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A SIMULATION STUDY ON THE RELATIONSHIP BETWEEN THE ABUNDANCE AND SPATIAL 
DISTRIBUTION OF INSECTS AND SELECTED SAMPLING SCHEMES 

J. L. Willers', D. L. Boykin2, J. M. Hardin3, T. L. wagner', R. L. Olson', 
and M. R. Williams4 

ABSTRACT 

During the development of a Bayesian approach to estimate insect 
population abundance, it was necessary to compare not only the reliability 
of Bayesian estimates, but to also compare these estimates to those 
obtained by traditional methods employed by entomologists. To facilitate 
these comparisons it was necessary to use simulated fields apportioned into 
quadrats where conditions representative of insect abundance and dispersion 
are modeled. Thus, a simulation model was developed using SAS to derive 
ex~mple insect populations from which s~~ples could be drawn. The negative 
binomial distribution was used to simulate the proportion of infested 
plants (p) with various degrees of clustering (k) for specified quadrat 
sizes. Another component varies sample parameters which represent the 
total number of plants sampled per field, the number of plants sampled per 
quadrat, and thus the number of quadrats sampled per field. 

1. INTRODUCTION 

A substantial proportion of the production costs in cotton is for 
insect control, averaging in 1988 nearly $30/acre throughout the cotton 
belt (Head 1989). With continued trends toward the reduction of the number 
of registered insecticides and increased public pressure for environmental 
concerns, control costs are expected to increase. Conversely, when 
damaging densities of insects are not controlled, losses in net profit and 
fiber quality occur. Thus, it becomes increasingly important that adequate 
methods for estimating the abundance of insect pests be developed so that 
insecticides are applied only when necessary. Additionally, the continuing 
development of expert systems (Jones 1989; Olson et ale 1990), means that 
not only these programs, but the human experts who build these systems, 
need dependable information to provide reliable recommendations. For 
example, an input prompt from the rule-based expert-system, CIC-EM (Bowden 
et ale 1990), reads: "Select the parameter that best indicates the number 
of Heliothis larvae per acre found in terminals (Low: 0 to 1500, Medium: 
1500 to 4000, High: Above 4000)", At typical planting densities of 40,000 
plants per acre, the selection of "High" corresponds to an infestation rate 
of 2:: 10 per cent. 

Sampling insect populations is a traditional topic among 
entomologists (Ruesink 1980; Sterling and Pieters 1979; Wilson et ale 
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1989). Despite the abundance of published sampling plans, demands for 
improved methods of sampling are still found in recent publications 
(Frisbie et al. 1989; Reissig et al. 1989). Therefore, efforts were 
directed toward exploring the possibility of using Bayesian concepts to 
develop robust, efficient sampling plans. 

In the biological sciences, including entomology, the Bayesian 
technique has recently been addressed (Gazey and Staley 1986; Nyrop et al. 
1986; Plant and Wilson 1985). Some attractive features of Bayesian 
methods, germane to this study, include: (1) the immediate and automatic 
use of all available data, and (2) using the decision maker's "degree of 
belief" in how an unknown parameter changes with increasing information 
(Box and Tiao 1973; Johnson 1977). Further, according to Gazey and Staley 
(1986), all quantities are of two kinde- those known and those unknown to 
the person making the inference. If one is able to adopt the position that 
the uncertainty of the unknown ~Jantity can be described by a probability 
distribution, a formal procedure for solving inference problems is 
obtained. Building upon these concepts, a useful approach is provided for 
the evaluation and update of sparse information. A situation typically 
encountered in the estimation of insect populations in cotton is used for 
illustration. 

lAo Illustrative Problem: 

consider that for the purpose of commercial monitoring (Wilson et. al 
1989), an entomologist determines that an examination of 100 plants in a 50 
acre cotton field is sufficient for making a judgement on the abundance of 
Heliothis eggs. In his or her opinion, a sample of this size represents a 
manageable sample (Schmitt 1969), especially in comparison to the 2,000,000 
or more plants that are present within the field. Clearly, if all 100 
plants have or do not have eggs, confidence is high about the condition of 
the remaining hundreds of thousands of plants left unexamined. But, if 5 
to 35 of 100 plants are found to have eggs, confidence about the character 
of the rest of the field is less certain. Thus, these points, in addition 
to the decision rule used to determine if an insecticide should be used, 
represent some of the information known prior to sampling. 

Before sampling, there is some information which is unknown. The 
principle unknown quantity, R, is the probable number of plants that can be 
found infested with Heliothis eggs. Secondly, although 100 plants is the 
declared finite sample size (N), it may not be possible to always achieve a 
sample of this size; thus the actual s~~ple size for a field can vary. 
Also, the number of distinct locations at which plants are examined can 
vary from field to field. 

