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STRAIGHT LINE REGRESSION WHEN BOTH VARIABLES ARE 
SUBJECT TO ERROR 

Norman R. Draper 
University of Wisconsin 
Department of Statistics 
1210 West Dayton Street 

Madison, WI 53706 

ABSTRACT 

This expository note discusses the problem of fitting a straight line when 
both variables are subject to error. A brief review of the literature is under­
taken, and one fitting method, the geometric mean functional realationship, 
is spotlighted and illustrated with two sets of example data. The emphasis 
is on providing practical advice. All methods have drawbacks, but the geo­
metric mean functional relationship method appears to provide a sensible 
course of action in many practical problems, and could benefit from further 
investigation. 

1. INTRODUCTION 

Whenever we fit the model 

(1) 

by least squares to a set of n data values (Xi, 1~), we llsually take it for 
granted that Y is subject to the error €i and X is not subject to error. If this 
is true, and if the vector of errors! = (€l I €2, ... , €n)' is distributed N( 0, I (J2), 
maximum likelihood estimation and least squares estimation, namely 

provide the same estimates (bol bd of ({30, {31). 
What if both X and Yare subject to error? We can write 

Xi = ~i + 8i. 

We assume that a straight line relationship 

(2) 

(3) 

(4 ) 
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holds between the true but unobserved values T}i and the n unknown pa­
rameters ~i' Substituting (4) into (2) and then substituting for ~i from (3) : 

(5) 

Let us assume that (j IV N(O, er2 ), with the (j u"ncorrelated, and OJ ,..", NCO, ern, 
with the OJ uncorrelated, with (i and OJ uncorrelated, and define 

n 

CTi = I)<i - {)2 /n, 
j=1 

CT{6 = Covariance «, 0), 

p = CTf,6/(CTf, CT6) , 

r = CT6/CTf,. 

(6) 

(7) 

(8) 

(9) 

In (7), CTf,6 would typically be zero; however, see case (2) below. If, mistakenly, 
we fit (1) by least squares, bi will be biased. In fact 

E(b l ) = f3I _ f3lr(p + r) . 
1 + 2pr + r2 

(10) 

The bias is negative if CTl + CTf,6 > 0, this is, if p + r > O. The bias arises from 
the fact that X j is not independent of the error in (5), in general. In fact 

(11 ) 

We thus see that there are cases where fitting (1) by least squares will provide 
little or no bias. These are 

1. If CT; is small compared with er€, the errors in the X's are small com­
pared with the spread in the <.'s (and so in the X's) and r will be small. The 
bias in (10) is then small. This is what is often assumed in practice, when 
least squares is used. 

2. If the X's are fixed and determined by the experimenter (see Berkson, 
1950), then er{6 = Covariance(X;-o, 0) = -erl, which means that erf,6+erl = 0, 
or p + r = 0, implying zero bias in (10). 

3. We wish to fit Yi = T}j + fi where T]i = 130 + 13I X i (the observed Xi, 
note) and not as in (4). 

These formats will not fit all practical cases. One case that occurred 
at the University of Wisconsin in connection with a study on wild birds, 
required the observation of X j = "the distance the bird was from a path". 
The student pointed out that, as she approached a bird, it flew away before 
she got close enough to see precisely where it had perched. Thus error in 
recording X was unavoidable. 

In Section 2, we summarize some of the published work on this topic. 
In Section 3, we highlight the geometric mean functional relationship. The 
latter is applied to two data sets in Section 4. 
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2. SELECTED PRIOR WORK 

If we attempt to obtain maximum likelihood estimates of /30 and /31 under 
the distributional assumptions made in connection with (5), we find that 
there is an identifiability problem. The estimation cannot be carried through 
without some additional information being added, for example, knowledge 
of the ratio>' = {j2 /{j~. (Barnett, 1967; Wong, 1989). This is Case III of 
Sprent and Dolby (1980), discussed below. Various authors have suggested 
alternative analyses. 

Geary {1942} proposed a method dependent on fourth order mixed cu­
mulants of X and Y. However, the two estimates obtained sometimes lie 
outside the "regression limits" defined by the' two least squares lines of Y 
against X and X against Y. 

Sprent and Dolby (1980) distinguish four cases: 

1. (X, Y) are bivariate normal variables and E(YIX) = /30 + /31X, 

II. Y "'" N(/3o + PIX, (j2). The observed X-values are fixed on realizations 
of a random variable with any (reasonable) distribution. 

