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NONLINEAR ESTIM:ATION OF GROWTH CURVE MODELS 
FOR GERMINATION DATA ANALYSIS 

Bahman Shafii and William J. Price, Statistical Programs, 

Jerry B. Swensen, and Glen A. Murray, Division of Plant Sciences 

College of Agriculture 

University of Idaho 

Moscow, ID 83843 

ABSTRACT 

Logistic, Gompertz, Richards and Weibull growth curves were evaluated for 
their suitability as mathematical and empirical models to represent cumulative 
germination. By avoiding the limitations associated with the method of moments and 
single-value germination indices, the fitted models provided superior description of 
the time course of germination. The four-parameter Weibull model gave the best fit 
across a relatively wide range of seed species and germination conditions, and the 
resulting parameter estimates reflected identifiable aspects of the germination process. 
The nonlinear estimation of the germination response included a parameter summary, 
together with their asymptotic standard errors and correlation matrix, along with an 
approximate band for the expectation function, pairwise plots of the parameter 
inference region, and profile t plots. Evaluation of the fitted models also included 
information on lack of fit and residual structure. Empirical results and hypothesis 
testing were demonstrated with reference to a replicated experiment designed to 
determine the effects of reduced water potential on germination of onion seeds. 

Kevwords: nonlinear regression, cumulative germination, growth curves, Weibull 
model. 

I. INTRODUCTION 

Seed germination is a complex biological process beginning with water uptake by the 
seed and culminating in emergence of the embryo from the seed coat (radical or 
hypocotyl emergence). Many researchers have attempted to quantify this process 
which is influenced by various environmental as well as genetic factors. The effect of 
specific factors is typically presented in terms of an S-shaped germination curve, 
relating the cumulative percentage of germination to time. The ideal description of 
germination should be complete, concise, unambiguous, and amenable to statistical 
analysis (Brown and Meyer, 1988a). It should also provide information concerning 
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location (lag), rates (speed), and extent of germination. 
Traditional methods used in germination data analysis include single-value 

indices and the method of moments. Single-value indices have been used extensively 
in order to summarize the time course of germination with a few coefficients 
(germination indices). They have often been utilized to emphasize independent 
aspects of germination, or enable distinguishing superior germination from inferior 
germination (e.g. Kotowski, 1926; Macguire, 1962; Timson, 1965; Gordon, 1971; 
Lehle and Putnam, 1982). Similarly, in the method of moments, statistics such as 
total, mean, and variance of time to germination, quartiles, percentiles, time to 50% 
germination, etc., are used to represent the germination process and assimilate final 
germination (e.g., Tucker and Wright, 1965; Nichols and Heydecker, 1968; 
Thompson, 1970; Orchard, 1977). 

Limitations associated with moments and indices in describing the germination 
process are: i) they are insensitive, ambiguous, and incomplete, ii) they do not supply 
essential information about location, acceleration, dispersion in time, and extent of 
germination, iii) they assume a normal distribution for the frequency of germination 
(i.e., method of quantiles, probit analysis, polynomial regression) whereas the 
frequency distribution of germination time is skewed, and iv) the do not describe the 
germination process, they simply represent it. 

An alternative to using an index number for defining the processes of 
germination is the use of growth models. Given the correct mathematical 
specification along with the appropriate statistical estimation, this approach can 
provide considerable information resulting in parameter estimates with meaningful and 
relevant biological interpretations. Many mathematical models have been proposed to 
describe germination curves including (but not limited to) logistic (Janssen, 1973; 
Hsu, Nelson and Chow, 1984; Torres and Frutos, 1990), Gomphertz (Lapp and 
Skoropad, 1976; Tipton, 1984), Richards (Berry, Cawood and Flood, 1988), and 
Weibull (Bonner, and Dell, 1976; Brown and Mayer, 1988b) functions. 

The purpose of this study was to evaluate the suitability of the specified 
growth models to describe germination data using nonlinear regression. Additionally, 
statistical criteria pertinent to presenting nonlinear estimation results are discussed. 
Empirical applications are demonstrated using seeds from a wide range of both crop 
and weed species (onion, rapeseed, sugarbeet, kochia, matgrass, and medusa head) 
under a variety of germination conditions. Specific references are made to a 
replicated experiment designed to investigate the effects of reduced water potential on 
germination behavior of onion seeds. 

II. l\1ETHODS 

Four common nonlinear asymptotic growth models were used for evaluation, 
including two three-parameter and two four-parameter models. These were: 
(i) logistic 

y = M[l + expeL - Kt)ll ; 
(ii) Gompertz 

y = M[exp(-exp(L - Kt»] ; 
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(iii) Richards 
y = M[l - exp(-K(t - L))]II(I-C); and 

(iv) Weibull 
y = M[l - exp(-K(t - L»C)] , 

where 
y = cumulative percentage germination at time t, 
M = asymptote (theoretical maximum for y), 
L = time scale (lag related) constant, 
K = rate of increase, and 
C = shape parameter. 

The logistic function is sigmoid and symmetrical about the inflection point. 
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This function is very similar to the cumulative normal distribution. (un skewed and 
perfectly symmetrical). In spite of its popUlarity however, it can impose a limitation 
in fitting germination data, since cumulative germination curves are nearly always 
skewed (Moore and Ross, 1982; Brown and Mayer, 1988b). The Gompertz function 
is sigmoid and asymmetrical about the inflection point with a fixed skewness of 
approximately 1.3. Like the logistic, the Gompertz function starts with a lower 
asymptote, making the estimation of lag time (start of germination) rather arbitrary. 

The Richards model is based on a four-parameter sigmoid function, with C, 
the shape parameter, measuring the various patterns and indicating alternative 
functional forms (i.e. monomolecular, logistic, Gompertz) that may be generated by 
this model. While flexible, the function has significant curvature in the solution locus 
of all four of its parameters (Ratkowsky, 1983), lacks desirable properties associated 
with the estimated parameters (Ratkowsky, 1990), and demonstrates some degree of 
nonconvergence in empirical estimation. The Weibull model is a flexible and simple 
function with great potential for application to biological data, particularly if the 
system to be modeled can exist in either of two states (e.g., germinated or 
ungerminated). It is often suitable where conditions of strict randomness of the 
exponential distribution are not satisfied (Brown, 1987). The Weibull has been used 
by several authors for analyzing and describing seed germination (Bonner and Dell, 
1976; Brown and Mayer, 1988b; Bridges, et al, 1989). The function's parameters are 
biologically interpretable, reflecting maximum germination (M), germination rate (K), 
lag in onset of germination (L), and the shape of the cumulative distribution (C). 

The estimation of specified growth curve models was accomplished using the 
univariate nonlinear regression and the Gauss-Newton algorithm. Theoretical 
developments concerning the iterative estimation procedure and linear approximation 
along with practical considerations are reviewed by Bard (1971), Gallant (1987), and 
Bates and Watts (1988). Details of alternative estimation methods are given in 
Kennedy and Gentle (1980). 

Statistical computations were carried out using SAS/STAT,IML (1989, 1985). 
Program codes required for the Gauss-Newton algorithm, alternative functional forms 
and their respective derivatives, as well as other statistical criteria presented in this 
section are given in the Appendix. 

