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Optimizing Educational 
Resources: A Paradigm 

for the Pursuit of 
Educational Productivity

James L. Phelps

James L. Phelps is a former Education Assistant to the 
Governor of Michigan and Deputy Superintendent in the 
Michigan Department of Education.

The advantage and perhaps the major motivation for using 
“seat-of-the-pants” decision making is that it obscures the 
assumptions made in arriving at a decision. If no one knows 
the assumptions upon which you based your decisions, then 
even though they may be uneasy with the decision they will 
have a difficult time criticizing your assumptions or decisions. 
(Schrage, p. 305)1

The never-ending organizational challenge is to allocate available 
resources to best achieve its goals. Out of this fundamental 
question several models have evolved. One is a conceptual model— 
a way to think about how organizations operate. A second is a 
statistical model estimating the magnitude of relationships among 
goals and elements of the organization. This article presents a third 
model, an optimization model building upon the other two in order 
to analyze various policy options by simulating “what if” situations 
arising in organizations. These three models are complementary rather 
than competing.

Optimization Modeling

What Is a Model?
Over time, scientific endeavors have increasingly relied on models 

combining fact (observations), theory (assumptions), laws (usually 
mathematical), and methodology (procedures) into a system describing 
phenomena behavior. Models evolve as anomalies, are identified in 
older models, and are replaced with different facts, theories, laws, 
and methodologies describing the behavior of the phenomenon in 
question more comprehensively and with greater precision. Only by 
discarding previous beliefs and replacing them with a different set is 
the newer model accepted.2  

There are mathematical models designed to represent the 
elements within the structure of an organization and to describe 
their relationships with the organization’s goals. These mathematical 
models use equations representing the presumed “reality” to solve 
“what if” questions by changing the model parameters.3 In this case, 
the organization under consideration is a school. 

Why Build a Model?
According to Williams, the value in model building is threefold.4  First, 

building a model often reveals structures, elements, and relationships 
usually taken for granted until the underlying assumptions are stated 

and tested. Once the original ideas are stated and tested, they usually 
give way to more sophisticated and accurate representations of the 
actual situation. Second, once the model is constructed, analyzing 
it mathematically suggests courses of actions not readily apparent. 
In essence, the model challenges conventional thinking. Third, 
experimentation is possible within a model that is not practical in 
actual situations. Through experimentation more potentially successful 
options may be identified. Unlike “seat-of-the pants” decisions, models 
can be tested. 

Fundamental Assumptions
To start, there are five fundamental assumptions regarding desirable 

school outcomes:  (1) Student outcomes as measured by achievement 
tests are appropriate measures of school performance; (2) Other student 
outcomes, such as school retention, graduation, and employment rates 
are also appropriate measures of school performance; (3) Because 
many of the measures of student performance are highly associated 
with the school’s community socioeconomic status (SES), it must 
be taken into consideration; (4) Because all schools will not have 
the same success in achieving student outcomes due to differences 
in organizational effectiveness, school effectiveness should also 
be taken into consideration; and (5) When considering alternative 
policies to achieve the desired outcomes, cost-effectiveness is a critical 
component.

Next are five fundamental assumptions regarding modeling school 
organizations: (1) Based on the properties of the normal curve, 
achievement tests are stochastic in nature, and the model must be 
consistent with these stochastic properties;5 (2) Because achievement 
tests have a definite upper limit rarely, if ever, achieved by all students 
within a school, “perfection” is not obtainable, and therefore there is a 
point after which additional resources will produce diminishing returns; 
(3) Schools pursue multiple outcomes simultaneously; (4) Schools are 
complex organizations balancing multiple elements and processes to 
achieve their multiple goals; and (5) Because there will be a unique 
solution for each modeled school based on the initial conditions of the 
organization, there will not be a single policy to achieve the desired 
results applicable to all schools.