In many extant sampling plans, the sample size relative to the 
population size of plants at risk to insect attack is extremely sparse. 
Further, most sampling schemes do not utilize information about the number 
of locations (sub-samples) in a field examined for insects to obtain an 
estimate of the field infestation rate (p). Within these constraints, an 
iterative Bayesian approach, which uses the known and unknown information, 
can be used to infer the probable proportion of plants at risk to insect 
attack. This inference constitutes the basis for the management decisions 
on the field. 

The current solution approach is developed from concepts presented in 
Berger (1985), Gazey and Staley (1986) and Schmitt (1969). The selected 
probability model is the hypergeometric distribution, a discrete 
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distribution applicable to binomial (presence or absence) sampling without 
replacement. The form used here, corresponding to that used by Schmitt 
(1969), is: 

P(R:N n r) J ~)( ~=~) 
" (N+1) n+1 

(1) 

Note that the denominator must be modified because the domain for Rand r 
include the alternative, O. For example, r ~ 0, 1, 2, .•. , n. The domain 
for R, and the definition of notation is presented below. 

The data utilized for this illustrative example are from an actual 
scouting report. The known information used to parameterize eg. (1) are 
the following quantities: (1) the declared, finite sample size (N = 100), 
(2) the sub-sample sizes (ni = 9,14,17 or 17 plants) from four locations 
(i), and (3) the corresponding number of events of interest, r, (here, the 
presence of at least one Heliothis egg upon a plant) observed in each 
respective sub-sample (rj = O,l,l,or 3). The unknown information, 
represented by the parameter R, is a vector of 101 competing, but equally 
likely, alternatives a priori (R = 0, 1, 2, 3, ••. , 100). Currently, this 
initial vector is a non-informative, uniform prior (Gazey and Staley 1986; 
Schmitt 1969), which is the reciprocal of the finite number of 
alternatives. The task is to calculate the degree of belief, portrayed by 
the posterior distribution [PrOb(RIN,n,r)], for each of these alternatives 
given the information obtained from the samples (Box and Tiao 1973; Schmitt 
1969) . 

The rule of Bayes (Box and Tiao 1973) can be given by a recursive 
formula (Gazey and Staley 1986): 

Posterior distribution(i) <= LikelihoodCi) x Prior distribution(j_1)' (2) 

Since there are four locations (i = 1,2,3,4) from which samples were 
acquired, there will be four iterations of the sequential Bayesian 
algorithm. To properly iterate, the information from the locations must be 
rank ordered by r within n, and the Enj ~N. (This algorithm is not to be 
confused with the Bayesian sequential sampling method of Plant and Wilson 
(1985)]. The non-informative prior, Prior(O)' is modified by the likelihood 
calculated from the first sample (i = 1; prob(RI100,9,0». continuing the 
algorithm, the first posterior distribution becomes the prior to be updated 
by the likelihood of the second sample, and so on until the final posterior 
distribution is calculated (i = 4). The sequences of distributions, 
including the non-informative prior, are graphed in Fig. 6. The final 
sequence is shaded. 

The final posterior distribution represents the entomologist's 
knowledge about the status of the field. The mode of this distribution is 
9, which is approximately equal to the ratio of the sums, Eri/Enj, or 5/57. 
From the calculated probabilities, it is possible to construct the 
cumulative distribution function, and define the standardized probability 
region (Gazey and Staley 1986; Johnson 1977), the limits R1 and R2' which 
define the interval: 

0.95. (3) 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1990/proceedings/5



36 

Of primary interest is the information provided by the pattern of the 
posterior distribution sequences (Gazey and Staley 1986). For this 
illustration, it is observed that three of the four posterior distributions 
have modes ~ 5. The mode of the final posterior is > 5, because the 
likelihood of the fourth and final sample (not shown on the graph) is 
centered about R = 18 (or 3/17), shifting the final posterior to centralize 
about R = 9. Suppose for the purpose of illustration, that the decision 
rule (or threshold) to use an ovicide was 10 per cent (R ~ 10). A cautious 
decision maker might choose to spray, since the mode and the standardized 
probability interval of the final posterior are close to and include values 
of R ~ 10. However, the pattern of the four sequences suggest he should 
choose not to spray. 

In order to understand how the pattern of the iterative sequences 
supply the evidence to choose the "No spray" decision, additional 
information needs to be elaborated. The eggs of Heliothis, as well as 
young larvae, are typically dispersed as clusters (or aggregates) in the 
field (Allen et al. 1972; Pieters and Sterling 1973; Wilson and Room 1983). 
Thus, the three likelihoods that center over low values of R, and t~e one 
likelihood that centered over R = 18, reflect a clustered, but sparse 
distribution for the insect population currently present in this field. In 
fact, for this field, 12 additional locations, representing 204 more plants 
were examined, and only one more egg was found. The additional 
(over) sampling, in this instance, confirmed the conclusion provided by the 
spatial patterns of the sequences which used a much smaller sized sample. 
By recursively utilizing sub-sample data with Bayes' theorem, additional 
information that would otherwise be discarded is available to the decision 
maker. These results provide the motivation for the simulation experiment 
described in this paper. 

2. SIMULATION OF INSECT DENSITY AND SPATIAL ABUNDANCE 

The purpose of the simulation experiment is to explore the following 
hypothesis suggested by the previous example: Is it possible to use the 
distribution of the likelihoods (or posterior distributions) of an 
iterative Bayesian algorithm to infer if the relative estimate of 
population abundance (p) is robust, and if the insect population is 
clustered or randomly dispersed? Another application of the simulation 
analysis is to provide direction for developing a sampling program to be 
used in the field. 

The topic of spatial pattern analysis in ecology has been addressed 
by many authors, including Ludwig and Reynolds (1988), Pielou (1977) and 
Southwood (1978). In many of these analyses, the spatial patterns are 
described by probability distributions. In this study, the negative 
binomial distribution, as described by Anscombe (1949), is used to model 
the spatial pattern of Heliothis eggs among quadrats. The negative 
binomial distribution describes the probability (PR,) of having R' infested 
plants in a quadrat containing N' plants: 

where 
k clustering parameter, 
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Also, 

m = N' * p, the average number of infested plants 
per quadrat, and 

p = average proportion of infested plants per 
field (grid). 

E(R') = m, 
Var (R') 

k 
m + m2jk, 

= m2 j (Var - m). 
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Quadrat size is determined by the number of plants (N') contained in 
a cell, based upon a density of 3 plants per foot of row, with 40 in. row 
spacings. The quadrat determines the area in which clustering is expected 
to occur; however, the point pattern of infested plants within quadrats is 
assumed to be randomly distributed. 

Using SAS, PR, may be obtained by PR, = PROBNEGB(PP,k,R'), where PP = 
k/(m+k). The SAS programs used to perform these simulations are available 
upon request. The computer simulation has two parts: (1) To simulate 
solid planted (that is, there are no skip rows) cotton fields and randomly 
place insects in the field based on given parameters of the negative 
binomial (Figs. 1-5) and (2) To randomly select a given number of plants 
from the simulated field, and interpret the information taken from the 
sampled plants by several methods (Fig. 8 and Table 1). The insect 
densities selected are 1, 5, 10, 15, 20 and 25 per cent, with various 
levels of clustering [high (k = 1), medium (k = 2,3), and low (k = SO)] for 
different quadrat sizes of SO, 100, 150, or 200 plants. Additional 
parameters determining sampling characteristics, and which attempt to 
approximate the behavior of a cotton scout are: NS = Total plants checked, 
S = No. of stops (quadrats) per field, and NP = No. of plants checked at 
each stop. 

Other constraints currently placed on the simulation model are that 
only one spatial distribution represents an entire field, each stop occurs 
in a different quadrat and there is no bias in the selection of the quadrat 
or of the plants within it. Further, the information obtained from the 
sampled plant is limited to either a "yes or no" rating, and there is no 
measurement (scouting) error since an infested plant, if sampled, is always 
rated as "yes". These constraints describe what has been done up to this 
point, although there are other constraints that could be considered to 
improve the realism of the model. For example, cotton fields are usually 
quite large, and the decision to spray or not spray will usually apply to 
the whole field. In reality there are probably several spatial 
distributions and infestation rates within a field, which complicates the 
making of management decisions. Later studies will address this and other 
issues. 

3. SIMULATION AND SAMPLING RESULTS 

A simulated tract of a cotton field is shown in Figure 1. The 
dimensions of this 7 x 18 grid are about SO by 150 feet, with the rows 
running horizontally. Each rectangle represents a quadrat of N' = SO 
plants, or an area of 2 rows x 8.333 feet. This plot represents the 
dispersion of infested plants when the negative binomial is parameterized 
with a k value of 1 and an overall infestation rate (p) of 10 per cent. 
The symbol within each quadrat depicts the number of infested plants where 
R' ranges from 1 to 50 plants. While Fig. 1 depicts a field with a high 
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level of clustering (k = 1), Fig. 2 is similar, but with less clustering of 
infested plants (k = 50) within the grid. The change from a quadrat size 
of 50 to 200 plants, for a grid equivalent in area to that of Fig. 1, is 
illustrated by Fig. 3 for k = 1 and p = 0.10. Note the adjustments in the 
symbol scale. 

For either field in Figs. 1 and 2, a 10 per cent infestation rate is 
an expectation of 5 infested plants per quadrat. However, the clustering 
parameter, k, determines different dispersion patterns among the grids. 
When there is not much clustering (Fig. 2), most quadrats tend to have 
about 5 infested plants, with a few not having any infested plants. When 
there is clustering, most quadrats are without infested plants, and the 
frequency of quadrats with 11 or more infested plants is greater. A 
quadrat with 11 or more infested plants is arbitrarily called a "hotspot". 
These are quadrats where the number of infested plants is more than twice 
the average for the field (R' ~2*m). Analogous sites occur within a field 
in.practice, and often are the same places year after year. 

The probability plots of Figs. 4 and 5 show distributions for either 
the negative binomial with different quadrat sizes and levels of k (Fig. 
4), or with different levels of k and p for a constant quadrat size of 50 
plants (Fig. 5). These plots permit the evaluation of how k relates to 
changes in quadrat size (N') and infestation rate (p). For example, in 
Fig. 4A, R' ranged from 0 to as many as 25 out of 50. When k = 50, the 
bell shaped distribution shown approximates the binomial distribution, 
where on the average(m) 5 infested plants will occur per quadrat. When 
the value of k is decreased, the variance of R' increases and the 
distributions become skewed, with more frequent occurrences of quadrats 
with fewer or greater numbers of infested plants than expected on average. 
(However, for a 1 percent infestation rate, these and the following 
generalizations do not apply.) 

With a 10 per cent infestation rate, it is observed that the 
frequency of quadrats with none or few infested plants (R' ~0.2*m; that 
is, the area of the left-hand tail) is quite variable when quadrat size is 
increased (Fig. 4). With a constant infestation rate of 10 per cent, the 
distributions are pulled to the right when the quadrat size is increased 
from 50 to 200 plants (Figs. 4A-D). This shift decreases the probability 
that a quadrat with none to few infested plants will occur. For the 
smallest value of k (= 1), the rate of decrease in the frequency of 
sparsely infested quadrats is much less than for slightly larger values of 
k (= 2, 3). Comparable changes in the frequency of occurrence of sparsely 
infested ~~adrats result when both k and p are varied, but when quadrat 
size is held constant (Fig. 5). For example, by using the tabulated 
frequencies (not shown) which correspond to the distributions shown in Fig. 
5, the percentage of quadrats with R' ~0.2*m is calcula~ed to range from 
38.8 to 24.9 per cent, when k = 1 and p varies from 5 to 20 per cent. But, 
for either situation with a much larger clustering parameter (k = 50), the 
frequency of quadrats with R' ~0.2*m rapidly approaches zero (Figs. 4 and 
5) • 

A different pattern of behavior is observed in Figs. 4 and 5 for the 
area which corresponds to the right-hand tail. As opposed to the highly 
variable left-hand tail, the right-hand tail is quite constant. The 
frequency of occurrence of hot spots is somewhat stable when the dispersion 
pattern among quadrats is clustered despite changes in quadrat size or 
infestation rate. For example, for each quadrat size and when k = 1, 
approximately 13 per cent of the quadrats are hot spots (Fig. 4A-D). 
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Similarly, the frequency of quadrats categorized as hot spots is fairly 
uniform at roughly 13 per cent, when the infestation rate is varied from S 
to 20 per cent and quadrat size is fixed (N' = 50; Figs. SA-D). The right
hand tail is most variable only when the clustering parameter is larger (k 
= 50). When this is the case, the probability of observing a quadrat where 
R' > 2*m, is not constant and ranges from 1.8 to zero per cent (Fig. 4), or 
from 4.6 to 0.4 per cent (Fig. 5). The point where R' ~2*m is indicated 
by a vertical reference line. 

The cumulative plots of FR, provide the evidence which answer the 
hypothesis concerning the use of likelihoods or posterior distributions to 
best estimate insect abundance. The cumulative distribution functions 
(CDF) for a moderately small clustering parameter (k = 2), small quadrat 
size (N' = 50) and when p varies from 1 to 25 per cent illustrates how 
(Fig. 7). These plots indicate, by subtraction, the probability (FR,) of 
observing a particular R' for each value of p. For example, when p = 0.05, 
the probability R' = 20 is zero, since F20 - F19 = 1.0 - 1.0 = 0.0. 
Generally, higher values of R' become increasingly probable as p is 
increased. The practical importance of these results are demonstrated by 
the following example. 

Using simulation, samples are obtained from two fields which 
represent infestation rates of 5 and 20 per cent, from which 20 plants are 
examined from each of 5 quadrats (N = 100, N' = 50, k = 2). Using a 
FORTRAN program, the likelihoods (Pr R) for each Bub-sample are calculated 
and plotted (Fig. 8). The final posterior is represented by a single 
vertical line with probability 1, since the Enj = N. The corresponding 
cumUlative distribution function of the parametric infestation rate is 
displayed above each plot of the likelihoods. As displayed, there is 
considerable difference between the positions of the likelihoods between 
the two fields. For a 5 per cent infestation, the observance of a 
likelihood which would center over R = 20 is an extreme possibility, since 
the cumulative plot is beginning to plateau at this point. Whereas, at 20 
per cent, the observance of a likelihood which centers over R = 20, or even 
greater, is quite probable. Thus, it is confirmed that low infestation 
rates yield likelihoods which aggregate among low values of R, as was 
observed for the posterior distributions of Fig. 6. The likelihoods 
obtained from higher infestation rates are broadly distributed among higher 
values of R. 

These plots (Figs. 4, 5, 7 and 8) also imply how the sampling of one 
or more hot spots could result in the decision to use an insecticide when 
it is not needed. On the other hand, one could s~~ple by chance one or 
more quadrats where insects do not occur and conclude that no control is 
needed, but the proper decision is to initiate control. The Bayesian 
algorithm does improve decision making, but is still susceptible to failing 
to initiate control when necessary. This situation is shown by the 
following example. 

In Table 1, twenty-four simulations, in which 20 plants were examined 
from each of 5 quadrats, provide the data for comparison. For simple 
random sampling the decision to not spray was chosen whenever the estimated 
infestation rate (p') from the five quadrats was ~ 8 per cent (6 
occurrences). The decision to spray was chosen 14 times when the estimate 
was ~ 12 per cent. For intermediate estimates, 8 ~ p' ~ 12, the decision 
was classed as undecided 4 times. For the Bayesian sampling plans, rules 
applied to the sub-sample estimates (m') and the final posterior (p') 
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Table 1. Comparisons of two Bayesian estimators to simple random sampling 
when p = 0.15, N' = 50, k = 1, and the decision level is 0.10. 

Method of Analysis 
Decision 

Bayes 1 Bayes 2 Random 

No Spray 9 6 6 

Spray 15 lS 14 

Undecided -- -- 4 

comprised the decision criteria. The Bayesian approaches did not yield any 
cases where the decision was undecided. As an example of what these rules 
are, they read for Bayes 1: "If (p' ~ 0.12) or «0.08 !!'ap' !!'a 0.12) and the 
number of quadrats with (m' ~0.12) > 3), then Spray". The use of rules 
slightly improved the number of correct decisions from 14 to 15 when 
compared to random sampling. These rules correspond to the behaviors of 
the distributions as observed to occur in Figs. 6 and S. 

Adding more sophistication to these rules, which we call the Bayes 2 
approach, provides an improvement of 3 to 4 more correct decisions over the 
other two approaches. Notice however, between the Bayes 2 and the simple 
~andom sampling plan, that the number of no spray decisions is the same. 
These decisions are equal in number because neither sampling plan can guard 
against drawing by chance a sequence of quadrats where m «0.15. This 
situation results in management error, and is another area for further 
study. 

4. CONCLUSIONS 

Future plans will consider a Bayesian estimator which uses an 
informed, rather than the uninformed, uniform prior used here. This prior 
would describe the population distribution of the minimal density for which 
the use of an insecticide, in the judgment of the entomologist or farm 
manager, is justified. Accordingly, the sample information from the field 
will be evaluated in comparison to this informative prior. Based on the 
results of our simulations, the Beta distribution would be an appropriate 
distribution to consider for use as an informative prior. The choice of 
the Beta distribution is mathematically convenient, since it is a natural 
conjugate to the negative binomial distribution. 

The making of decisions with sparse data is difficult, especially 
when, by chance, quadrats which are sparsely or highly infested are sampled 
in sequence and bias the estimate of mean abundance. Further 
investigations using simulation, and practical experience obtained from 
actual use of the Bayesian algorithm, are expected to yield progress in 
minimizing the effects of these biases. Notwithstanding, within a Bayesian 
context it is reasonable to use the sub-sample information from randomly 
chosen quadrats to estimate the dispersion traits and abundance of insect 
populations in cotton. 
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