Presenting the statistical results of nonlinear estimation, as in all statistical 
analyses, is an important consideration. Regardless of the specific area of research to 
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which they may apply, results from a nonlinear regression analysis should be reported 
clearly and succinctly to ensure provision of meaningful and valid conclusions. The 
following statistical criteria may be considered in presenting nonlinear regression 
results, particularly when analyzing germination growth curves: 
(i) Parameter estimates along with parameter approximate standard 

errors, t-ratios, and corresponding p-values, 
(ii) Asymptotic correlation matrix of the parameters, 
(iii) RMS/PRESS, 
(iv) If the experiment includes replications: 

. Lack of fit analysis 

. Plot of replication standard deviations vs. replication 
averages, 

(v) Pairwise plots of parameter inference regions and associated marginal intervals, 
(vi) Plot of data, fitted eX}Y'-.-ctation function aI1d approximate 

confidence bands, 
(vii) Residual plots, 
(viii) If appropriate, results of single and joint hypothesis 

testing, 
(ix) Profile t plots. 

As in linear regression, the assessment of any fitted model should begin with 
careful consideration of parameter estimates, both in sign and magnitude. Given 
convergence to reasonable values has been reached, the parameter approximate 
standard errors and t-ratios must be checked. Insignificant t-ratios must be 
investigated and if necessary, the model should be modified or refitted deleting the 
corresponding parameter(s) from the expectation function. The parameter 
approximate correlation matrix should be checked for excessively high correlation 
(> .99 in many cases). High correlations indicate overparameterization and a need 
for either simplifying the expectation function or transforming the variables or 
parameters to reduce collinearities (Bates and Watts, 1988). 

Statistics such as Residual Mean Squares (RMS) and Prediction Sum of 
Squares (PRESS) help in assessing the overall fit, and if non-nested models are 
considered may be used to select among candidate models (aside from biological 
considerations, one might favor the model with the smallest RMS/PRESS and the 
most random looking residuals). 

When the experiment includes replications, tests for Lack of Fit (LOF) of the 
expectation function may be performed, which involves decomposing the residual sum 
of squares (SS) with n-p degrees of freedom into replication SS with r degrees of 
freedom and LOF SS with n-p-r degrees of freedom. The ratio MS(LOF)/MS(Rep) is 
then compared to the critical value of F(n-p-r, r; a) to determine the significance of 
LOF tests. In addition, plot of replication standard deviations against replication 
averages (even prior to specifying an expectation function) may be used to check for 
systematic relationships and to determine whether a variance-stabilizing transformation 
IS necessary. 

Approximate inference regions for parameters of the nonlinear model 
y = F(X j , X2 , ... , Xn; ej , 82, ... , ep) + E 

= F(e) + E, (1) 
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is given by 

(8 - O),V'V(O - B) ~ pS2 F(p, n-p; a), (2) 
A 

where V, the derivative matrix is evaluated at e (Bates and Watts, 1988). Note that 
A A A A 

V = QIRI following a QR decomposition which involves decomposing V into the 
A A A A A 

product of an orthogonal matrix, Q (i.e.: Q'Q = QQ' = I) and an upper triangular, 

easily inverted matrix, R = ( !l) . Hence, 

(3) 

A A 

The inference region associated with parameter values is a disk centered at R I 8 on the 
A 

expectation plane and is an ellipse centered at 8 in the parameter space. Plots of 
parameter inference regions contain least squares estimates of the parameters, 
marginal intervals and a joint inference region, and could help visualize the direction 
of correlation between the specified parameters. 

Plot of data along with the fitted expectation function and an approximate 
confidence band, is an excellent way to assess fit. The approximate inference band 
for the expected response is given by: 

f(X, 0) ± sIIU1R·111!PF(p,n-p;a) (4) 

where U is the derivative vector, 

U = af(X, 8)13()' Ie. 

Plotting of residuals against predicted values and other lurking factors or 
control variables (e.g. time, in germination analysis) is a simple and effective method 
of detecting violations of underlying assumptions and highlighting model 
inadequacies. Given the nonlinear regression model in (1), where disturbances are 
assumed to have a spherical normal distribution, i.e. E(€) = 0; var(€) = E(€€') = 
c?I, it is important that residuals are uniformly spread and random looking (around 
zero) with no detectable trend. Probability plots of the residuals should also be made 
to verify the normality assumption [see Draper and Smith (1988), Myers (1986), and 
Bates and Watts (1988) for details]. 

Results of single and joint hypothesis testing should also be provided, 
particularly if various biological or environmental factors (treatments) are present in 
the experiment. This may include results of single and multiple degree of freedom 
contrasts on parameter estimates as well as curve comparisons. 
Let H and 0 represent the hypothesis (contrast) and parameter vectors, respectively. 
define the matrix 

where C represents the inverse of the derivative crossproduct matrix. The statistic 
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W = (HO)'(HCH')·I(HO)/qs2 

follows the F distribution with q (numerator) and n-p (denominator) degrees of 
freedom (Gallant, 1987). That is, 

SS(contrast)/q 
SS(error)/(n-p) 

F(q, n-p; 0:). 

Note that q is the number of restrictions on e which is the row rank of H. 

(5) 

For a nonlinear model, the profile t function (Bliss and James, 1966; Bates and 
\Vatts, 1988), 7(ep), is defined as 

reO,) '" sign(O, - 8,) Js S 2 - S S 1 

• MS 1 

(6) 

where SS2 is the profile sum of squares ( achieved by constraining an individual 
parameter to a constant, ep , and obtaining least squares estimates for the remaining 
parameters) and SS! and MS! represent the sum of squares and mean square error 

A 

from the final unconstrained estimation of e, and ep is the unconstrained estimate of 
the pth parameter. The plot of T(ep) versus the studentized parameter, 

A A 

beep) = (Op - ep)/se(ep), 

is called the profile t plot. As curvature measures, profile t plots provide valuable 
information concerning the nonlinearity of the estimation situation (with respect to 
each parameter). Additionally, they may be used to determine nominal 100(1 - 0:)% 
likelihood intervals, 

-t(n-p; 0:12) ::; T(Op) ::; t(n-p; 0:12), 

for individual parameters. 

ill. EI\1PIRICAL RESULTS 

The data used to illustrate the techniques outlined previously were from an 
experiment to test the effects of reduced water potential on the germination of onion 
seed. The treatments consisted of 4 water potential levels of 0, -.662, -1.14, and-
1.57 mPa labeled 1 through 4, respectively, which were applied to seeds of the onion 
cultivar Challenger. The treated seeds were then incubated at 25 C in light for 20 
days. Germination was scored daily as the number of seeds out of 100 showing 
radicle protrusion greater than Imm. The experiment was replicated 8 times. 

Summary statistics on the cumulative germination of each of the four 
treatments are presented in table (1). Mean cumulative germination decreased from 
72 to 7% as water potential decreased from ° to -1.57 mPa. Skewness became more 
positive as water potential dropped and variability remained relatively constant except 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1991/proceedings/3



at the lowest water potential. This treatment exhibited positive skewness, and 
decreased variability compared to other treatments. The data implied that this 
difference was due to truncation and more time (> 20 days) would be required to 
observe final germination at this water potential. 

The Weibull model was fitted to the individual treatments using nonlinear 
estimation as described earlier, and results are presented in table 2. In each treatment 
the default convergence criteria of the algorithm was satisfied. All parameter 
estimates were significantly different from zero based on asymptotic t tests, 
suggesting the model was reasonable and all parameters were required. Again the 
lowest water potential treatment was a possible exception with the estimate for the 
parameter C being marginally significant (p=.10). 

The differences in parameter estimates between treatments p.aralleled 
differences seen in the summary statistics and had biological significance. The 
maximum attainable germination, estimated by M, decreased as water potential 
decreased indicating that restricting the availability of water increases the proportion 
of seeds which are unable to develop sufficient turgor pressure to effect sprouting. 
The estimates of K, which is related to the rate of germination, also decreased with 
lowered water potential. Reduced water potential in the solution surrounding the seed 
decreases the rate at which water is taken up by the seed and may also reduce the rate 
of various metabolic processes required to accomplish germination. The same 
biological explanation can be given to changes in the estimates of lag time to initial 
germination (L), which increased as water potential dropped. Thus the parameter 
estimates from the Weibull model were consistent with the observed data and had 
relevant biological interpretations. 

The correlational structure of the estimates was consistent in relative 
magnitude and sign between treatments with no correlations greater than .99 in 
magnitude. The models did not appear to be overparameterized. 

LOF tests found no significant lack of fit in any treatment (lowest p value was 
.17) indicating that estimated functions intersected the data well. Inaddition, plots of 
replication standard deviations vs. replication averages were examined for 
heteroscedasticity within each treatment. There were no unexpected patterns, and 
thus, transformations or other variance stabilizing procedures were not required. 

Residual analyses on each model were also included and showed no problems. 
Plots of studentized residuals vs. predicted values and time showed the residuals to 
behave in a random fashion with no unexpected patterns. They were evenly 
distributed about zero with acceptable magnitudes. Probability plots verified the 
correctness of the normality assumption. 

The 95 % pairwise inference regions for the parameter estimates, given in (2) 
and (3), as well as approximate 95% marginal confidence intervals, are shown in 
Figure 1. Only the first treatment is shown since other treatments produced similar 
results. The least square estimates are marked as a (+) at the center of each ellipse 
and the marginal intervals (dashed lines) can be read directly from the plots. The 
direction of the ellipses also indicates the sign of the correlation between parameter 
estimates. Although the shape of the ellipses is related to the magnitude of the 
respective correlations, it is not appropriate to compare ellipses in this case given the 
differences in scales for each respective plot. 
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Figure 2 represents the data from the specified water potential treatments 
plotted along with their respective Weibull functions and the 95% inference bands (4). 
The curves follow the data patterns consistently and individual points do not stray far 
from their expectation functions. The inference bands follow the curves well with 
little deviation. This figure clearly demonstrates the effect of decreased water 
potential on germination and shows the marked difference in germination at the lowest 
water potential level. 

Profile t plots, as described earlier, were prepared for each treatment. 
However only those for the first treatment are shown here (Figure 3). A straight 
dashed line at 45 0 represents the perfect linear estimation condition. The degree of 
deviation of the profile sum of squares function (presented as a curved solid line) 
from this reference is an indicator of the amount of nonlinearity of the actual 
estimation situation. Although slight curvature was evident in parameter estimates M 
and L, the overall situation was determined to be satisfactory. The profile t plots for 
other treatments also showed slight but not severe curvature for some parameters. 
Profile t plots may also be used for determining exact likelihood intervals for 
individual parameters. The axes for 0 and tau can be rescaled to units of the 
parameter and significance levels, respectively. By tracing a line from a given 
significance level through the profile sum of squares function, the likelihood interval 
of the parameter can be found. These values can then be compared to the linear 
approximation of the interval to give an idea of the nonlinearity of the parameter 
estimation. For example in the first treatment the estimate of the parameter K was 
1.19. The linear approximate 95 % confidence interval was. 93 to 1.45. Using the 
profile t plot for K, the exact likelihood interval on K was .94 to 1.49, which is well 
approximated by the linear approximate interval. Nonlinearity for all parameters was 
determined to be slight and reparameterization of the expectation function was 
unnecessary. 

An important aspect of using growth curves to describe germination is the 
ability to preform single and joint tests of hypotheses,(5). Such testing procedures 
allow for detailed analysis of the germination process. As a case in point, 
comparisons between the control in this study (treatment 1) and the other treatments 
were made (Figure 4). A single degree of freedom contrast on the maximum 
attainable germination was made by comparing the estimate of M for the control with 
the average estimate of M for the other treatments. This test found the treatments to 
be significantly different than the contral in this aspect of germination (p < .0001). 
Similarly a multiple degree of freedom contrast of the average estimates of K and L, 
gave a 2 degree of freedom test that had marginal significance (P = .07). Curve 
comparisons may be done as well. A hypothesis of identical parameters for the 
control and the average of the other treatments was tested with 4 degrees of freedom 
and was rejected at p < .0001. From these tests it can be inferred that reduced water 
potential influenced the whole germination process by affecting the number of seeds 
and, to a lesser degree, the rate at which they germinated. In sum, reduced water 
potential increased the germination lag, decreased the rate of germination and 
significantly reduced the final germination. 

The other growth models were also tried on this data. Although the Logistic 
is commonly used in germination studies, it was found to have a significant lack of 
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fit. It would seem that the zero skewness characteristic of this model would preclude 
its use for most germination modelling. The Gompertz fit to the data was marginal. 
The LOF tests were nonsignificant but the relatively small size of the p values and 
subsequent residual analysis suggested that this function did not model the process 
well. The Richards function allows for an adjustable skewness by adding a fourth 
parameter. However, when fitted to the onion data, the parameter estimates for this 
model exhibited very large standard errors and high correlations as well. Sensitivity 
to starting values and extremely long convergence times limited the usefulness of the 
Richards function. All of the above models had RMS and PRESS values larger than 
those of the Weibull model. The Weibull model consistently out performed the other 
models in convergence time, relative magnitudes of standard errors and correlations, 
and LOF. 

Germination data from several crop and weed species were used to assess the 
Weibull function as a germination model. Seeds of onion, rapeseed, sugarbeet, 
kochia, matgrass, and medusa head were germinated under a vfu"iety of conditions 
including simulated seed aging, temperature treatments, source of seed, and water 
potential treatments. In all cases no significant lack of fit was found. Convergence 
was usually fast and correlations of parameter estimates were reasonable. In a few 
cases where the convergence was slow or the correlations high, the problem was in 
part due to insufficient observations between initial and maximum germination. A 
revised sampling schedule should help remedy this problem. The Weibull model was 
found to be robust for the description of seed germination over a wide range of 
species and germination conditions. 

IV. CONCLUDING REMARKS 

Traditional methods used in seed germination data analysis such as germination 
indices, moments, coefficient of velocity, and probit analysis fail to describe the time 
course of germination and they are, for the most part, ambiguous and incomplete. An 
alternative to utilizing moments and indices is the use of growth models and 
empirically derived curves which allow germination to be described in terms of three 
or four coefficients, and hence provide information on location, dispersion in time, 
rates, and extent of germination. The statistical results from nonlinear estimation of 
the specified growth model should include, aside from the standard regression 
statistics, information concerning lack of fit, parameter correlation and inference 
regions, bands for expectation function, residual structure, and nonlinearity of the 
estimation situation with respect to individual parameters. The modified four
parameter Weibull model provided a good fit across a relatively wide range of seed 
species and germination conditions, and the resulting parameter estimates reflected 
identifiable aspects of germination. 
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Table 1. Summary statistics for cumulative germination of onion seeds under various 
water potential treatments. 

Treatment 1 ~) mPa) Treatment 2 (-.662 mPa) 

Mean: 72.00 Std: 18.45 Mean: 21.68 Std: 21. 68 

Min: 7.00 Skewness: -2.40 Min: 2.00 Skewness: -1.94 

Max: 88.00 Range: 81.00 Max: 89.00 Range: 87.00 

Treatment 3 (-1.14 mPa) Treatment 4 (-1. 57 mPa) 

Mean: 42.72 Std: 21.29 Mean: 7.07 std: 5.31 

Min: 1. 00 Skewness: -.63 Min: 1. 00 Skewness: .76 

Max: 71.00 Range: 70.00 Max: 21. 00 Range: 20.00 

w 
~, 
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Table 2. Parameter summaries for the Weibull function fitted to the onion data. 

Treatment 1 

Approx. 
Par. Est. s.e. _t __ --L 

M 85.25 2.20 38.9 0.0 

K 1.19 .13 9.2 0.0 

L 1. 95 .01 198 0.0 

e .45 .07 6.6 0.0 

RMS: 21.3 
PRESS: 2719.0 

Treatment 3 

Approx. 
Par. Est. s.e. _t __ --L 

M 63.28 2.90 21.8 0.0 

K .27 .05 5.4 0.0 

L 4.39 .61 7.0 0.0 

e 1. 24 .34 

RMS: 62.5 
PRESS: 6944.9 

3.8 0.0 

Correlation 
Matrix 

1. 00 

-.21 1.00 

.74 .33 1. 00 

-.87 -.33 -.91 1.00 

Correlation 
Matrix 

1. 00 

.03 1. 00 

.45 .57 1. 00 

-.65 -.70 -.91 1.00 

Treatment 2 

Approx. Correlation 
Par. Est. s.e. __ t_ --L Matrix 

M 81. 84 .92 89.0 0.0 1. 00 

K .54 .04 13.5 0.0 -.04 1. 00 

L 2.82 .09 21.3 0.0 .32 .80 1.00 

Ie 1. 06 .12 8.8 0.0 -.53 -.84 -.78 1. 00 

IRMS: 30.2 
PRESS: 4049.1 

Treatment 4 

Approx. Correlation 
Par. Est. ~.e. __ t_ .....L Matrix 

M 10.97 1.70 6.5 0.0 1. 00 

K .18 .08 2.3 .01 -.02 1. 00 

L 6.15 2.40 2.6 0.0 .43 .88 1. 00 

e 1. 52 1. 20 1.3 .10 -.58 -.72 -.93 1. 00 

RMS: 12.4 
PRESS: 1647.4 

w 
tv 
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Figure 1. Pairwise plots of the parameter approximate 95 % joint inference regions (solid lines), approximate 95 % marginal 
confidence intervals (dashed lines) and least squares estimates (+) for the onion data. 
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Figure 2. Observed and predicted (solid lines) values of % cumulative germination for the onion data along with the approximate 
95 % confidence bands (dashed lines). 
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Figure 3. Profile t plots for the parameters of the Weibull model fitted to the onion data (treatment 1). The solid line represents 
the profile t, the dotted line is the linear approximation and the dashed line is the 95 % marginal likelihood interval. 
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Figure 4. Predicted % culmulative germination from the Weibull model for the spccified onion seed treatments. 
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1. SAS/lML Codes for 
Gauss-Newton Algorithm 

I' GAUSS-NEWWN ALGORlTHM (HAR11EY. 1961) ADAM'ED FROM BATES AND WA1TS 
(lnR) TO READ EX11,RNAL DATA. USE WfJHULL f<lJNCnON, AND CALCULATE S.E.·S 
AND STUDEN'nZED RESIDUAI.~~. 

'1 
DATA ONION (KEEP~TRT X GERM); 

INr~lLE ·C:\ONION.DAT' FIRSTOBS~6; 
INI'UTOBS VAR S TRT X GERM; 

IF TRT=O AND VAR='C'; 
IF GERM=O 11fEN DELETE; 

PROC IML; 

I' DEFINE MODULE FOR MODEL ••••••••••••••••••• '1 

START MODEL(,rnETA. X. Y. RES. GRAD. DERIVS); 
IF THETA(I I,ll» ~IOOTHEN THETA(II.II)~IOO; 

IF THETA(12,11)< =OTHEN THETA(12,11)=O.OOOOI; 
IF THETA(12,11» =2 THEN THETA(12.11)=1.9999; 
IF THETA(13.11)< ~OTHEN THETA(13.11)=0.OOOOI; 
IF 11!ETA(l4.11)< =0 THEN THETA(14.11),=O.00OOI; 

110MI' = EXI'(-(THETA(13.11)·(X-THETA(12.1 I))) 
NKTHETA(14.11»; 

YHAT ~ THETA( 11.11) ° (I - 110Mi'); 
RES = Y - YHAT; 
IF DERIVS = I THEN DO; 

DER~M = I - TEMP; 
DER~L = -THETA(ll.II)·THETA(13.11)· 

THETA(14.1 I) "TEMP K«THETA(I 3.1 I) 
"(X-THETA(12.11») 
U(THET A(l4.11)-1); 

DER~K ~ ffiETA(1 1.1 l)"ffiETA(14.1 I)" 
(TEMI'I(X-ffiETA(12.11) 
N«ffiETA(I3.1 1)"(X-ffiETA(12.1 I))) 
NK(THETA(14.11)-1))); 

D1oR,C = ffiETA(1 1.1 I) °TEMPlLOG(TH ETA( 13,11) 
'(X-THETA( 12.IIJ)K(THETA( 13.11) 
'(X-THETA( 12.1 1»)UffiETA(14.1 I); 

GRAD = DER~MIIDER~LIIDERKIIDER~C; 
END; 

FINISH; 

1° CHECK BOUNDS 
1° ,. ON 
I' 
I' PARAMETERS. 

I' CALCULATE ,. 
," Y HAT AND 
I' RESIDUALS. 
I" EVALUATE ," 
I" DERIVA11VES 
I" 
I" AND PUT IN 
I' 
1° VECTOR 
1° 
1° GRAD ,0 
,0 IF DERlVS ~ 1. 
1° 
I' 

0, 
'1 0, 
", ., 
0, 
", ., 
'1 
'1 
'1 
°1 
°1 
'1 0, 
0, 
0, 
°1 0, 
"' °1 
°1 

APPENDIX 

1° •••••••••• COMPUTATIONAL MODULE ............... * •••• 0, 
START NI_SFIT(ffiETA. DAYS. Y. YHAT. CRITERION, ," GET 0, 

MAXITER. MINSTEP. TOL, VERBOSE); 1° DERIV A11VES 0, 
RUN MODEL(THETA. DAYS, Y. RES ID , GRAD. I); ,. AND RESIDUALS. °1 
P ~ NROW(lHETA); 
N = NROW(RESID); ," SET UP FOR °1 
NDOF ~ N-P; ," 0' 
MULT = SQRT(NDOF/P); '" CALClII.A110NS.·' 
S11,PSIZE = I; I" °1 
DO ITER = 1 TO MAXI11'R; I" START LOOP "' OLDSSQ = SSQ(RF..5ID); ,. 0, 

CAU" GSORffi(QHAT,RHAT,RA'l"K,GRAD); ,. Q-R DECOMP. °1 
IF RANK = I THEN DO; 1° 0, 

PRINT "SINGULAR DERfVA11VE MATRIX"; ,0 CHECK FOR "' STOP; ," ERRORS. °1 
END; I" 0, 
TAN ~ QHAT' • RESID; I" CALCULATE °1 
SSJAN ~ SSQ(TAN); I" INCREMENT. 0, 
INCR = SOLVE(RHAT,TAN); ,. °1 
CRITERION ~ MULT ° SQRT(SSJAN'(OLDSSQ- ,. EVALUATE 0, 

SS~TAN»; I· END CONDITION. °1 
IF VERI30SE ffiEN I· 0, 

PRINTI11'R(IFORMAT = 2.(1) ,0 PRINT INFO. 0, 
CRITERION (lNCR'); ,. °1 

IF CRITERION < TOL THEN UNK DOMORE; ," CHECK FOR 0, 
1° END CONDITION. 0, 

DO UN11L(NEWSSQ < OI.DSSQ); I' 0, 
IF STEPSIZE < MINSTEP THEN DO; ,. 0, 

PRINT "STEP FACTOR REDUCED 1° °1 
BELOW NUNIMUM"; ,. °1 

STOP; 1° INCREMENT °1 
END; ," SMALL AMOUNT °1 
TRIAL = THETA + STEPSIZE ° INCR; ,. TO PARAMETER °1 
RUN MODEL(TRIAL, DAYS, Y, RESID,GRAD,O); '" ES11MAllOS 0, 
NEWSSQ = SSQ(RESIIJ); ," UNTIL NEW SSE °1 
IF VERI30SE ffiEN ," IS < OLD SSE. °1 

PRINT STEPSIZE NEWSSQ (TRIAL'); I' °1 
STEPSIZE ~ STEPSIZEl2; ," °1 

END; ,. ., 
THETA = TRIAL; ,. 0, V-J 

-..l 
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STEPSIZE = MIN(l114 ° S11TSIZE); /0 ./ 

RIIN MOJ)EL.(THHA,DAYS,Y, RESID,GRAD,\); /. '/ 
END; /. "/ 

PRINT "MAXIMUM ITERA110NS REACHED: /. IF NEW SSE -/ 

PROGRAM TFRMINATED"; /- IS < OLD SSE -/ 

STOP; /- 11IEN REDO -/ 

/- DEHIVA11VES '/ 

DOMORE: /. AND START -/ 

/- A<,AIN ./ 

RI = INV(RHA1); /' WHEN DONE -/ 

S = SQRT(NEWSSQ/NDOF); /- CALCULATE -/ 

SE = J(P, I ,0); /- APPROXIMATE -/ 

DO I = I TO 1'; /. '/ 
SE( 11,11) = SQRT(RI(II,I)-(RI(II,I))')'S; /- STD ERR'S -/ 

END; /- -/ 

mETA = THETAIISE; /- AND -/ 
/- -/ 

TEMP =EXP(-(THETA(13,11)°(DAYS-THETA(12,I I))) /- STUDENTIZED '/ 

KKTHETA(14,11»; /. -/ 

YHAT = THETA(I 1,1 I)*(I-TEMP); /' Rr:5IDUALS. -/ 
/. '/ 

YHAT = YHATII RESID/(S-SQRT(1- /' ./ 

VECDIA<'(QHA T*QHA T'))); /- '/ 
FINISH; 

/. ................................................... '/ 

USE ONION VARIX GERM}; /. Gloi ./ 

READ ALL VARIX} INTO DAYS; /. ./ 

READ AIL VAR(GERM} INTO Y; /. DATA SET. '/ 

TIl ETA = {loa, .99, .5, .5}; /. THETA ORDER 15:'/ 
RUN NLSFlT(THFTA, DAYS, Y, YHAT, /" (M, L, K, C). "/ 

ClUTERJON, 50, .001, .001, I); /' '/ 

Rr:5ET NAME; /" PRJ NT '/ 
PRINT 11IETA,YHAT; /- RI~SULTS. -/ 

RUN; 

2. SAS Codes for the Functional Fonns 

PROC NUN ME11IOD=GAUSS BEST=I DATA=ONION; 
I'ARMS M=~8 K=.S L=.99C= .S; 
HOUNDS 85< =M< =88, K>O, L>O ,O<C<3; 
TEMPI=X-L; 

TEMP=EXP(-«K·(11'.MPI»'·C)); 
MODEL GERM = M'(l-TEMP); 
DER.M=(I-TEMP); 

/' 
/. 

/' 
/0 

PROC NUN "/ 
WITH '/ 

THE WEIBULL "/ 

FUNCllON "/ 

DERK=(M-C)'TEMP*«K*(TEMPI»"(C-I))"(TEMPI); 
DER. L=( -M-C'K)'TEMP-«K'(TEMPI »-'(C-l»; 
DER. C = (M) 'TEMP-(l DG«K '(TEMPI»)) -(K'(TEMPI »' -C; 

OUTPUT OUT=PREDI P=I'R; 
TITLEI 'NON I1NF.AR RT TO ONION DATA'; 
11TLE2 'MODEL: WIJBULL'; 

PROC NUN METHOD=GAUSS BEH= I DATA=ONION; 
PARMS M= I K=.06 L=22 C=2.01 ; 
BOUNDS 0 <M < = 1,0.01 < =K < =.1, 20< =1.< =30, 2.01 <C < 2.3; 
TEMPI =(1-EXP(K"fK'X); 
TEMP2=(1/(I-C»; /. PROC NUN '1 
TEMP3 = TEMPI ; 
MODEL Y=M-«TEMPI)-'TEMP2); 
DER.M=(11:MPI)"TEMP2; 
DER K =(-M-(l.rX)/( I-C»'(TEMP1""(TEMP2"C))"(I-11:1'.11'1); 
DER L=(-M-K/(1-C))'(TEMPI-'(TEMP2"C))'(1-TEMPI); 
DERC =(MI«I-C)"2»-(TEMP1··TEMP2)·(LOG(TEMP3)); 

OUTPUT OUT=PREDI P=PR; 
11TI..EI 'NON UNFAR RT TO ONION DATA'; 
TIU.E2 'MODEL: RICHARDS (C < I)'; 

PROC NUN Ilf:5T=1 DATA=ONION METHOD=GAUSS; 
PARMS 1'.1= 100 BO=2.5 BI =1; 
MODEL GERM = M/(l + EXP(-Bl·X+BO»; 
DERM =1/(1+EXP(-BI-X+BO»; 
DERBO =-F.xP(IlO-BI "X)'M/«I + EXP(B0-BI*X)"2); 
DER.BI =X-EXP(BO-BI-X)'M/«I + EXp(BO-Bl'X))"2); 

OUTPUT OUT=PREDI P=PR; 
TITLEI 'NON UNF.AR RT TO ONION DATA'; 
TIUro2 'MODEL: LOGISTIC'; 

PROC NUN DATA=ONlON MElHOD=GAUSS; 
PARMS 1'.1= 100 1l=2.5 K=5; 
MODEL GERM = M'(EXP(-EXP(-K'X + B»); 
DERM = (EXP(-EXp(-K'X + B»); 
DER.K = M'X'(EXP«-EXP(-K'X +B)) -K'X + Il)); 
DER.B = -M*(EXP«-EXP(-K-X +Il» -K'X + Il»; 

OUTPUT OUT=PREDI P=PR ; 
TITLEI 'NON UNEAR FIT TO ONION DATA'; 
TIUro2 'MODEL: GOMPHERTZ'; 

/. WITH -/ 
/. THE RICHARD'S "/ 
/" FUNCTION 0/ 

/' PROC NUN ./ 
/. WITH '/ 
/. ruE LOGISTIC 'I 
/" fUNCTION -/ 

/" PROC NUN -/ 
/. WITH ./ 

/0 THE GOMPHERTZo/ 
/. FUNCTION 0/ 

VJ 
00 
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3. SAS/IML Codes for Parameter Inference Region 
VPV=J(I,3,1); " PUT ruE ELEMENTS OF 0, 

VPV(II,II)~HVVH(ll,II); ,. HVVH INTO VECTOR 0, 

VPV( 11,21)~HVVH(II,21); fO FOR OU11'UT. Of 

(,OP110NS DEV ~ PS2FGA; fO POINTS I, 2, 3 & 4 of VPV( 1I,31)~HVVH( 12,21); 

IlIlNAME PERM 'D:I'; f' MUST BE CHANGED of 

,0 FOR EACH PARAM. PAIR. 0, CRr~"'n: ("ROSS FROM VPV; f' OUTPUT TO DATASET. 'f 

%LET Pl=C; fO POINT K (l) Of APPEND FROM VPV; 

71dYT 1'2=1.; fO SET PARAM JD'S FOR +1 
%1.FT HAT~hftl; fO THF PAlR REiNG RUN. "I DATA UPPER(KFEP~&Pl &1'2) L()WER(KEEP~&PI &P2);/' DATA STEP CALC'S ruE Of 

f' EUJPSE IN TWO PARTS Of 

DATA ONION (KEEP= X); SET ("ROSS; /" FOR EASIER PID1TING. ./ 

INFILF 'C:INUNIONIONIONREP1.DA T' I1RSTOBS ~5; 
fO GFf DATA TO BE RUN. ./ Vii~COU; /+ i IS ruE PARAM TO ./ 

INPUT REP VAR $ TRT X GERM; Vij~COL2; /. BE ON HORZ. AXIS. 0/ 

IF TRT~O AND VAR~'C'; Vii~COL3; /0 J IS ruE VERT. AXIS. 0/ 

IF m:RM=O THEN DEU:I1'; /. SEE (2). 0/ 

Mh.t = 85.25; /. SET PARAM EST'S AT Of 

PRO(" IML; Lh.t = 1.98; /" I1NAL VALUF_~. ALSO ./ 

Kh.t ~ 1.19; /. MSE AND F(2,N-P;.05) 0/ 

START VIlYV(X, HVVH, 1); fO MODULE CALC'S ruE Of Chftt ~ .464; 

TEMP ~ EXP(-(T(I3,II)°(X-T(12,II)))KKT(14,11J); /0 DERlV A TIVE CROSS Of MSE = 21.27; 

/" PRODUCTS MATRIX V'V Of F = 3.05; 

DERM = 1 - 11:MP; fO = INV(GRAD'GRAD). Of 

DER_L = -T(ll,II)°T(13,11)"T(14,11) lDUM = &P2&HAT - SQRT( (ViiozoMSE"F)/ /0 FIGURE RANGE OF CALC Of 

'TEMP N«T(13,11)°(X-T(12,11))) /0 MATRlX IS SETUP AS: Of «Vir2 - ViiOVii)°(lNij·02- I)); fO BASED ON TIlE DERN. 0/ 

##(T(14,11)-1); UPUM = &P2&HAT + SQRT( (Vii02°MSE°F)/ fO OF ruE EWPSE = O. 0/ 

DER K ~ T(ll,II)OT(14,11)0(TEMPN(X-T(IZ,11)) /. XII XI2 XI3 X14 0/ ( (Vij"2 - VUOVii)0(INij·02 - I»); 

K«T(13,11)0(X-T(12,I I)) fO XI2 X22 X23 X24 Of INTER = (UPUM - IDIlM)f300; 

KN(T(14,11)-I))); fO XI3 X23 XH X34 Of 

DERe = T(I 1,1 I)"TEMPNLOG(T(13,11)'(X-T(12,II))Y' Xl4 X24 X34 X44 0/ DO &P2 = (LOUM-INTER) TO (UPUM+INTER) /" START EUJPSE CALC'S. 0/ 

#(T(13,11)°(X-T(12,II)))NKT(14,1i); BY INTER; 

f' WHERE M=I, L=2, K=3 °1 A = Vii; /. SET EI.llPSE PARAM'S 0/ 

GRAD = DERMIIDER_LIIDER_KIIDER_C; f' AND C=4. 0/ B = 2°Vij'(&P2 - &P2&HA 1); /. BASED ON 1HE EIJ1PSE 0/ 

GRA[)=INV(GRAD'oGRAD); CC = Vii O «&P2 - &P2&HAT)0·2)- (2°MSPF); /0 AX' + BXY + CCl" = 0 0/ 

fO POINT # (2) Of 

HVVH =INV«GRAO( 12,21)1 I GRAD( 12,41)) fO ELEMENTS OF V'V ruA T Of &PI = (-B + SQRT«B"2)- 4°A·CC)/ /0 EWPSE ACCORDING TO ./ 

f/(GRAD(12,41)IIGRAD(14,41))); /0 ARE NEEDED ARE PUT 0/ (2°A) + &PI&HAT; /0 ruE QUAD. FORMULA. Of 

/0 IN HVVH. e.g. L,C. Of OUTPUT UPPER; 

FREE DER M DER}~ DER_ K DER _ C X GRAD; &Pl = (-B - SQRT«B002)- 4°A'CC)f 

RNISH; fO END MODULE. 0/ (2°A) + &PI&HAT; 
OU'Il'UT LOWER; 

USE ONION; /. GET DATA AND PUT X 'f END; 

RI~IJ Aa VARIX) INTO TIME; 1° INTO VECTOR 11ME. Of 

PROC SORT DATA=UPPER; /0 SORT 1W0 HALVF_~ AND ./ 

ruETA = (R5.25,1.98,1.19,.464); /0 DEI1NE lHETA AS: Of BY &P2; /0 REASSEMBI.E FOR Of 

/. (1.1, L, K, AND C). Of ,. BETl1:R PLOTTING. 0/ 

RUN VBYV(TIME, HVVH, THETA); /. CAU, CROSS PROD'S. 0, PROC SORT DATA = LOWER; 
BY DESCENDING &P2; 

W 
\,Q 
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DATA PERM.Ell,_&PI&P2; ,0 SAVE ElliPSE ON 0, ~ 
DER.C=(M)°TEMpO(LOG«KO(TEMPI)*(K*(TEMPI))**C; 0 

SET UPPER LOWER UPPER; '* DISK FOR lATER *' OUTPUTOUT=PREDI P=PR R=RESID STUDENT=S_RESIDL95=LOW U95=UPH=LEV; ,0 REFERENCE. 0, TITLEI 'FIT TO ONION DATA USING WJ<.lBULL'; 
DATA Ell,; 

SET PERM. EIL_ &PI&P2; PROC GPIDT; '* PLOT EXPECTED -, 
PLOT GERMoX PRoX'OVERI.A Y; ,0 FUNCTION & DATA 0, 

DATA ANNO; ,0 POINT # (3) ., PLOT S_RESID'XIVREF=O; ,0 AND RESIDUALS 0, 
XSYS='2'; YSYS ='2';COLOR= 'WHITE'; ,. SET UP ANNOTATE ., 

FUNCTION = 'lABEL'; STYLE = 'COMPUX'; '* DATA SET TO PLOT ., PROC GPLOT; ,. PLOT EXPECTED ., 
TEXT='+'; POSITION='S';SIZE=2; '* TIlE LEAST SQUARF.5 ., PLOT PRoX LOW'X UP'X'OVERIAY; '* FUNCTION AND ., 
X=1.98; Y=.464;OUTPUT; ,0 ESTIMATE AS A PLUS. ., ,0 CONFIDENCE BANDS 0, 

DATA DIAG; 
AXISlI.ABEL=(F=COMPLEX H=3 ANGLE=90 '&PI') SET PREDI; ,. CALC. PRESS(i) *' 

VALUE=(F=COMPLEX H=2.5); PRESSi = (RESID'(l-LEV)*'2; 

AXIS2lABEL=(F=COMPLEX H=3 '&P2') PROC Mf:ANS SUM; ,- SUM PRESS(i) TO *' 
VALUE=(F=COMPLEX H=2.5); VAR PRESSi; ,0 GET PRESS STAT. *' 

SYMBOL! I=JOIN V=NONEC=WHITE; 

PROC GPLOT DATA = ELL; ,. POINT # (4) 0, 
PI.DT &PIO&P2= I' ANNO=ANNO FRAME ,0 PLOT EllJPSE WITH 0, 5. SAS Codes for Nonlinear Parameter Testing 

VREF=.3297,.5983 LV=20 ,0 APPROPRIATE lABELS. *' 
HREF= 1.952,2.007 LH =20 ,. 95% MARGINAL INTERV "' DATA ONION; 
VAXIS=AXISI HAXIS=AXIS2; '" SET WITII VREF & HREF. "' INFILE 'C:\ONION.DAT' FIRSTOBS=6; ,- ", 

INPUTOBS VAR $ TRT X GERM; '" CREATE DUMMY "' IF TRT=O OR TRT=3; ," ", 
4. SAS Codes for Confidence band on Expectation IF TRT=O THEN 00; ," VARIABLES "' 

Function, RMS, PRESS, and Re'sidual Plots 
XI=I; ,* ", 
X2=0; '" FOR EACH "' END; ,. *, 

ELSE 00; ," TREATMENT. "' DATAOGERM; XI=O; ," *, 

INFILE 'D:ONREPI.DAT' FIRSTOBS=5; '" READ IN DATA "' X2=!; ,* *, 

INPUT REP VAR $ TRT X GERM; END; ," *, 

IFVAR='C' ANDTRT=I; 

PROC NUN METIlOD=GAUSS BF.5T=1 DATA=OGERM; PROC NUN METIlOD=GAUSS BEST=! OUTEST=EST DATA = ONION; 
PARMS M=I5 K=1.5 L=7 C= .5; '* FIT DATA AND *' PARMS MI =85 KI =1.5 LI = 1.79 CI =.5 
BOUNDS 5< =M< =20, K>O, 5<L< 12 ,O<C<3; '" OUTPUT !NFO 

0, M2=98 K2=t.5 L2=1.89C2=.6; 
TEMPI=X-L; ,0 FOR RESIDUAL 0, BOUNDS 85< =MI < =90, KI >0, I <L! <2 ,CI >0, ,0 0, 

,0 PLOTS, PRESS 0, 90< =M2< =100, K2>O, I <L2<2, C2>0; ,0 RUN PROC NUN 0, 
TEMP = EXP( -«K-(TEMPI »**C»; '* AND CONFIDENCE ., '* ON TIlE FULL 0, 
MODEL GERM=MO(I-TEMP); ,0 BANDS INTO DATA 0, K = KloXI + K2°X2; ,0 MODEL TIlERE 0, 
DER,M=(l-TEMP); '* SET PREDI. 0, C = CIOXI + C2°X2; '* ARE NOW 8 0, 
DER. K =(M°e) °TEMpO«K°(TEMPI WO(C-I»*(TEMPI); M = MloXI + M2"X2; ," PARAMETERS IN 0, 
DER. L= (- M"C"K) °TEMpO«K"(TEMPI WO(C-I»; L = UOXI + L2°X2; '" THIS EXAMPLE. "' 
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TEMPI = (X-L); 

,. ,. 
,0 

TEMP=E.xP(-«K*(TEMPI»**C»; ,* 
MODEL GERM=M*O-TEMP); '* 
DER.MI =XI*O-TEMP); 
DER.M2=X2*O-TEMP); 
DER.KI =(M*C)*TEMP*«K'(TEMPI» 

*O(C-I)j'XI*(TEMPI); 
DER.K2=(M·C)*TEMP*«(K·(TEMPI» 

'*(C-I))*X2*(TEMPI); 
DER. LI =(-M*C*K*XI)'TEMP*«K*(TEMPI»"(C-I»; 
DER.L2=(-M*C*K·X2)*TEMP·«K·(TEMPI»**(C-I»; 
DER.CI =XI*M'TEMP'(LOG«K*(TEMPI»))) 

*(K*(TEMPI»"C; 
DER.C2=X2·M·TEMP·(LOG«K·(TEMPI)))) 

*(K'(TEMPI))*'C; 

1W0 WEIBUI.L.<; 
ARE FIT AND 
TIlE F..5TIMATF..5 
+ DERIVATIVF..5 
ARJ, OUTPUT. 

DATA EST; 
SET F_n; 

,. SELECT OUT TIlE 
,. FINAL 

IF JYPE_ ='ITER'TIlEN DELETE; ,. ESTIMATF..5. 

PROC IML; 

USE F..5T; 
READ ALL INTO ESTIM; 

0, ., ., ., ., 

., ., ., 

N=28; ,. GET TIlE *' 
MSE=ESTIM( 1I,2\)'(N-8); ,0 APPROPRIATE ., 
DPD = ESTIM( 12: NROW(ESTIM),3:NCOl.(F-STIM) \)'SQRT(MSE); ,0 PI ECF..5. ., 
TIlETA=(ES11M(II,3:NCOl.(ESTIM)i))'; ,. ., 

HI={I 000-1 OOO}; 
H2={0001000-1}; 
H3={0 I 000 -I OO}; 
H4={1000-1000, 

01000-1-00, 
001000 -10, 
0001000-1}; 

'* ORDER IS MI. L1, KI. CI. M2, L2, K2, C2 0, 

,. ,. 
,0 ,. ,. ,. ,. ,. ,. 

WRJTE 
CONTRASTS. 

MI = M2 
CI = C2 
KI = K2 

CURVES ARE TIlE 
SAME. (M, L. K 
AND CARE =) 

., ., 
*' ., 0, ., ., 
0, ., 

MSRI =«HI'TIlETA),'INV(HloDPD'Ht')'(HI*TIlETA»'NROW(HI);I'CALCUlATE TIlE ., 
MSR2=«H2'TIlETA)"INV(H2'DPDOH2')0(H2*TIlETA»'NROW(H2)(' REDUCED MSreg'S 0, 
MSR3 =«H3'TIlETA),'INV(H3'DPD'H3')'(H3'TIlETA»'NROW(H3)(0 USING TIlE ., 
MSR4=«H4'TIH"iA),'INV(H4°DPDOH4')0(H4*TIlETA»'NROW(H4)(* GEN UN HYP 0, 

F\ =MSRI'MSE; '* ., 

F2 = MSR2'MSE; ,. CALCUlATE F ., 
F3=MSR3'MSE; ,. STATISTICS 0, 
F4=MSR4'MSE; ,. 'f. 
PI =1 - PROBF(FI,NROW(HI),20); ,. AND ., 
P2=1 - PROBF(F2,NROW(H2),20); ,. ., 
P3 = I - PROBF(F3,NROW(H3),20); ,. P VALUES. ., 
P4 = I - PROBF(F4,NROW(H4),20); ,. ., 
PRINT FI PI .. F2 P2 .. F3 P3 .. F4 P4; ,. PRJNT RESULTS. ., 

6. SAS Codes for Profile t Plots 

,. DEFINE MACRO 0, 

%LET MHAT=85.3; ,. VARJABLES FOR ., 
%LET LHAT=1.98; ,. USE IN lATER 0, 
%LEf KHAT=1.I9; ,. CALCUlATIONS. ., 
%LET CHAT=.464; ,. TIlESE ARE ., 
%LET SE=2.1938; ,. EST.'S FROM 0, 

% LET SS=2467.13; ,. PRIOR NUN RUN. ., 
%IET DF=1l6; ,. F IS A CUT OFF ., 
% LET F=3.48; ,. VALUE FOR TAU = ., 
%IEf T=O.O; ,. SQRT(F(P,N-P;a) 0, 

%MACRO TAU(DELT); 

DATA _NULL_; ,0 CONVERT TIlE DELT ., 
VAL=(&DELT*&SE) + &MHAT; ,. V AWE TO TIlE ., 
CALL SYMPUT('MTRY' ,VAL); ,. PARAM SCALE. ., 

PROC NUN METHOD=GAUSS BEST=l DATA=OGERM OUTEST=EST; 
PARMS M = &MTRY K = &KHATL = &LHATC = &CHAT; 
BOUNDS &MTRY < =M< = &MTRY ,K>O, 0<1..<3 ,O<C<3; 
TEMPI=X-L; 

,0 CONVERGE ON ., 
TEMP=EXp(-«K'(TEMPl»*'C); ,. PARAMETERS ., 
MODEL GERM=MoO-TEMP); ,0 WHILE HOLDING ., 
DER.M=(I-TEMP); ,0 ONE CONSTANT °i 
DER.K=(M°C)°TEMP*«(K°(TEMPI» ,0 (eg M). 0, 

o'(C_I»'(TEMPI); ,. TIllS IS DONE ., 
DER.1..= (-M'C'K)'TEMP*«K'(TEMPI» ,. TO GET A VALUE *' 

*'(C-I»; ,0 OF SSE WHICH IS 0, 
DER.C = (M)*TEMP*(LOG«K°(TEMPI»))) ,. USED TO CALC *' 

°(K°(TEMPI»OOC; ,0 TAU. 0, 
DATA EST(KEEP = DEL TAU); 

SET EST; ,0 RETRIEVE DATA 0, 
-"'" IF JYPE_ = 'FINAL'; '* SET FROM. NUN *' ....... 
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DEL = &DELT; ,. AND CALCULATE ., .J:>. 
tv 

,. DELTA AND TAU. ., 
TAU = SIGN(&MTRY - &MHA1) • 

SQRT(C SSE_ - &SS)'(&SS'&DF»; 
TABS =ABS(TAU); 

ALE 'A:M.DAT' MOD; ,. OUTPUT RESULTS ., 
PUT @I DEL @IO TAU; ,. TO ASCII ALE. 0' 
CALL SYMPUT('MHA T' ,M); ,. UPDATE PARAM'S 0, 
CALL SYMPUT('lliAT' ,L); ,. FOR NEXT ITER. ., 
CAlL SYMPUT('KHA T' ,K); ,0 0, 
CAI.L SYMPUT('CHA T',C); ,. ALSO ABS(TAU) ., 
CALL S YMPUT('T' ,TABS); ,. FOR TEST W'F. ., 

%MEND; 

,. REPEATEDLY CALL ., 
%MACRO LOOP; ,. MACRO 'TAUO' ., 

%00 HALF=I %TO 2; ,. WITH VALUES OF ., 
%DO 1=0 %1'04; ,. DELTA, FIRST ., 

%00 J=O %1'09; ,. NEGATIVE THEN ., 
%IF &HALF=I %THEN %LET DELT=-&I..&J; ,0 POSITIVE. THIS ., 
%ELSE % LET DELT=&I..&J; ,. STOPS IF T > F. 0, 
%TAU(&DEL1); ,. THIS PROCF..5S ., 
%IF &T> &F THEN %GOTO LABELl; ,. IS REPEATED FOR ., 

%END; ,. ALL PARAMETERS. 0, 
%LABELI: %END; ,0 THE MACRO ., 

%END; ,. VARIABLE SE ., 
%MEND; ,. (S.E. OF ES1) 0, 

,. MUST BE SET FOR ., 
DATAOGERM; ,. TIlE PARAMETER ., 

INFILE 'A:ONION.DAT' FlRSTOBS=5; ,. BEING WORKED ON. ., 
INPUT REP V AR $ TRT X GERM; ,. TIllS PARAMETER ., 
IF VAR= 'C' AND TRT=O; ,. MUST Al.SO BE 0, 

,. BOUNDED BY TRY. ., 
%1..001'; 
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