Conditions to Achieve Optimization
Mathematical programming (sometimes called “linear programming”) 

is merely a method of solving simultaneous equations. The solution 
could represent the optimal use of resources to produce the optimal 
level of outcome. The basic structure of a mathematical programming 
problem is illustrated by this example:
	 Maximize:     3X + 2Y

	 Subject to:     X + Y < 4
                           2X + Y < 5
                           -X + 4Y > 2
         Constraints:   X ≥ 0
                           Y ≥ 0
Establishing equations accurately representing the organization to 

be modeled is the key to mathematical programming. These equations 
must meet certain conditions in order to be solved. The four basic 
conditions listed below are developed throughout the paper:  

(1) There must be a single expression, the “objective function” to 
be maximized, minimized, or set to a specific value representing the 
underlying purpose of the model.

 (2)  There must be simultaneous equations accurately representing 
the structure and elements of the organization and their relationships 
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4 Educational Considerations

to the organization’s desired outcomes for which there are solutions 
or boundaries. 

(3) The boundaries may be of various types:
• Intersection of lines (lines with positive and negative 
slopes)
• Maximum or minimum points of nonlinear functions 
(curves with a change in the sign of the slope)
• Diminishing returns (curves with a changing slope 
approaching asymptotic).

(4) There are usually constraints or a series of expressions setting 
limits on any or all of the variables. Cost is a frequent constraint.

Why Is Education Different?
Much of the mathematical modeling has been developed in areas 

such as business where the outcomes are in discrete and limitless 
increments, and the relationships are frequently linear. For example, 
if the purpose of the organization is to produce and sell widgets, it 
is straightforward to calculate how many machines and how much 
material is needed and what staffing levels are required to operate and 
maintain the equipment. The associated cost with these elements can 
also be determined. With this information, different combinations 
can be explored to determine the best—the most economical—way 
to proceed. There is no limit as to the number of widgets that can 
be produced although there may be a limit to the number that can 
be sold.

In contrast, there are areas, such as education, where outcomes are 
stochastic—measured by normally distributed achievement tests—and 
the relationships among organizational variables and outcomes are less 
straightforward. The results from a change in the organization’s activity 
can only be estimated based on probabilities and within a margin of 
error rather than with great certainty. Also, there are definite limits. If 
the average score on a standardized achievement test were 100, there 
is no way to modify the school organization at any cost to double the 
score, to 200, if a perfect score was 150.  Indeed, while it is possible to 
make a plethora of widgets virtually identical, it is virtually impossible 
to make the achievement of a plethora of students identical.

Given the difference between nonstochastic manufacturing products 
and stochastic education outcomes, the model presented here is 
designed to address the fundamental question raised previously:  
How can schools allocate available resources to best achieve student 
performance goals?  

The Production Function and Regression Analysis

Conceptual Elements of Production
A helpful model for thinking about organizations is the production 

function.6 Conceptually, the production function is divided into three 
main parts: (1) the outcome to be achieved; (2) the input required; 
and (3) the process used to convert the input into the outcome. It is 
represented by the following equation:  

 
Outcome = Input + Process

In most cases, each of the parts is comprised of many variables.
As the equation requires, the level of outcome increases if either the 

input or process variables increase, but the “trick” is to determine which 
input or process variables to increase and by how much. In modeling, 
if the levels of inputs and process variables and their relationships to 
the outcome are known, the level of outcome can be predicted. This 
knowledge provides insights on how a change the input and process 

levels will alter the level of the outcome. When deciding the variables 
to include and the mathematics to estimate the relationships and to 
calculate the predicted outcome, the basic operational assumptions 
of the organization, either implicit or explicit, are incorporated into 
the model.  

The production function may be optimized via mathematical 
programming when the input and process variables and their 
relationships to the outcomes are known. When the relationships 
are unknown, they are usually estimated though the statistical model 
of regression. However, regression analysis does not directly provide 
answers to optimization questions.

Estimating Relationships Via Regression
The basic regression model estimating the relationships (weightings) 

is straightforward: 

Outcome = X1*I1 + X2*I2 +..Xn*In + Y1*P1

+ Y2*P2 +..Yn*Pn + Unknown + Error

The X’s and Y’s represent the estimated weightings measuring the 
relationship between the outcome and the input and process variables.  
The I’s represent the variables defining the inputs. P’s represent the 
variables defining the processes. “Unknown” represents the important 
variables in the production function for which data are unavailable.  
“Error” represents the portion of the equation that cannot be explained 
because of measurement error.

