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NONLINEAR MODELING OF pH DECLINE IN BEEF CARCASSES 

Abstract 

James R. Schwenke 
Department of Statistics 

Curtis L. Kastner 
Department of Animal Sciences and Industry 

Kansas State University 
Manhattan, Kansas 66506 

Electrical stimulation speeds the rate of pH decline in beef muscle. 

A study was conducted to evaluate an electrical stimulation (ES) method 

for beef sides and its effect on pH decline compared to non-stimulated 

control counterparts using nonlinear modeling. The pH of each carcass in 

the study was measured at selected times over a 24-hour time period 

postmortem. A statistical methodology is described for comparing two 

treatments based on the mean pH decline over time. The repeated measures 

structure of the data is incorporated into the statistical procedure. A 

nonlinear exponential decay model is used to characterize the mean pH 

decline. Various comparisons of the mean response to treatment are made 

based on the nonlinear model. 

KEYWORDS: Linear models; Non-linear models; Repeated measures analysis 

1. Introduction 
A study was conducted to compare electrical stimulation (ES) 

processing method of beef carcasses to non-stimulation processing method, 

as a control, on the basis of relative rate of pH decline. Electrical 

stimulation is the process of electrically shocking carcasses or sides 

postmortem to enhance product quality, i.e., tenderness, color, or grade. 

The experimental design was a completely randomized design with sides of 

43 beef carcasses being randomly assigned to either the control or ES 

treatment group. The carcass information was lost for the statistical 

analysis, and thus, the sides were analyzed as independent experimental 

units. The pH readings were recorded in the longissimus muscle at 1, 2, 

4, 6, 8, and 24 hours postmortem. Sides were electrically stimulated at 

1 hour postmortem, just prior to the first pH recording using the 

iodoacetate technique. The observed pH response data for 10 randomly 

selected sides are displayed in Figures la and lb, for the control and ES 

treatment groups, respectively. Figures 2a and 2b are plots of these 

same data, with the observations connected by lines indicating the 

individual sides for the control and ES treatment groups, respectively. 

To better evaluate the relative effectiveness of ES compared to the 

control, the mean pH decline in beef muscle for each treatment group was 

modeled as a function of time. Traditionally, to incorporate the 

repeated measures structure of the data, a common response model is fit 

to each individual subject's data. The estimated parameters then are 

analyzed in an analysis of variance and.conclusions of the effectiveness 

of treatment are based on the mean of the estimated parameters. In the 

linear model case, this is a relatively easy process. Here, pH decline 

is more appropriately modeled as a nonlinear function in time, with pH 

declining to an asymptotic value. As can be seen in Figures 2a and 2b, a 
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by-subject approach to analyzing these data would not be recommended, 
because it is apparent that the data observed for an individual side are 
relatively poor representations of a common response function. It would 
be difficult to estimate the parameters of a common nonlinear model for 
each individual side using iterative, nonlinear techniques. A different 
methodology must be employed to obtain adequate estimates of the mean pH 
decline and still maintain the repeated measures structure of the data in 
the hypothesis testing process. 

A methodology based on modeling the observed mean response over time 
is presented in the following sections. The repeated measures structure 
of the data is incorporated into the hypothesis testing process by 
obtaining a model-free estimate of the variance-covariance structure of 
the data. The distribution of the estimated model parameters is then 
written as a function of recording times and the variance-covariance of 
the observed data. 

2. Motivation 
To motivate the proposed methodology, the linear model case is 

considered in this section. Let y. - X/3 + !. define the linear model 
-1. -- -1. 

describing the ith subject'S data across t sampling times, where y. is 
-1. 

the txl vector of responses, X is the txp matrix of independent 

variables, /3_ is the pxl vector of model parameters, and !. is the txl 
-l 

random error vector, i = 1, 2, ... , n. 
sampling scheme, corresponding to X, is 

Here, it is assumed that a common 
used for all subjects. For 

testing purposes, it is assumed that f. is distributed as NCO, ~), where 
-1. 

o is the txl vector of zeros, and V is the txt variance-covariance matrix 

involving both between subject and within subject variance parameters. 
The exact structure of ~ need not be specified, but it is assumed that 

this structure is common for all subjects in a particular treatment 
group. The traditional analysis would be to obtain estimates of ~ for 

each subject. Tne least squares estimate of ~ computed from the observed 

data for subject i is /3. 
-1. 