In both I and II, estimates via maximum likelihood are the usual least squares 
estimatesb l = SXy/Sxx and bo = Y-bIX, where SXY = t (Xi-X)(1'i-Y) 

,:=1 . 

and Sxx = t (Xi - X)2 . 
• -1 

III. The case of Section 1. If >. were known, maximum likelihood leads to 
estimates 

( 12) 

where Syy = t (li - Y)2. Note that, if>. = Syy/SXX'~1 = (Syy/SXX)1/2 
... 1 

which is the geometric mean functional relationship, after attachment of the 
sign of SXY' This is often called the functional relationship model. Note also 
that, when>. = 1, the solution (12) defines the line which minimizes the sum 
of squares of perpendicular deviations from the line. Many people find such a 
solution intuitively satisfying, but it is appropriate only when {j2 = (jl, that 
is, when>. = 1. This solution was first given by Adcock (1878). 

IV. Similar to III but with ~i a normal random variable, independent of 
h, so that because of (4), (~i' 7]i) follow a joint degenerate bivariate 
normal distribution. This is the so-called structural relationship model 
and again, the case III solution applies if >. is known. 
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Sprent and Dolby "do not recommend ad hoc use of the geometric mean 
functional relationship when there are errors in both variables," arguing that 
other ad hoc estimates could equally be used. The paper by Barker, Soh 
and Evans (1988) provides an excellent justification for the geometric mean 
functional relationship, however. These authors show that the estimator 
minimizes the sum of the triangular areas formed by drawing horizontal and 
vertical lines to the fitted lines from the observed points; see Figure 1. (This 
had previously been pointed out by Teissier (1948), but his paper was acces­
sible only to those who read French, and so was not widely known. A clear 
restatement and diagram are given by Harvey and Mace (1982, p. 349). The 
geometric mean functional relationship has been condemned as being incon­
sistent, that is, the estimates do not tend to their true values as n tends to 
infinity. However, other estimators are biased, and what happens for large n 
is often not of concern to those with practical problems and small data sets. 

Patefield (1981) looks at the multi-X case and extends the following sin­
gle -X results: When>. is specified, and both X and Y distributions are 
normal, the maximum likelihood estimate of fil takes the same form for both 
structural and functional relationships and is bounded by the slopes from the 
two (Yon X) and (X on Y) regressions. (In the latter case, we transpose 
the fitted equation to a Y on X form to get the bound.) Some asymptotic 
comparisons are also made. 

Reilly and Patino-Leal (1981) provide general methods for producing the 
posterior probability density function for the parameters. The error covari­
ance matrix is assumed to be known. A virtue of the development is that 
both linear and nonlinear models can be handled using this technique. 

Brown (1982) assumes>. known, discusses deficiencies in the ma..ximum 
likelihood estimator, and offers a robust alternative. 

Cban (1982) offers a method of estimating PJ when the ~i arise fr0111 a 
uniform distribution over a specified range. He seeks to find consistent es­
timators of the parameters by using a local maximum, rather than a global 
maximum, of the likelihood function that results .. He concludes via simula­
tions that his new method is better for larger n, and that both his method 
and the geometric mean functional relationship have "too large mean squared 
errors to be of practical use" under the uniform distribution assumption. 

Wolter and Fuller (1982) provide formulas for estimating a quadratic 
model in one X. They provide (normal) asymptotic distribution results for 
the estimates and perform some "small-sample" (n = 33 and 66) simulation 
results. 

Ketellaper (1983) concludes that a "corrected least squares estimator", 
bCLS = SXY /(Sxx - an, suggested by Madansky (1959), is better, at least 
for n ~ 20, than SXy/Sxx, the usual least squares estimator. 

Mandel (1984) gives a series of steps to get a straight line fit for the (X, Y) 
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situation. He also suggest a way of checking if the ordinary least squares Y 
on X solution is acceptable by evaluating a particular number (p. 10). The 
evaluation requires knowledge of ). and (J{6. 

Lakshminarayanan and Gunst (1984) examine maximum likelihood esti­
mation when). is known. They conclude that "effective use of asymptotic 
properties of the ... estimator ... requires a large sample size and accurate 
selection of ... >.." 

Schnute (1984) proposed several estimation criteria based on minimiza­
tion of various functions of sample moments of the data. 

Stefanski (1985) uses an M -estimator for parameter estimation in a very 
general errors-in-variables formulation, assesses asymptotic bias and dis­
cusses the construction of an estimator with smaller bias. 

GIeser and Hwang (1987) show that, for errors-in-variables regression 
models (and for other specific models), "it is impossible to construct confi­
dence intervals for key parameters which have both positive confidence and 
finite expected length (p. 1351)." Their work "casts doubt upon the use­
fulness of large sample approximations in such models, at least when used 
for the purpose of forming confidence sets or assessing the accuracy of point 
estimators. " 

Burr (1988) suggest an ad hoc modification to the maximum likelihood 
solution in the "Berkson case ... under which the values of the predictor vari­
ables are set by the experimenter but not achieved exactly." She concluded 
that the modification was not worthwhile if 3), < 1,2f31 < 1, or n < 60. Some 
modifications suggested by Whittemore and Keller (1988) require knowledge 
of some of the parameters and "are most useful when applied to large data 
sets ... " (p. 1065). 

Miller (1989) in a general multiresponse regression setting concludes that 
"if someone is comfortable with using a particular large sample test [on resid­
uals] in the usual regression setting, than they should also feel comfortable 
with the same test when applied to errors in variables residuals." His con­
clusion applies to residuals obtained by any method of parameter estimation 
whose bias is of order n- 1/ 2 in probability. 

Wong (1989) considers maximum likelihood estimation and slope-testing 
methods when>. is known (and assumed to be equal to 1). 

Whittemore (1989) suggests a method where the unobserved variables ~i 
are estimated from the Xi via a James Stein estimation procedure, followed 
by M-estimation of the model parameters. 

Jeffreys (1990) applies several robust estimation methods to astronomical 
data by adapting least squares software, and emphasizes the value of these 
procedures when outliers are present. See also Zamar (1989). 

Naidu (1990) suggests an adjusted linear estimator (ALE) which depends 
on an unknown matrix L, an estimate of which is obtained by a ridge-
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regression-like method called the Extended Ridge Method. Some simulations 
indicate that the ALE improves on ordinary least squares (Yon X) in certain 
circumstances. 

Riggs, Guarnieri, and Addelman (1978) study, partially through simula­
tions, a variety of 34 different methods of fitting (X, Y) data. While they 
favor (12), they warn that a reasonably accurate estimate of >. is desirable. 
They also point out that the geometric mean functional realtionship occupies 
a "central position" in compromises between the two least squares solutions, 
Y on X and X on Y, an appealing characteristic (see their Figure 8, page 
1338). 

3. PRACTICAL ADVICE 

Although many of us try to avoid the issue of errors in both X and Y by 
advising "Take data where the X-range is large compared with the X-error," 
this cannot always be done, and one must often suggest something specific. If 
), is known (or can reasonably be estimated) use of the maximum likelihood 
solution (12) is probably best. . 

A simple alternative initially suggested by Wald (1940), using two groups, 
and amended by Bartlett (1949) to three groups is the following: Divide the 
data into three equal (or as equal as possible) groups with: (1) the smaller, 
or most negative, X-values; let PI = (XI,Yd be the center of gravity of 
these. (2) The larger, or least negative, X-values; let P3 == (X3, 1"3) be their 
center of gravity. (3) The remainder, which are used only in estimating the 
overall center of gravi ty, (X, Y). . Use the line passing through (X, Y) wi th 
slope (Y 3 - Y 1) / (X 3 - Xl)' that is, parallel to PI P3 . For reasoning, see Wald 
(1940), and Bartlett (1949). Later studies by Gibson and Jowett (1957) 
indicate that maximum efEcency is achieved by a division of observations 
closer to the ratio 1 : 2 : 1, but the exact split is not crucial. 

My own preference is to suggest the geometric mean function relationship 
for which the estimators are 

• 1/2 /31 = (Syy/Sxx) , (13 ) 

The estimator /31 is the geometric mean of the quantities 

where b1 and a1 are, respectively, the slopes in least squares fits of Y versus 
X (Y = bo + b1X) and of X versus Y (X = aD + Ul Y). Inverting the latter 
relationship leads to 
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so the geometric mean ~l = (b1 all )1/2 is a compromise lying in between 
the two "Yon X equation" slopes. Note that, if the roles of X and Yare 
reversed, exactly the same line emerges, that is, the fitted line 

(14) 

is uniquely defined. This natural symmetry is most appealing. The attrac­
tiveness of the geometrical mean functional relationship. has been greatly 
enhanced by the independent discoveries of Teissier (1948) and Barker, Soh, 
and Evans (1988) that this solution is an optimum solution to a specific 
problem. (See, also Harvey and Mace, 1982.) That is, the geometric mean 
functional relationship minimizes the sum of the areas obtained. by draw­
ing horizontal (parallel to the X -axis) and vertical (parallel to the Y-axis) 
lines from each data point (see Figure 1). The symmetry of the solution is 
again obvious; interchange of th~ X and Y axes leaves the areas unchanged. 
One disadvantage of the geometric mean functional relationship is that no 
easy calculations are available for conducting tests on the parameters or con­
structing confidence intervals for them. For the complications involved, see, 
for example, Creasy (1956). A referee remarked that applying PROC NLIN 
in SAS and defining the LOSS function as the sum of the areas might offer 
some help here; I have not evaluated this possibility. (While it is true that 
maximum likelihood methods can make appeal to asymptotic results at this 
point, such results do not seem to apply too well when n is small, judging by 
the comments of various authors.) 

We now apply the geometric mean functional relationship solution to 
some published sets of data. 

4. EXAMPLES 

Example 1. The data in Table 1 were used by Jeffreys (1990) and taken 
from Dressler (1984). "They consist of the integrated V magnitudes F26 , and 
log of the central velocity dispersion, log (J, of a sample of 53 galaxies from 
two galaxy clusters, the Coma and Virgo clusters." (Jeffreys, 1990, p. 602). 
The model 

log (J = fJo + fJl V26 

is deemed appropriate with a common fJl and a different fJo for each cluster. 
Four outliers are present (asterisked in Table 1) which we ignore. (This 
bypasses some of the points made by Jefferys which are not our concern 
here.) We adopt a dummy or indicator variable z; z = 1 for the Coma 
sample and z ° for the Virgo sample. Two least squares fits using the 
models 

7 
Conference on Applied Statistics in Agriculture

Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1991/proceedings/2



8 

and 
V26 = 00 + 01 log 0" + 02Z + E 

provide, respectively, fitted equations 

log 0" = 3.4795 - 0.116334V26 + 0.44097z 

and 
V26 = 25.329 - 6.5641 logO" + 3.7685z. 

The slope of the geometric mean functional relationship is thus 
{-0.116334/( -6.5641) p/2 = -0.133127. Putting parallel straight lines with 
this slope through the individual centers of gravity of the two sets of data 
provides fitted equations 

log 0" = 4.159 - O.133V26 (Coma sampie) 

and 
log 0" = 3.656 - 0.133V26 (Virgo sample). 

These are very close to the reference solution of Jeffreys (1990) which was 
"an errors-in-variables least squares fit" to the same -data. (The method 
is not further explained.) They are virtually identical to Dressler's (1984) 
values obtained via a sensible ad hoc procedure. (Jeffrey's: 4.14,3.65, -0.132; 
Dressler's: 4.156,3.656, -0.1333). 

Example 2. The data in Table 2, from Kelly (1984), were taken from Miller 
(1980). Kelly uses the data to illustrate points she is making about (i) es­
timating the variance of the classical estimators of (12) and (ii) detecting 
influential observations. We analyze them using the geometric mean struc­
tural relationship estimator. 

The two fits to all the data (X = heelstick, Y = catheter) are Y = 
2.786 + 0.8805X) and X = 4.210 + O. 7870Y, which we can invert to the form 
Y = -5.349 + 1.2706X. The geometric mean functional relationship is thus 
Y = -0.91 + l.058X. Both individual regressions indicate that the second 
observation is influential, however, and a plot of the data indicates we might 
consider dropping it. The two fits to the remaining 19 observations give 

}/ = -1.628 + 1.1147 X, 

and 
x = 5.482 + 0.70462Y, 

which we can invert to the form 

Y = -7.780 + 1.4192X. 
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Then ~ = (1.1147/0.70462)1/2 = 1.258 and the geometric mean functional 
relationship is 

Y = -4.52 + 1.258X. 

(If the second observation is not deleted, the parallel result would be }/ = 
-0.91 + 1.058X, where the 1.058 is the geometric mean of the slopes 0.8805 
and 1.2706.) Kelly (1984) obtains two 95% confidence intervals for the slope 
using all the data, getting (0.76, 1.38) via a bootstrap method, and (0.76, 
1.52) via a method based on normal assumptions, given by Kendall and Stu­
art (1961, pages 388-390). She concludes that these support the hypothesis 
that f30 = 0, f3l = 1, which implies that the methods of measurement which 
gave rise to Table 2 are equivalent. She then points out that removal of the 
second observation takes the estimated point for (f3o, f3I) "to approximately 
the edge of a 60% confidence region around" her original estimates based on 
a maximum likelihood analysis assuming). = 1. I interpret that to mean that 
the hypothesis f30 = 0, f3I = 1 is no longer supported. 

The geometric mean functional relationship does not provide confidence 
intervals, but we can get a rough feel for the situation by looking at the 
estimates when all equations are written in Y on X form. \Vhen observation 
2 is included, the two slopes are 0.8805 and 1.2706 and their geometric mean 
is 1.0577; the two intercept values are 2.786 and -5.349 and the intercept 
of the geometric mean functional relationship is -0.91. One feels that the 
hypothesis intercept = 0, slope = 1 is not unreasonable. Now remove the 
second observation. The slopes are now 1.1147 and 1.4192 with a geometric 
mean of 1.258 (all> 1) and the two intercepts are -1.628 and -7.780 (both < 
0) with an intercept of -4.52 from the geometric mean functional relationship. 
The impression we get is that the hypothesis is not valid. Thus the situation 
turns on the one influential data point. Can we regard the two lines that lead 
to the geometric mean functional relationship as confidence limits of some 
sort? No properties of them are known, it seems, but using them appears to 
be common sense. Comments are welcomed. 

SUMMARY 

Practical advice on what line to fit is often sought by researchers whose 
(X, Y) data have errors in both variables. The extensive literat.ure available 
is hard to consult quickly. This expository note provides a selective summary 
of some of the methods available, and suggests use of the geometric mean 
functional relationship as a sensible way to proceed. This method is applied 
to two sets of published data for illustration. 
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Table 1 
Star data from Dressler (1984) and Jeffreys (1990). In the example, the 

four asterisked observations will be ignored. 

Coma sample (z = 1) Virgo sample (z = 0) 
V26 log () V26 log () 

12.60 2.449 11.39 2.242 
13.12 2.394 12.53* 1.716* 
14.23 2.285 9.98 2.412 
14.86 2.166 9.37 2.480 
15.88* 1.863* 12.24 2.059 
13.92 2.286 9.20 2.355 
15.45* 1. 761 * 12.17 2.009 
14.36 2.209 12.01 1.949 
15.07 2.113 12.50 2.079 
14.07 2.301 8.56 2.474 
14.53 2.243 10.28 2.268 
15.60 2.169 11.28 2.170 
12.27 2.383 8.79 2.528 
14.36 2.311 12.02* 1.778* 
14.50 2.339 11.92 2.021 
15.52 2.251 9.95 2.391 
13.46 2.361 11.30 2.185 
11.85 2.584 9.88 2.338 
15.31 2.007 9.82 2.303 
13.98 2.180 8.90 2.514 
15.28 2.099 10.97 2.262 
14.26 2.275 9.28 2.276 
14.11 2.320 11.37 2.027 
14.87 2.191 
14.82 2.247 
15.37 2.059 
13.49 2.394 
15.04 2.154 
13.67 2.274 
12.88 2.383 
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Table 2 
Serum kanamycin levels in blood samples drawn simul taneously from 

an umbilical catheter and a heel venapuncture in twenty babies 

Baby Heelstick (X) Catheter (Y) 
1 23.0 25.2 
2 33.2 26.0 
3 16.6 16.3 
4 26.3 27.2 
5 20.0 23.2 
6 20.0 18.1 
7 20.6 22.2 
8 18.9 17.2 
9 17.8 18.8 

10 20.0 16.4 
11 26.4 24.8 
12 21.8 26.8 
13 14.9 15.4 
14 17.4 14.9 
15 20.0 18.1 
16 13.2 16.3 
17 28.4 31.3 
18 25.9 31.2 
19 18.9 18.0 
20 13.8 15.6 
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Figure 1 

The geometrical mean functional relationship line minimizes 
the sum of the shaded areas. (The dots are data points.) 
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