In order to get meaningful results, the distributions of the outcome, 
input, and process should be normal or near normal with a substantial 
degree of variation. Variation is required to accurately place each 
observation. In education, student achievements test are designed 
based on these characteristics and, therefore, are stochastic. (See 
footnote 5.)

Interpreting Regression Results
The most common conclusion of a regression analysis is the 

statistical significance of the weighting; if it is significant, then it 
is thought appropriate to increase the level of the input or process 
variable. However, the level of significance does not help determine 
how much to increase the variable.

The weighting measuring the relationship between the outcome 
and the independent variable(s) is interpreted as slope; that is, the 
unit-change in the level of the outcome for each unit-change in the 
input or process variable. Slope is also the mechanism for predicting 
the most likely value of an outcome from the known value of an 
input or process variable. The slope does provide some greater help in 
determining which variable to increase because it only makes sense to 
increase the variable(s) with the highest slope—“the biggest bang.”  

Many of the following illustrations have been taken from a previous 
study by the author where the production function was divided into the 
community input of socioeconomic status (SES) and the school inputs 
of staffing quantity, staffing quality, and other financial resources.7  
There were no direct data representing the process, which is usually 
the case. The process component was defined as the effectiveness 
of the school organization to produce scores higher than what was 
predicted from knowing the other inputs—the residual. The slopes of 
the categories of the study are depicted in Figure 1.

Because each of the variables has a unique descriptive statistic, it 
is difficult to compare their influence on achievement without first 
converting all outcomes and variables to standard scores (Z-scores).  
The slope is then the standard regression coefficient. This is the 
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convention in the remainder of this paper. Most frequently the graphic 
representations of the outcome and variables is based on “Cartesian” 
geometry with the navigation point being the origin (X and Y = 0) 
with the outcome(s) on the Y-axis and the variable(s) on the X-axis.  
Because the mean value of an independent variable predicts the mean 
value of the outcome (dependent variable), charting mean against mean 
as the navigation point will be used. (A standard score or Z-score of 
zero is the mean.) The outcome in this illustration is measured in 
percentiles for reasons to be given later.

With this interpretation of slope, there comes a predicament:  Why 
increase any but the variable with the highest slope if the other variables 
will make less of a difference in increasing the level of the outcome?  
This contradicts one of the basic assumptions of the production 
function: It takes a combination of variables combined in a balanced 
way to improve outcomes rather than just one or two variables in high 
concentration. This predicament will be addressed later.

There is another aspect to the regression analysis--predicting the 
outcome level based on the values of the input and process variables.  
By substituting the actual values back into the regression equation 
with the estimated weightings, a predicted level results. The difference 
between the actual outcome level and the predicted outcome level is 
the residual, or, an unfortunate name, “error.”

Residual as Effectiveness
The notion of the residual being all error is misleading.  An important 

variable may not have been included in the original equation, and, if 
it were, the error term would be reduced. Therefore, part of the error 
term is usually due to a misspecification of the equation, but what if 
the residuals were compared over several periods of time and there was 
a tendency for the residuals of each observation to have the same sign 
and magnitude? In this case, it would be fair to assume the pattern of 
the residual actually measures something real but unobserved. Because 
organizations utilize their resources to different degrees of effectiveness, 
a logical conclusion would be for any consistent pattern of the residuals 
over time to be associated with an unobserved effectiveness factor.8

Figure 1
Regression Slope

Limitations of Regression to Optimize
While of great value in estimating the magnitude of relationships, 

the statistical model of regression does not directly address the 
fundamental question of how to best allocate resources among the 
input and process variables.

The basic assumption of the regression model is that of linearity of 
the weightings; as each unit of the independent variable is increased, 
there will be a constant increase in the outcome. To have a “perfect” 
outcome, e.g., all students with a perfect score, it is mathematically 
possible by increasing any one of the model inputs sufficiently to 
obtain a predicted perfect score. In practice, this situation does not 
occur. Indeed, some students achieve perfect scores within the existing 
resources, but there is a distribution of scores for all the students with 
the average score well below perfect. In order to achieve a perfect 
score for an individual school, the variation among students would 
have to be reduced to zero as well as an improvement of all scores 
below perfect. Perhaps this could be achieved by eliminating some 
students from the population or “dumbing-down” the test, but these 
efforts would negate the basic purpose of assessing student progress.  
At the heart of the stochastic assumption is the recognition of the 
existence of individual differences over which the school has only 
partial control.

While it is possible to introduce some degree of nonlinearity into 
variables, e.g., introducing an additional term calculated by squaring the 
variable value, these results are seldom significant. Even if significant, 
there is seldom a change in the sign of the slope—a maxima or minima 
point—and thus, predicted “perfection” is still possible.9 

Thus, if all the variables are linear (or at least always with a positive 
slope), what is the optimum allocation of resources? Initially this 
question may be addressed by standardizing the weightings, converting 
all variables to standard scores so they are comparable. After the 
weightings are standardized there is the question of cost. This can be 
addressed by comparing the standardized weightings per dollar.

After these procedures are completed, there is still no answer to the 
fundamental question. Because only one variable will have the best cost 
per unit improvement of the outcome defined as cost-effectiveness, 
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mathematical logic still leads to placing all the resources in a single 
variable. While logical mathematically, it is not logical operationally.  
Organizations operate effectively because of blending many variables to 
achieve the best outcome, not by selecting just one “basket for all the 
eggs.” In addition, most organizations have the mission of achieving 
multiple outcomes, but regression, with just a single equation, 
addresses only one. While various outcomes could be combined to 
form a single outcome, much of the valuable information unique to 
each outcome would be lost.

In summary, the regression statistical model as an optimization 
tool is deficient in four respects: (1) It does not directly model the 
relationships among multiple outcomes and the organizational inputs 
and processes; (2) It assumes linearity in the weightings, precluding 
a systematic balancing of the various variables to achieve the best 
possible outcomes; (3) With linearity, outcome “perfection” can be 
achieved given sufficient resources and investment in only one variable; 
and (4) There is no provision within the model for addressing cost-
effectiveness.

Using Regression to Seed an Optimization Model
Based on everyday experience, the assumptions represented by 

the statistical model of regression are not consistent with school 
organizational reality.  One would be hard-pressed to identify a school 
organization operating under the assumptions of the regression model, 
but is it possible to take the analytical results from regression and 
insert them into a mathematical programming model more consistent 
with reality?

Estimates from Regression Into Mathematical
Programming

Regression, with a single outcome, is not designed to optimize. 
This can be easily addressed by formulating individual equations for 
each of the outcomes, establishing a set of simultaneous equations, 
an essential characteristic of mathematical programming. The explicit 
goal is to achieve the highest possible level for the sum of the 
multiple outcomes. (A mathematical transformation can be made 
to accommodate something like a dropout rate where it is desirable 
to have the rate low.) If some outcomes were thought to be more 
important than others, a weighting system among the outcomes could 
be included. Addressing the second and third deficiencies mentioned 
above is more involved.

Transforming Relationships to Achieve Diminishing Returns
Conceptually, there are three general ways to describe the relationship 

between inputs and outcomes, sometimes called “returns to scale”:  (1) 
Increasing returns to scale or the inverse, decreasing returns to scale; 
(2) Maxima or the inverse minima; and (3) Constant returns to scale. 
(See Figure 2.) Note that one curve is increasing for the first half and 
decreasing the second. The slope determines the type of relationship 
based on whether the slope is increasing or decreasing, whether there 
is a point where the slope is zero, or whether the slope is constant.  
The return is measured in percentiles.

In order to solve simultaneous equations, as mentioned previously, 
there must be either intersection of lines; maxima or minima points of 
curves; or curves representing diminishing returns. Assuming positive 
linearity of each regression weighting, there can be no intersection 
of lines or maxima and minima points, therefore no solution to the 
equations. The most likely alternative to solving the simultaneous 
equations is to form nonlinear functions indicative of diminishing 
returns.

Diminishing Returns Function Within Regression Analysis
At this point, there is an essential digression to demonstrate 

mathematically the existence of a nonlinear function indicative of 
diminishing returns based on regression analysis. 

Students in beginning statistics courses are taught several descriptive 
statistics, but they most likely do not fully appreciate their full beauty 
and power. