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THE ANALYSIS OF THE ADDITIVE MIXED MODEL FOR 
CLASSES OF NON ORTHOGONAL DESIGNS 

Christine A. Stidley 

New Mexico Tumor Registry 
Cancer Treatment and Research Center 

University of New Hexico Hedical Center 
Albuquerque, NH 87131 

ABSTRACT 

Tests for fixed and random effects can be difficult to derive for nonor­
thogonal designs with mixed models. However, extensions of the intra­
block and inter-block analyses of Balanced Incomplete Block Designs can 
often be obtained. Here we derive the extensions for the broad class of 
Group Divisible Designs. Decompositions of the design space are used to 
develop exact tests for fixed and random effects in the additive mixed 
model with random block effects. Conditions on the design which permit 
the standard use of the intra-block and inter-block test statistics are 
given. Important subclasses of Group Divisible Designs include Equirepli­
cate Variance Balanced Block Designs and Group Divisible Partially 
Balanced Incomplete Block Designs with Two Associate Classes. These two 
subclasses are also examined. An example from the literature of an ex­
periment on fruit trees is used to illustrate the methods. 

Key words: Analysis of variance; Group Divisible Designs; Intra-block 
analysis; Inter-block analysis; Variance Balanced Block Designs. 

1. INTRODUCTION 

We consider the class of Group Divisible Designs (GDDs), which in­
cludes such designs as Group Divisible Partially Balanced Incomplete Block 
Designs with Two Associate Classes (GDPBIBDs), Equireplicate Variance 
Balanced Block Designs (EVBDs) and Balanced Incomplete Block Designs 
(BIBDs). While much attention has been given to the construction of these 
designs and subclasses (see, for example, Freeman (1976), Gupta and Jones 
(1983), Hedayat and Federer (1974), Kageyama (1981), Kageyama and Mohan 
(1985), Sinha (1987), and Tyagi (1979», distribution theory has not been 
obtained for the general class of designs or for many of the subclasses. 

First, we describe this class of designs. Then by using extensions 
of the intra-block and inter-block analyses for BIBDs, we derive exact 
distribution theory for tests for fixed and random effects for the addi­
tive mixed model with random block effects. Details of the derivations 
are given in the Appendix. An example is also given. 

2. DESCRIPTION OF GROUP DIVISIBLE DESIGNS 

Let t be the number of treatment levels, b the number of blocks, n 
the number of observations, kj the size of the jth block, k = (k1 ,··. ,kb)1 
and ro = (r1 ,··· ,rt )', the vector of treatment replicates. Let XA and XB 
be the zero-one design matrices for treatments and blocks, respectively. 
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Consider the txt matrix 0- 1 , which is given by 

0- 1 = R - NK- 1 N' + r r'/n o 0 
(2.1) 

where Rand K are diagonal matrices with diagonals of ro and k, respec­
tively, and N = X;"XB' the treatment-block incidence matrix. The matrix 
0- 1 is important because of its role in the intra-block estimation of 
treatment effects (Tocher (1952». Pearce (1963) uses this matrix to 
classify designs. 

In Pearce's classification scheme a GDD is any design such that 

(2.2) 

where It is the txt identity matrix, J t is a txt matrix of ones, c 1 , 

c 2 and c 3 are scalars and ® denotes direct product. From (2.2) it can be 
seen that the t treatments are divided into m groups of s treatments. 
Treatments are thus nested within groups. Let XM be the zero-one design 
matrix for groups. Differences in treatment effects are estimated with 
the same variance if the treatments belong to the same group, while the 
variance of the difference for treatments that are members of different 
groups is the same for all such differences. From (2.1) and (2.2) it is 
easy to see that every treatment is equally replicated r times, where r ~ 

c 1 + sC2 + tc3 . Finally, we consider only connected designs, so the rank 
of 0- 1 is t (Rasch and Herrendorfer (1986, page 40». 

There are many important subclasses of GDDs. GDPBIBDs are the only 
GDDs that are proper and binary (Stid1ey (1988». Treatments within the 
same group appear in .AI blocks together, while treatments in different 
groups appear together in .A2 blocks. Let kl denote the common block size. 
It is easy to show that for GDPBIBDs, c 1 = r - (r - .AI) /k1 , c 2 - (.A2 
.A 1 )/k1 and c 3 = rlt - .A 2 /k1 • 

If c 2 = 0 then the design is an EVBD or, equivalently, a Totally 
Balanced Design under Pearce's classification scheme. This class includes 
BIBDs and Extended Complete Block Designs, which were introduced by John 
(1963). Orthogonal designs are simply GDDs with c 2 = c 3 = O. Note that 
for any GDD with c 2 = 0 either (i) m = 1 and s = t or (ii) s = 1 and m = 

t. Both conditions imply that there is only a treatment or group factor, 
but not both. Without loss of generality when c 2 = 0, we refer to this 
factor as the treatment factor and assume m = 1 and s = t. 

The model that we consider is the additive mixed model such that 

Y = ~ln + XMT + XAo + XB~ + €, 

where Y is the n-vector of observations, ~ is the mean, In is an n-vector 
of ones, T is the m-vector of group effects, ° is the t-vector of treat­
ment effects, ~ is the b-vector of random block effects and € is the vec­
tor of pure error terms. We assume that 

(i) 1"1 = 0 m 

(ii) o'Im®ls = O~ 

(iii) ~ Nb(Ob,o~I) where o~ ~ 0 

(iv) € - Nn(On,o~I) where o~ > 0 

and (v) ~ and € are independent. 

Thus, E(Y) ~ln + XMT + XAo and cov(Y) = o~XBXB + o~In' The con-
straints placed on the fixed effects are made strictly for convenience and 
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do not affect the outcome of the tests of hypotheses that we discuss 

later. 
3. DECOMPOSITION OF THE OBSERVATION SPACE 

We use the projective method (Christensen (1987». Let S be a 

(linear) subspace of the observation space, ~n. Then the subspace of ~n 

that is orthogonal to S (with orthogonality defined with respect to the 

standard inner product) is denoted by S~. If T is a subspace orthogonal 

to S, then this relationship is written as T .i S. Let U be a subspace 

contained in S. Then SIU denotes the subspace of S that is orthogonal to 

U. The projection operator onto a subspace S is denoted by P S ' 

The observation space, ~n, is first decomposed into two orthogonal 

subspaces, the design space V and the error space V.i. The design space, V 

= colsp[lnIXMIXAIXB], which is the column space of the design matrices 

used in the model, regardless of the types of effects with which they are 

associated. 
Let A=colsp(XA) , H=colsp(XM) and B=colsp(XB). Hand B are the group 

and block spaces, respectively. Since the treatment effects are nested 

within the group effects, A is actually the group and treatment space, 

with A ~ H @ AIH, where AIH is the treatment adjusted for group space and 

@ indicates the sum of orthogonal subspaces. 

For orthogonal designs the design space is easily decomposed, since 

the relevant subspaces are orthogonal to one another. However, the sub­

spaces are not orthogonal for GDDs. As a result, we consider three decom­

positions of the design space: 

and 

V 

V 

V 

l@Bll@VIB 

1 @ Hil @ VIM 

1 (£) A I H (£) V I (A I (H 11) ) , 

(3.1) 

(3.2) 

(3.3) 

where 1 denotes the mean space, Bil and Hil are the block and group spaces 

adjusted for the mean, and the spaces VIB, VIH and VI(AI(Hll» are the 

adjusted treatment and group space, adjusted block and treatment space and 

adjusted block and group space, respectively. The decomposition given in 

(3.1) is the intra-block decomposition, while the decompositions given in 

(3.2) and (3.3) are the intra-group and intra-treatment adjusted for 

groups decompositions. The sums of squares resulting from the intra­

block, intra-group and intra-treatment adjusted for groups decompositions 

for nonorthogonal GDDs are given in the analysis of variance table in 

Table 1. 
The projection operators onto the spaces, 1, A, H, AIH, B, All, Hil 

and BII are easily obtained. For example, PA = XA(X~XA)-lX~. The 

projection operator onto the adjusted treatment and group space is given 

by 
PV1B = (rlc1)(PA1M - PAIMPB - PBPAIM + PBPAIMPB) + 

[rl(c l + sCz)](PM1l - PMI1PB - PBPMll + PBPMllPB) 

(Stidley (1988». The expressions for the projection operators onto VIA, 

VIH, VI (AI (Hll» and V~ are easily obtained from the expression for VIB. 

The inter-block decompositions are also given in Table 1. For these 

decompositions the block subspaces are further decomposed. If c 3 ~ 0 then 

let 
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Pw [r/(tc3)]PBIIPMPBII 

PEM PBII - Pw 
and PBM PVIM - PEW 

If sCz +tc3 so<! 0 then let 

PAo [r/(scz + tC3)]PBIIPAIMPBII 

PEA PBII - PAo 

and PBA PVI(AI(MIl» - PEA' 

It is easy to show that these matrices are projection operators onto sub­
spaces of BII, VIM and VI(AI(MII». Let MO, EM, BM, AO, EA and BA denote 
the subspaces onto which these operators project. The ranks of the 
matrices are equal to the corresponding degrees of freedom given in Table 
l. 

Note that for many GDDs, the ANOVA table can be simplified. For in­
stance, the following relationships exist among the factor spaces (this 
result follows easily from Proposition 1 in the Appendix): 

(i) Mil .l B if and only if c 3 = 0 

(ii) AIM .l B if and only if sCz + tC 3 = 0 

and (iii) All .l B if and only if Cz = c 3 = O. 

Since the orthogonal case given in (iii) is trivial, we assume that at 
least one of the two scalars, Cz and c 3 ' is nonzero. 

The three major classes of GDPBIBDs are singular, semi-regular and 
regular GDPBIBDs. From the relationships among the factor spaces, it is 
easy to see that a GDPBIBD is singular if and only if AIM .l B, while it is 
semi-regular if and only if Mil .l B. For a regular GDPBIBD neither Mil 
nor AIM is orthogonal to B. 

4. DISTRIBUTION THEORY 

We are interested in testing for treatment, group and block effects. 
The specific hypotheses that we examine are: 

(tg) Treatment and group hypotheses: 

Ho: Ti = OJ = 0 for all i, j vs 

H1: Ti "'" 0 or OJ "'" 0 for at least one i or j. 

(g) Group hypotheses: 

Ho: T· 
l. 

= 0 for all i vs Hl : T· 
l. "'" 0 for at least 

(t) Treatment hypotheses: 

Ho: OJ = 0 for all j vs Hl : OJ "'" 
0 for at least 

(b) Block hypotheses: 

Ho: a~ = 0 vs 

one i. 

one j. 

We consider the various test statistics that can be constructed from 
the quadratic forms given in Table 1. Let P denote the projection 
operator onto a subspace and XZ (d, 6) denote the chi-squared distribution 
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lS8 

with degrees of freedom d and noncentrality parameter 6. For the sub­
spaces in Table 2, Y'PY is distributed as w1 X2 (d,w2 /(2w1 » under the con­
straints listed in the table (see Proposition 2 in the Appendix). The 
parameters wI and w2 are given in Table 2, while the degrees of freedom d 
are given in Table 1. Note that some of the quadratic forms in Table 1 
are not listed in Table 2. Standard distribution theory can be obtained 
for these sums of squares only under constraints that are so extreme the 
designs are trivial. 

For the distribution theory for test statistics we consider three 
subclasses of GDDs, along with the general GDD. The subclasses are GDDs 
such that (i) 1111 1. B (that is, c 3 = 0), (ii) AI11 1. B (that is, sC2 + tC 3 
- 0) and (iii) c 2 = 0 (that is, 1111 = ¢, the null space). By the results 
in Table 2 and independence of the appropriate quadratic forms, we can use 
the following statistics to test for treatment, group and block effects 
for these four classes of GDDs. 

(1) [Y'PVIBY/(t-l)]/[Y'PVJ..Y/(n-b-t+l)] 

(2) [Y'PMI1 Y/(m-l)]/[Y'PVJ..Y/(n-b-t+l)] 

(3) [Y'PAIMY/(t-m) ]/[Y'PVJ..Y/(n-b-t+l)] 

(4) [Y'PEAY/(b-t+m-l)]/[Y'PVJ..Y/(n-b-t+l)] 

(5) [Y'P EMY/(b-m)]/[Y'PV1.Y/(n-b-t+l)] 

(6) [Y'PBAY/(t-l)]/[Y'PVJ..Y/(n-b-t+l)] 

(7) [Y'PMoY/(m-l)]/[Y'PEMY/(b-m)] 

(8) [Y'PAoY/(t-m)]/[Y'PEAY/(b-t+m-l)] 

Let l(d1 ,d2 ,6) denote the F-distribution with degrees of freedom d 1 

and d2 and noncentrali ty parameter 6. Under the constraints given in 
Table 2, test statistics (1) through (6) are distributed as wl(d 1 ,d2 ,6), 
where w is the ratio of the numerator and denominator values for wI' d 1 

and d 2 are the numerator and denominator degrees of freedom, respectively, 
and 6 is the numerator noncentrality parameter, w2 /(2w 1 ). Test statistics 
(7) and (8) are distributed as wa(d 1 ,d2 ,6) under the constraints in Table 
2 and additional constraints that result in a zero value for the 
denominator noncentrality parameter. A derivation of these results is 
given in the Appendix. Recall that we are assuming that the design is 
nonorthogonal, so at least one of the scalars, c 2 and c 3 , is nonzero. 

Table 3 summarizes when these test statistics can be used to test 
the four hypotheses. We can test all of the hypotheses of interest for 
all three subclasses. Note the importance of the test statistics con-
structed from the inter-block decompositions. These decompositions are 
often ignored, but, obviously, can yield valuable information. 

Note that when c 2 = 0, we have no group effect to test. Then 
statistics (1) and (8) can be used to test the same hypotheses. Since 
they are independent test statistics, they can be combined to obtain a 
possibly more powerful test (for example, by the method presented by Zelen 
(1957» or the more powerful individual test may be used. With BIBDs, 
test statistic (1) always gives the more powerful test, but this result 
does not hold for all EVBDs (Stidley (1988». 

Calculations to obtain these test statistics can be obtained with 
any matrix programming language, such as Gauss (Aptech Systems (1988». 
The intra-block, intra-group and intra-treatment statistics can be 
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automatically obtained from standard analysis of variance packages, such 
as GLM in SAS (SAS (1985», but the inter-block test statistics require 
further programming. 

5. EXAMPLE 

To illustrate these results we consider the example given in Table 
4, which is a modification of an ·example given by Pearce (1965). The ex­
periment consists of treating cherry trees with six fungicides, blocking 
for the treatment that was used on the trees during the previous year. 
Another blocking factor was also used, but as Pearce initially did, we 
omit this factor. We further modify the design by changing the block in 
which four observations occurred. The original two factor design is a GDD 
such that it is a generalization of an extended complete block design. 
The modification also has these characteristics, along with the property 
that AIH is orthogonal to B. Thus, from Table 3 we see that we can test 
all four hypotheses. The calculations were done using Gauss (Aptech Sys­
tems (1988». Table 5 gives the calculated values of each of the test 
statistics along with the p-values. For the treatment and group tests, 
the p-values are quite large, giving no evidence of a treatment or group 
effect. However, due to the small p-value for the block test, we conclude 
that ut > O. 

6. CONCLUDING REMARKS 

The set of GDDs contains many important subsets of designs, such as 
BIBDs, GDPBIBDs and EVBDs. Although the class of designs is broad, §4 
gives a general distribution theory for testing treatment, group and block 
effects for the mixed model with random block effects. These test statis­
tics are extensions of the intra-block and inter-block test statistics 
used in the analysis of BIBDs. The results presented in §4 and §5 show 
the importance of the inter-block test statistics in an analysis of nonor­
thogonal designs. However, while standard computer packages readily 
supply information on the intra-block type of test statistics, the inter­
block test statistics are not given. With the results presented here the 
inter-block test statistics for GDDs can be obtained by further program­
ming. 
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APPENDIX 

The distribution theory for the quadratic forms and the test statis­
tics is derived. First, the following results are needed. 
Proposition 1, 

PAPBPA [(sc z + tC3)/rjPAIM + (tc 3 /r)PM11 + PI 

PM1 IPBPM1 1 (tc 3 /r)PM11 

and PAIMPBPAIM [(sc z + tC3)/rjPAIM' 

Proof. PAPBPA = (1/rz )XANK- 1 N'XA· (A.l) 

Note that for equireplicate designs 

0- 1 = rIt - NK- 1 N' + (r/t)J t , 

while for GDDs 

0- 1 = cIl t + czlm®Js + c 3 J t · 

Since r = c 1 + sCz + tc3 , from the above equations we obtain 

NK- 1 N' (sc z + tc 3 )l t - czlm®Js + [(cl + scz)/t]J t , (A.2) 

The result for PAPBPA is obtained by substituting this expression into A.l 
and simplifying. 

Since H is contained in A, PMI1PBPMl1 PM1 1PAPBPAPMI I 

D 
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The following corollary is obtained from repeated applications of 
Proposition 1. 
Corollary 1. If k = kl1b then let 111 = [(kltc3/r)o~ + o!l-lPMI1cov(Y) 

and I1z - ([kI (sc2 + tC3)/rlo~ + O!}-IPAIMcOV(Y) , while if k - kl1b and 

c 2 - 0, then let 113 = [(klcl/r)o~ + o!J-lPBAcov(Y). Then the matrices 

111 , 112 and 113 are idempotent. 

The following results give the distribution theory presented in §4. 
Proposition 2. Let S be one of the subspaces listed in Table 2. Then, 
sub}ect to the conditions given in Table 2, Y'PSY is distributed as 
WI X (d, w2 /(2w1», where WI and w2 are given in Table 2 and d is the de­
grees of freedom given in Table 1. 
Proof. Let P be the projection operator onto one of the subspaces. Then 

Pcov(Y) = o~PXBXB + o!P. 

Under the conditions given in Table 2. it can be shown that either 

(i) P cov(Y) = wlP 

or (ii) Corollary 1 holds. 

Thus, P cov(y)/wl is idempotent, so Y'PY is distributed as w1X2 (d,6), 

where 6 = E(Y) , P E(Y)/(2wl ). The derivation of the expressions for the 

noncentrality parameter uses the expression for NX-lN' given in (A.2) and 

the relationship between XA and XM. which is, XM = XA(Im®l s )' 0 

Corollary 2. Let F be one of the eight listed test statistics. Consider 
the conditions for the numerator and denominator quadratic forms given in 
Table 2. For test statistic (7) add the constraint that sC2 + tC 3 = 0, 
while for (8) consider two situations. First, add the constraint that c 3 
~ 0, while for the second case let the additional constraint be that c 2 = 

0. Let w be the ratio of the numerator w1 to the denominator WI' Then, 
under these conditions, F is distributed as wS(d1 ,d2 ,6). 
Proof. Let P denote the projection operator onto the subspace correspond­
ing to one of the numerator sums of squares. Then the column space of P 
is contained in V and Pcov(Y)PV~ = 0. If k = kll and c 3 ~ 0, then 11° is 
orthogonal to EI1. Then 

PMo cov(Y) PEM = (k1o~ + o~)PMo PEM 0. 

A similar result holds for PAo and PEA' 
denominator quadratic forms are independent. 
Proposition 2. 0 

Thus, the numerator and 
The result then follows from 
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Table 1 

p~alysis of Variance Table for Nonorthogonal Group Divisible Designs 

Table 1.1 Intra-block decomposition 

Source 

Blocks, ignoring treatments and groups 

Inter-block decompositions: 

Decomposition 1: Group component 

Inter-block/group error 

Decomposition 2: Treatments nested within 

groups component 

Inter-block/treatment error 

Treatments & groups, eliminating blocks 

Intra-block error 

Total, adjusted for the mean 

SS 

Y'PAoY 

Y'PE,.lI.Y 

yrPVIBY 

Y'PVl.Y 

Table 1.2 Intra-group decomposition 

Source 

Groups, ignoring treatments and blocks 

Treatments & blocks, eliminating groups 

Inter-block decomposition: Block component 

Inter-block/group error 

Intra-block error 

Total, adjusted for the mean 

5S 

Y'PM\l Y 

Y'PVIMY 

Y'PBMY 

Y'PEMY 

Y'PVl.Y 

Y'Pll.Y 

Table 1.3 Intra-treatment adjusted for group decomposition 

Source 

Treatments, ignoring groups and blocks 

Groups & blocks, eliminating treatments nested 

within groups 

Inter-block decomposition: Block component 

Inter-block/treatment error 

Intra-block error 

Total, adjusted for the mean 

SS 

Y'PV1 (AI (Mil) Y 

Y'PBAY 

Y'PEAY 

Y'PVl.Y 

df 

b-l 

m-l 

b-m 

t-m 

b-t+m-l 

t-l 

n-b-t+l 

n-l 

df 

m-l 

b+t-m-l 

t-l 

b-m 

n-b-t+l 

n-l 

df 

b+m-2 

t-l 

b-t+m-l 

n-b-t+l 

n-l 
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Table 2 

Distribution Parameters and Constraints 

Sub-
space Constraints 

Bil Z Z 
k1ab + a e 

Mil 2 Z (k1tca/r)ab + ae 

AIM [k1 (scz + z tca)/r]ab 

VIB a Z 
e 

MO kla~ 2 + a e 

EM kla~ 2 + a e 

+ aZ 
e 

stca r' r + (sc z + tC3 )a' a 

rsr'r 

ra'a 

stca r' r 

(SC Z + tCa )a' a 

k 

k -

k kl1b 

k kl1b 

k kl1b 

none 

k1lb ; c3 ... 0 

k1lb ; ca ... 0 

AO kla~ 2 + ae (SC Z + tca)a'a 

stca r' r 

k k1lb ; SCz ... - tCa 

EA Z 
k1ab + Z ae k k1lb ; SCz 

BA (klcl/r)a~ 

V.l. Z a e 

Hypothesis 

t&g 

g 

t 

b 

2 + a e o k - k1lb ; 

o none 

Table 3 

Summary of Tests of Fixed and Random Effects 
for Subclasses of Group Divisible Designs 

Subclass of Group Divisible Designs 

general Mil .1 B 
(ca - 0) 

1 1 

2t 
st 
4t 

AIM .1 B 
(scz - tCa ) 

1 

7t 
3t 
st 

, oi* 
.J., o· 

t Additional constraint required: design is proper. * Additional constraints required: design is proper and b ... t. 
* Test statistics 1 and 8 are independent for this subclass. 

C z 

... - tCa 

- 0 

Note: Any number within the table refers to one of the eight test statistics. 
For the appropriate design, this statistic can be used to test the correspond­
ing hypothesis. 
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Table 4 

Example 

Cherry crop yield (pounds) 

Fungicide 

Blocks A B C D E F 

1 16.7 18.6 13.1 8.9 12.8,13.6 12.5,10.9 

2 7.2 8.1 7.6 13.8 9.9,9.4 1. 2,15.9 

3 12.3,10.9 10.1,5.4 16.3 17.9 15.3 7.8 

4 11.7 15.3 13.5,19.3 14.6,15.5 12.2 9.0 

5 15.0 7.3 7.5,8.9 9.8,12.7 10.0 10.9 

6 9.2,10.4 13.3,16.7 15.7 9.6 17.4 10.3 

Table 5 

Summary 0 f Hypothesis Testing for Example 

numerator denominator 
Hypothesis 55 df SS df F p-value 

tg 49.33 5 478.7 37 0.76 0.58 

g 11.18 2 127.5 3 0.13 0.88 

t 30.70 3 478.7 37 0.79 0.51 

b 127.50 3 478.7 37 3.29 0.03 
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