(X'X)-lX'y (Draper and Smith, 1981). Because 
- - - - i 

a common V for all subjects is assumed, the ~. for all subjects have a 
-1. 

common variance-covariance structure. The average of the estimated model 

parameters across subjects is the least squares estimate of /3, ~ 

n " 
( ~ /3.)/n. Traditional analyses, such as analysis of variance procedures 
i_l-1. 

or confidence interval computations, can be conducted using the /3. as the 
-1. 

observed response data. 
As an alternative strategy, an analysis is presented here based on 

the across-subject mean at each sampling time point. The overall 
objective of the analysis is to characterize the mean response to 
treatment over time. Let Y be the nxt observed data matrix, where 
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subjects define the rows and sampling times define the columns. Let ¥ 
j'~/n be the txl vector of across-subject means at each sampling time 

point, where j is an nxl vector of ones. Compute the least squares 

estimate of ~ from the observed across-subject means, without regard to 

_ A -1-
the sampling distribution of ¥, as ~ - (~'~) ~'¥. Now, the sampling 

- * * distribution of ¥ is N(~, ~ ), where V is the txt variance-covariance 

matrix involving both between-subject and within-subject variance 

* parameters. With n subjects and no missing data, ~ - ~/n. The sampling 

distribution of ~ is N(~, (~,~)-1~,~*~(~,~)-1) (Graybill, 1976). 

Employing standard multivariate techniques, obtain an estimate of the 
variance-covariance matrix of the observed data for each treatment group. 

Let V - Y'(I - J /n)Y/(n-l) be the estimate of V, where I is the nxn - - -n -n - --n 
identity matrix and J is the nxn matrix of ones (Morrison, 1976). The 

-n 
A* 

estimated variance-covariance matrix of the sampling means is then V 

A* 
~/n. The sampling distribution of (n - l)V * is Wishart, Wt(n - 1, V ). 

A* * 
It follows that for any nonzero vector ~, (n - l)~'~ ~ / ~'~ ~ is 

distributed chi-squared with n-l degrees of freedom CTimm, 1975). 
Consider the null hypothesis HO: ~'~ - ~O versus Hl : ~'~ ~ ~O. The 

test statistic for testing HO in favor of Hl would be T - (~'~ - ~O) / 

[~,(~,~)-l~,~*~(~,~)-l~)~. Given HO to be true and letting ~ = 

~,(~,~)-l~" T follows a t-distribution with n-l degrees of freedom. 

Alternatively, ~,~ ± t(a/2; n_l)[~'C~,~)-l~,~*~(~,~)-l~)~ defines a 100(1 

- a)% confidence interval for ~'~. This test statistic and confidence 

interval are equivalent to those obtained from the by-subject analysis 
discussed at the beginning of this section, employing traditional 

A 

techniques using each subject's p. as the observed response data. 
-~ 

An example demonstrating the usefulness of this equivalence is 
discussed in the next section. A pragmatic extension of the analysis of 
mean responses to the case of nonlinear models is presented. 

3. Modeling pH Declines 
Returning to the example discussed in the Introduction, Figures 2a 

and 2b are plots of the pH decline of randomly selected sides of beef 
under control and ES-treated conditions. It is evident that, for each 
treatment group, the data taken as a whole suggest a common response 
function over time. A nonlinear decay function has traditionally been 
useful in characterizing such data. Figures 3a and 3b are plots of the 
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entire observed data set, with a line connecting the observed mean at 
each sampling time. The sampling means demonstrate a well behaved 
nonlinear trend. Relying on the well-known asymptotic theory of 
nonlinear models, the means analysis discussed in Section 2 is extended 
to nonlinear models and used to compare the difference in mean response 
to treatment. 

Define the nonlinear decay function as pH - ~o - ~l(l - exp(-~2 

time», where ~o is the y-intercept, ~o - ~l is the asymptotic minimum 

value of the pH decline, and ~2 is the rate parameter. Note that ~o is 

not an informative parameter for this particular data set, because a 
rapid change in pH occurs after slaughter and prior to treatment. No 
data were observed during this time period, but the first observation was 
at 1 hour postmortem and immediately following treatment. The nonlinear 
model defined above is used to characterize the pH decline after 1 hour 
postmortem. 

The across-subject means for each treatment group are given in Table 
1. The nonlinear decay function is fit, using standard nonlinear 
estimation techniques, to the sampling time means. To estimate the model 
parameters, the response function is fit directly to the sampling time 
means, without regard to variance-covariance structure among the sampling 
time means. Figures 4a and 4b are plots of the sampling time means and 
the estimated response models. 

The variance-covariance structure of the sampling time means is 
incorporated into the hypothesis testing process. The sample variance­
covariance matrix of the sampling time means for each treatment is given 
in Table 2. (An i subscript will be used to denote the two treatments, i 
= 1 for control and i ~ 2 for ES, for the remainder of this paper.) A 
chi-squared test of HO: ~l - ~2 versus HI: ~1 ~ ~2 results in a chi-

squared test statistic of 126.7 with 21 degrees of freedom (Morrison, 
1976). This gives a p-value of less than 0.0001, and the null hypothesis 
is rej ected. 

The asymptotic sampling distribution of P. is N(~., (Z.'Z.)-1 
-~ -~ -~-~ 

Z.'V~Z.(Z.'Z.)-I), where Z. is the nxp matrix of partial derivatives with 
-~ -~-~ -~ -~ -~ 

respect to the parameters of the response function for treatment i 
(Jennrich, 1969). The estimated model parameters for each treatment 
group are given in Table 3 with asymptotic 95% confidence intervals, 

A* * using V. to estimate V-.-. Figure 5 is a plot of the estimated response 
-~ -~ 

functions for the control and ES treatments. To test hypotheses of the 
form HO: ~'~l - ~'~2 versus HI: ~'~1 ~ ~'~2' Welch's adjustment to the 

degrees of freedom is used to accommodate the unequal variance-covariance 
matrices (Winer, 1971). For this application, Welch's adjusted degrees 

* A A 2 A 2 
of freedom is df - {[Var(~'~I) + Var(~'~2») / [(Var(~'~l») /(n1-l» + 

A 2 
([Var(~'~2») /(n2-1»)} - 2. The test statistic for testing HO versus HI 
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"'1 L 

variance-covariance matrix of ~.. The asymptotic distribution of T is 
-~ 

* t(df*) I where df is I-ielch's adjusted degrees of freedom. R",sults of 

comparison of the model parameters for the two treatments, using welch's 
adjusted degrees of freedom, are given in Table 4. Recall that for this 
example, ~O' and thus ~l' are not particularly meaningful because of when 

the data were collected, but that ~O - Pl is. The conclusions drawn here 

are that the two treatments have similar terminal pH levels but that the 
rate at which these levels are achieved differ, with the ES treatment 
having a significantly faster decline. 

The difference in the expected response to treatment also can be 
compared by considering the estimated difference in pH for the treatments 

" " 
across time directly (Hinds and lHlliken, 1987). Let Y1 (t) - Y2(t) 

define the point estimate of the difference in expected pH response at 

time t. The estimated variance of this contrast is Var(Y1 (t) - Y2(t») 

z'Wz, where z is the pxl vector of partial derivatives with respect to 
A 

YICt) - y 2 (t) evaluated at ~l and ~2' respectively, and W is the block 

diagonal sample variance-covariance matrix of [~i' @2 J • An asymptotic 

lOO(l-a)% confidence interval for the difference in treatment response at 
A AA ~ * 

time t is (Yl(t) - Y2(t» ± t(a/2; df*)(::'I!::) , where df is again 

Welch's adjusted degrees of freedom. 
For this example, the choice of the nonlinear decay model was based 

on the adequacy of the model to describe the mean of the observed data 
and not entirely based on theoretical considerations of the biological 
mechanics of pH declines in beef carcasses after slaughter. The 
mathematical relationship between two nonlinear decay curves of the fo:cm 
used here is that, in the terminal time period, they will either reach 
the same asymptotic pH level at time infini~y, cross at a particular 
time, or never achieve equal pH levels. More realistically, given the 
result of no significant difference being detected in the asymptotic pH 
level (Table 4), the two treatments probably reach their respective 
terminal mean pH levels at some time and maintain this level. A 
pragmatic solution for estimating the time at which the two treatments 
achieve equal mean pH levels would be to construct a 100(1-0)% confidence 
bound on the difference in mean pH as described above. A point estimate 
of the time for the two treatments to achieve equal mean pH levels then 
would be the time at which the lower confidence bound on the difference 
in mean pH equals zero. Figure 6 is a plot of the difference in mean pH 
of the two treatments, with a 95% lower confidence bound on the 
difference. A point estimate of the time at which nonsignificantly 
different mean pH levels are achieved would be 13.91 hours postmortem. 

A final approach to compare the mean response of the two treatments 
is through calibration techniques. A pH of 6.0 is used to indicate when 
muscle will no longer be susceptible to cold-induced toughening. Thus, a 
comparison of the mean time when pH 6.0 is achieved would be a comparison 
of response to treatment. An asymptotic 100(1-0)% confidence interval 

"'1 L 
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bound on the difference in mean pH as described above. A point estimate 
of the time for the two treatments to achieve equal mean pH levels then 
would be the time at which the lower confidence bound on the difference 
in mean pH equals zero. Figure 6 is a plot of the difference in mean pH 
of the two treatments, with a 95% lower confidence bound on the 
difference. A point estimate of the time at which nonsignificantly 
different mean pH levels are achieved would be 13.91 hours postmortem. 

A final approach to compare the mean response of the two treatments 
is through calibration techniques. A pH of 6.0 is used to indicate when 
muscle will no longer be susceptible to cold-induced toughening. Thus, a 
comparison of the mean time when pH 6.0 is achieved would be a comparison 
of response to treatment. An asymptotic 100(1-0)% confidence interval 
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for the time to achieve pH 6.0 can be defined by the set of values of t 
A ~ A A ~ A 

that satisfy IYi(t) - 6.01 / (~'~i~) s t(a/2; df)' where ~i is the 

sample variance-covariance matrix of p. and df is the associated degrees 
-~ 

of freedom (Schwenke and Milliken, submitted for publication). Table 5 
gives the calibrated point estimates and 95% confidence intervals for the 
time to achieve pH 6.0 for each treatment. To compare the time to 
achieve pH 6.0 between treatments, consider the null hypothesis HO: 

t l (6.0) - t 2 (6.0) versus HI: t l (6.0) ~ t 2 (6.0), where t i (6.0) is the mean 

time for treatment i to achieve pH 6.0. This is a comparison of times, 
that is, the models characterizing the mean pH decay of each treatment 
may be different, yet achieve a specified pH at the same time. Let to be 

the time to achieve pH 6.0, given that the null hypothesis is true. An 
~ 

estimate of to would be the value of t that minimizes [(Yl(t) 
A A A 2 A A A 

(~l'~l ~l)] + [(Y2(t) - 6.0) / (~2'~2 ~2)]· The test statistic for 
~ 

testing HO versus HI would be T - [YI(tO) - Y2(tO)] / [~l'~l ~l+ ~2'~2 
~ ~ ~ 

~2J , where ~i is the pxl vector of partial derivatives with respect to 

y.(to) evaluated at p. at time to' and W. is the sample variance-
~ -~ -~ 

covariance matrix of ~i. The asymptotic distribution of T is tCdf*), 

* where df is Welch's adjusted degrees of freedom. The test comparing the 
time to achieve pH 6.0 for each treatment is summarized in Table 6. 
Based on this comparison, it is concluded that the treatments achieve 
mean pH 6.0 at significantly different times, with the ES treatment 
achieving pH 6.0 sooner. 

4. Summary 
A methodology is presented that enables an analysis, in a regression 

context, of repeated measures data based on the across-subject means at 
each sampling time. In the linear model case, with no missing data, this 
analysis is equivalent to a by-subject analysis in which a common 
response model is fit to each subject's data. The benefit of the means 
approach, in the linear model case, is that only one estimation process 
is needed to characterize each treatment, instead of one process for each 
subject. The variance-covariance matrix of the data is estimated through 
standard multivariate techniques, independent of the model used to 
characterize the response data. The estimate of the variance-covariance 
matrix is then incorporated into tests of hypotheses and the construction 
of confidence intervals concerning model parameters. This allows an 
analysis of repeated measures data without assuming a specific structure 
of the variance-covariance matrix. Differences among treatment groups 
with respect to the corresponding variance-covariance matrices are 
accounted for by employing Welch's adjustment to the degrees of freedom. 

This methodology then was extended to the nonlinear case, employing 
the well-known asymptotic theory of nonlinear models. In the nonlinear 
case, by-subject analyses of data are not always possible because of the 
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difficulty of iterative techniques to fit a common response mocel to data 
from each of several subjects. Often, for complex nonlinear mechanisms, 
an individual subject's data may not be a good representation of the 
overall average trend of the group's response. In these cases, the 
solution with the by-subject analysis could be as drastic as deleting 
that subject's data from the analysis. In the means approach, it is 
recognized that each subject's data contributes to the mean response of 
the group. In addition, using the means approach requires only one 
application of a nonlinear estimation procedure, which would save 
substantial computer time. Again, since a model-free estimate of the 
variance-covariance matrix is computed, testing of hypotheses and 
construction of confidence intervals is not dependent on an assumed 
structure of the variance-covariance matrix. 
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Table 1 

Observed ~cross-Subject pH Means 
by Treatment and Sampling Time 

Treatment --'L Time. Mean pH 
Control 43 1 6.67 

2 6.34 
4 6.02 
6 5.13 
8 5.58 

24 5.45 

ES 43 1 6.66 
2 6.16 
4 5.11 
6 5.53 
8 5.47 

24 5.42 

Table 2 

Sample Variance-Covariance Matrix ot Across-Subject pH Means 

Control (x 10e-3): 

1. 55 1. 24 1. 35 0.83 0.41 0.25 
1. 24 1. 35 1. 30 0.95 0.55 0.34 
1. 35 1. 30 1. 89 1.10 0.65 0.35 
0.83 0.95 1.10 1. 54 0.90 0.38 
0.41 0.55 0.65 0.90 0.93 0.39 
0.25 0.34 0.35 0.38 0.40 0.48 

ES (x 10e-3): 

1. 36 0.71 0.18 0.01 -0.06 0.11 
0.71 0.85 0.43 0.22 0.10 0.12 
0.18 0.43 0.77 0.30 0.21 0.10 
0.01 0.22 0.30 0.45 0.26 0.04 

-0.06 0.10 0.21 0.26 0.31 0.02 
0.11 0.12 0.10 0.04 0.02 0.15 

Table 3 

Estimated Nonlinear Decay Model Parameters 
pH ~ ~o - ~1 (1 - exp(-~2 time» 

Model 95\ C.l. 
Treatment Parameter Estimate Loller ~ 

Control ~O 1.054 6.955 1.153 

~1 1. 618 1.513 1. 724 

P2 0.278 0.246 0.310 

ES ~O 7.441 1.263 7.630 

~1 2.022 1.836 2.201 

~2 0.497 0.443 0.551 

Sample Correlation Matrix of Estimated Model Parameters 

Control: 

ES: 

[ 1.000 0.903 0.183 ] 
0.903 1.000 0.130 
0.183 0.130 1.000 

[ 1.000 0.993 0.151 ] 
0.993 1.000 0.139 
0.151 0.739 1.000 

Table 4 

Comparison of Hodel Parameters 
Control versus ES Treatment 

Hodel 
Parameter T-Statistic 

~O -3.803 

~1 -3.816 

~o - ~I 0.402 

P-Value 

0.00032 

0.00030 

0.68886 

~2 -7.031 ( 0.0001 

..... 
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Table 5 

Estimated Time to Achieve pH 6.0 
with Asymptotic 95' Confidence Interval 

95% C. 1. 

'Lreat.!1:'ll Ll6 ___ Ql Lotle r ~ 

Control 3."188 3.336 4,2fi9 

cs 2.~)O 2.319 2.727 

Table 6 

Results 01 Teul or Hypothesis 
Equality of Ti~e to Achieve pH 6.0 

tl (6,0) ),788 \2(6.0) = 2.'l30 
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