of the best models is given in Table 3 for Grits. 
Similar information was obtained for flour. 

In both cases, relative model rankings were the same wi th the "best" 
model being the translog, closely followed by the general linear model. 
These two models indicate that the most important physical characteristics 
which are COIT~on to the prediction of both grits and flour yields are: 
Stein breakage susceptibility (STEIN), stress cracks index (SCI), 
pycnometer (PYCK), and NIR-oil (NOlL). Traits which appear to be 
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significant in the prediction of flour alone are: SCF and SCMF (both 
Stenvert hardness measures). Only one trait appears to be significant in 
the prediction of grits alone: test weight· (lw); this corroborates 
previous findings (Bouzaher, 1987). Surprisingly, none of the four 
Stenvert tests, designed to measure various aspects of hardness, appear to 
be significant in the prediction of grits; these tests were shown to be 
good predictors of hardness by cereal chemists (Pomeranz et al. 1986, 
Kirleis 1987). 

4. A COMPOSITIONAL DATA APPROACH 

In this section we present a different approach to predicting dry 
milling yield from quality traits. We develop a model based on 
Aitchison's (1982, 1986) compositional data approach which was used mostly 
to analyze data pertaining to the geochemical composition of rocks, but is 
also applicable to any compositional data which has "the intrinsic feature 
that the proportions of the composition are naturally subject to a unit
sum constraint." (Aitchison 1986, p. xiii). We first present some 
relevant theoretical background, largely drawn from Aitchison (1986), 
before applying the approach to our data set. 

4.1 Theory 

A D-part composition is defined as a 1 x D vector x, with: 

Xp > 0, p == 1, . . . ,D, . ~ 1 ana ~ Xp = 
~p=l 

In our application, xp represents the proportion of dry milling products 
in a given sample. Subcompositions can be defined for any subset of a D
part composition which are then normalized to form new compositions in 
lower dimensional space. As an example of a subcomposition, consider the 
one defined as grits. Then a new composition is formed with grits, flour, 
oil and feed. 

In the preceding section, it was argued that the appropriate space 
for D-part composition is a simplex, and an informal definition of a 
simplex was given. The 6-part dry-milling product composltlon is 
completely determined given knowledge of any 5 of its products. Here, we 
give a more precise definition. The sample space for D-part compositions 
is a d = D - 1 dimensional simplex embedded in a D-dimensional real space. 
It is the set: 

Xp > 0, p=l, ... ,D; ~ X 
L....P=l P 

Difficulties associated with compositions 

1 

An obvious difficulty which is encountered when trying to fit the 
usual univariate regression models to each of the products, is that each 
product yield (expressed as a percentage of total yield) must be between 
o and 1. This clearly makes the usual assumption of normality untenable. 
Furthermore, univariate modeling of individual product yield may lead to 
hardly believable predictions, as would be the case if the sun'l of 
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individually predicted yield percentages were larger than 1. These two 
problems follow from the sample space restriction. 

Other difficulties associated with compositional data can be pointed 
out: 

1. The high dimensionality of compositions makes conclusions about 
the multivariate pattern of variability hard to ascertain. In particular; 
examination of the data in lower dimensions, by projection, may 
constitute, at best, a partial analysis. In addition, graphical 
interpretation of data patterns, as traditionally done in unrestricted 
Euclidian space, may be highly distorted due to the unit-sum constraint. 
The multiproduct yield data highlighted in this study, while consisting of 
only 100 observations, does not easily lend itself to traditional methods 
of exploration. Difficulties arise due to the number of elements in the 
compositions, (in this case, six). 

2. The absence of an interpretable covariance structure when using 
the usual covariance or correlation estimates among components of the 
composition. Three main problems are noted: 

(i) Negative bias of correlations. 

Since LXp = 1 f and since cov(xp' LXp) = 0 

D 

L Cov(xp ' x j ) = -Var (Xp ) 

y"p 

Thus there will be at least one negative covariance element in each row of 
the matrix C (Cov(xp,x j ); p,j =1, ... ,D), posing serious interpretation 
problems. 

(ii) Subcomposition inconsistencies due to relation between the 
usual covariance matrix of a subcomposition and that of the full 
composition. The magnitude, sign, and rank ordering of the covariance 
associated with two specific parts can change erratically as we move from 
full composition to lower dimensional subcompositions (see Tables 4a and 
4b) . 

(iii) Basis difficulty. No relationship between the usual 
covariance of a composition and the covariance matrix of its basis (e.g., 
the basis of the dry milling composition is made up of the original 
product data, in pounds, before it is expressed as a set of proportions). 

3. Difficulty of parametric modeling for studying compositional 
variability patterns, in the absence of "rich" families of distributions 

over the simplex sample space S d. Clearly, random variables which are 
restricted to the interval [O,lJ as the elements of a composition are, 
cannot be assumed to follow a distribution such as the normal 
distribution. Only the Dirichlet class of distributions, based on 
independent, equally scaled gamma-distributed components, are defined over 

Sd. However, Aitchison (1986), points out major limitations of the 
Dirichlet class for the analysis of compositional data due to the fact 
that "every Dirichlet composition has a very strong implied independence 
structure" (p. 60). 

Because of the many difficulties briefly discussed, the following 
transformation of the original compositional data will enable us to arrive 
at a more meaningful analysis of the patterns of variability in any 
composition in general, and in the dry milling data in particular. The 
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transformation we describe in what follows maps the data from the simplex 
into unrestricted Euclidean space, allowing then the use of distributions 
such as the normal distribution as a model. In addition, the richness and 
flexibility of the multivariate normal family of distributions will be 
available for llnear modeling and hypothesis testing about the 
relationship between dry milling yield and physical characteristics. 

Consider the Log ratio transformation: yp = log(xp/xj ). p F j, 

Covariance structure 

The covariance structure of a D-part composition 1,S given by 
0ij.kf = Cov(log(xjxk). log(xj/x,»), i,j,k • ..e = 1 .... ,D 

where only r1dD of these covariances can be independently assigned (which 
is the same number of covariances as in the case of an unrestricted d
dimensional random vector) . These Log ratio cbvariances are completely 
determined by the 2- 1dD logra tio variances: f ij = var (log (xjXj) ) , i = 1 •... , 
D-l; j=i+l, ... , D, where fij measures the variability of component Xi 
relative to component Xj. 

In addition. and letting ~ij E(log(xi/Xj»). for aD-part 
composi tion. it is possible to construct, the composi tional variation 
array. The compositional variation array is defined as the matrix T = 

(~ij\fij) with zeros on the diagonal, variances above the diagonal, and 
means below the diagonal. 

Logratio covariance matrix 

~~ile the variation array just described is very useful for 
describing patterns of compositional variability, it is necessary to be 
able to fully describe the covariance structure of a composition. Let: 

0ij = 0ij.DD = Cov(log(xjxD), log(xj/xD») for i,j = 1, ... ,D-l 
The matrix 2: = (oij; for all i and j) is a (D-l) x (D-l) logratio 
covariance matrix which determines the covariance structure through the 
relationships: 

2: is then the variance-covariance matrix of the (D-l) x 1 vector y = (Yi 
= log(xjxD)}' i = 1, ... , D-l. 
Notes: From the definition of the logratio covariance matrix, we have: 

(i) y ( Rd , since the transformation x ( Sd ... Y = log(x_D/xD) I': Rd , 

is one-to-one (where X-D is the vector x without component D). 
(ii) The negative bias difficulty is eliminated. 
(iii) The basis difficulty is eliminated by the existence of a 

direct and exact relationship between the covariance structure of any 
composition and that of its underlying basis. 

(iv) 2: is invariant under the group of permutations of the parts of 
the compositions. thus making any statistical analysis invariant to the 
choice of the composition anchor or component divisor. 

(v) The covariance structure of subcompositions is readily available 
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only in the case of the variation matrix T (use Ts = STS'., with S being a 
selection matrix of O's and l's). For the case of the logratio covariance 
matrix, construction of ~s from ~ is possible but'nontrivial (see Aitchison 
1986, equation 5.24, p. 101). 

The additive logistic transformation 

Transformations, such as power transformations, are often used to 
obtain data which are normally distributed. This is, of course, due to 
the fact that there exists a large battery of procedures which can be 
easily applied to normally distributed data. We use a transformation 
presented by Aitchison (1986) termed the logratio transformation. The 
logratio transformation used to resolve the difficulties associated with 
the usual covariance structure of compositions is also used to find a rich 

and flexible parametric class of distributions on Sd to study variability 
patterns in the simplex sample space. 

Following Aitchison (1986, p. 113), a D-part composition x is said 
to have an additive logistic normal distribution ~d(~, ~) when y = log(x_ 
D/XD) has a Nd(~,~) distribution (we note that ~ is precisely the logratio 
covariance matrix defined in the previous section). 

We then have available, through this transformation between 
compositions and logratios, the whole battery of statistical procedures 
based on multivariate normality, assuming that the logistic normality 
assumption of compositions is a valid one. In this paper we are of course 
concerned with linear modeling of the mean for analyzing the dependence of 
product yield composition on physical trait variables. 

4.2 Compositional Variability Analysis 

Tables 4a and 4b give the usual covariance matrices for the full 
six-part product yield composition and for the four-part subcomposition 
obtained by defining a grits component as GRITS = FG + BG + Meal. 
Inspection of these covariance matrices illustrates the negative bias and 
the subcomposition inconsistencies discussed previously. 

In addition, from the variation array of the six-product 
composition, given in Table Sa, we observe the following: 

(i) the largest relative variation between product yields is between 
FG and Flour with 1'FG,Flour = .30; i,n addition, ~FG,Flour = 0.96 with ~FG,Flour 
> 1'FG,Flour indicates that the percentage of FG yield is consistently larger 
that that of Flour yield (this observation is corroborated by the fact 
that a large number of the corn samples collected were known to have high 
density with the potential for high FG yield). 

(ii) the smallest relative variation between product yields is 
between Meal and Flour with 1'Meal,Flour = 0.019; in addition, ~Meal,Flour = 

-0.337 and ~Meal Flour < 1'Meal Flour indicates that not only Meal yield tends 
to be smaller than Flour yi~ld, but that is the case for a large number of 
corn samples. Again, these conclusions are corroborated by inspection of 
the data. 
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4.3 Logratio Linear Modelling 

We now use the compositional data framework for exploring several 
dry milling yield prediction logratio linear models. To conduct this 
analysis, we have used the micro-computer software package CODA developed 
by Aitchison as a companion to his book on compositional data. However, 
we should note that an important limitation of this package as currently 
configured is that it can only handle data sets with a maximum of 10 
part-compositions, 10 covariates (explanatory variables), and 100 
observations. This limitation can be avoided by using other statistical 
packages such as SAS, since the anaylses on the logratio transformed data 
is the usual regression-type analyses. Unfortunately, clear, informative 
graphical analyses, included in CODA are not yet available elsewhere. 

Estimation of ~ and L 

With the assQmption that 
variabili ty is of :£d (fJ-, :6) form, 
logratio data matrix 

the pattern of dry milling yield 
the estimation of fJ- and :6 from the 

Y = [Yl"" ,YdJ with (Yi = log(xi/xD); i = 1, ... , d=D-l} is given by: 

where n is the number of observations and z' denotes the transpose of 
vector z. For the full six-product composition, we have: 

E(y) = [0.290, 0.733, -l.007, -0.670, -2.208J 

2.229 0.702 -0.007 -0.237 0.060 
0.702 0.573 0.214 0.101 0.055 

2:: -0.007 0.214 0.265 0.183 0.102 
-0.237 0.101 0.183 0.294 0.005 
0.060 0.055 0.102 0.005 0.251 

L ~ 

For the grits four-product composition, we have: 

E(y) [1.349, -0.670, -2.208J 

l 7.462 -0.265 0.640 

J -0.265 2.293 0.050 
:E 0.640 0.050 2.515 

Logratio Linear Models 

Let W represent a matrix of covariates, and assume: f(xlw) - :£d 

(1,...'{3, :6), then [YI"" ,Ydl = Y = WfJ + E, where the rows of the error matrix 
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E are assumed independent and each row is distributed as Nd(O, ~) 
To estimate specific models and test hypotheses about various 

parametrizations, we need an estimation of the parameter matrix p and the 
error logratio covariance matrix L. The estimation can be done either by 
maximum likelihood under the normality assumption or by multivariate least 
squares. 

Let x = [xl = GRITS, x2 = Flour, X3 = Oil, X4 = Feed]. Then: 

log (GRITS/Feed) , Y2 = log (Flour/Feed) , Y3 = log(Oil/Feed)] 

Tests for normality of marginal distributions of y lead to accepting 
the underlying model assumptions. 

From the results on univariate models, we restrict the set of 
covariates (regressors) to the most important physical traits in 
predicting dry milling yield; these are: !W, STEIN, PYCN, SCI, and SCMF. 
We then specify the following model for the ith observation: 

[YI' Y2, Y3] = 01 + 02TW + 03STEIN + 04 PYCN + 0sSCI + o5 SCMF 
+ 07Tw2 + 0sSTEINz + oglog(TW) + [el, e2, e 3 ] (6) 

where 0i (i=l, ... ,9) are (lx3) dimensional parameter vectors. 
We adopt Aitchison's approach of testing a lattice of hypotheses 

from this standard model to determine a "best" model; each member of the 
lattice corresponds to a simple reparametrization of the standard model. 
The advantage of this approach is that a generalized likelihood ratio test 
of a hypothesis "h" within the standard model "m" is readily available 
once the residual matrices Ru, and Rh are estimated (detailed development 
of these tests are in Aitchison, 1986, pp. 162-166). Figure 2 (where IRh 
I is the residual determinant of model "h" and Ph is the associated 
significance probability) gives the lattice of hypotheses tested within 
model (6). Starting at level 1 we rej ect the hypothesis of random 
variation with no dependence on quality traits because of a negligible 
significance probability. At level 2, while the logarithmic hypothesis is 
also rejected, we cannot reject the linear dependence hJ~othesis and this 
gives us the working model: 

[Y1, yz, Y3] = 01 + 02TW + 03STEIN + 04PYCN + 0sSeI + 06SCMF 
+ [e1' e2. e31 (7) 

with estimated parameter matrix: 

°1 - 8.736 -0.104 -l.367 

°2 0.049 0.005 -0.015 

°3 -0.004 0.040 0.006 
°4 5.245 -0.267 -0.235 
Os 0.022 -0.024 0.020 
°6 0.245 -0.425 0.227 

and estimated error covariance matrix: 

el 2.150 l. 032 0.442 J 
e2 l. 032 l. 956 0.303 1 
e3 0.442 0.303 2.204 ] . 
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An inspection of the parameter matrix confirms that the yield of 
premium products GRITS is positively dependent on TW, PYCN, and SCMF, and 
these physical traits could then be used for yield predictions. 

Finally, we note that the linear/logarithmic dependence hypothesis 
also could not be rejected and could be the basis for another working 
model. 

5.SUHMARY 

The aim of this paper was to develop an approach to predicting 
yields of dry milling products from measurable quality characteristics, 
which could be used by the dry milling industry to select corn best suited 
to meet the demand for their products. 

We developed several univariate models and discussed their relative 
merits. We also estimated a lattice of multivariate models based on 
compositional data analysis, taking explicitly into account simplex nature 
of the sample space. We believe this is the first application of this 
methodology to this type of data. 

While a number of other model specifications could be tested within 
the framework developed. in this paper, we hope the emphasis on the 
methodology would make it useful for the study of other agricultural data 
sets. 
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Table 1. Dry milled products grouped by wire size 

Product Variable Wire/Mesh size 

Flaking Grits FG 3.5 - 5.0 
Brewers' Grits BG 7.0 - 10.0 
Meal HEAL 16.0 
Flour FLOUR PA..~ 

Oil OIL GERM*15% 
Hominy Feed FEED HULLS+GER..I1*8 5 % 

Table 2. Correlations Between Product Yields and PhysicalTraits 

FG BG MEAL FLOUR . OIL FEED 

TW +.58 - .32 - .57 - .48 -.59 -.53 
WBT +.31 +.09 - .13 - .49 -.20 -.53 
STEIN - .38 +.34 +.41 +.29 +.26 +.18 
SCI +.16 +.2l - .04 - .41 -.07 - .37 
DENS +.67 - .30 -.56 -.72 - .43 -.64 
FLO -,72 +.23 +.61 +.83 +.52 +.76 
PYCN +.69 - .23 -.51 -.77 -.52 -.74 
STIME +.86 - .46 -.79 -.88 -.58 -.72 
SCMF +.41 - .02 -.34 -.60 -.23 - .48 
SCF - .40 +.25 +.37 +.36 +.30 +.32 
S3550 - .45 +.01 +.36 +.66 +.26 +.54 
NSTAR - .66 +.42 +.72 +.58 +.41 +.49 
NOlL +.81 - .35 -.73 -.85 -.55 -.79 
NPROT +.71 -.55 -.73 -.57 -.52 - .46 
NMOIST - .01 - .12 - .17 +.09 +.13 +.16 
FLINT +.78 - .47 -.62 -.75 -.54 -.67 

Table 3. Predictability of Grits Models 

Model F R2 Number of 0 Rank 
regressors 

Linear 66.4 .87 7 .0264 2 
Cobb-Douglas 90.7 .82 5 .0370 5 
Translog 73.7 .88 9 .0229 1 
Cant. Ratios 83.8 .86 6 .0291 3 
logratios 56.7 .80 5 .0344 4 
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Table 4a. Usual Six-Product Covariance Matrix 

FG BG Meal Flour Oil Feed 

FG 1.000 -0.703 -0.859 -0.860 -0.627 -0.788 
BG 1.000 0.503 0.322 0.277 0.199 
Meal 1.000 0.792 0.651 0.620 
Flour 1.000 0.550 0.800 
Oil 1.000 0.566 
Feed 1.000 

Table 4b. Usual Four-Product Covariance Matrix 

GRITS Flour Oil Feed 

GRITS 1.000 -0.803 -0.780 -0.958 
Flour 1.000 0.396 0.604 
Oil 1.000 0.819 
Feed 1.000 

Table 5a. Six-Product Compositional Variation Array 

FG BG Meal Flour Oil Feed 

FG 0.000 0.140 0.251 0.300 0.236 0.223 
BG -0.443 0.000 0.041 0.067 0.071 0.057 
Meal 1. 297 1. 740 0.000 0.019 0.031 0.027 
Flour 0.960 1. 403 -0.337 0.000 0.054 0.029 
Oil 2.499 2.942 1. 201 1. 539 0.000 0.025 
Feed 0.290 0.733 -1. 007 -0.670 -2.208 0.000 

Table Sb. Four-Product Compositional Variation Array 

GRITS Flour Oil Feed 

GRITS 0.000 0.109 0.087 0.075 
Flour 2.019 0.000 0.054 0.029 
Oil 3.558 1. 539 0.000 0.025 
Feed 1. 349 -0.670 -2.208 0.000 
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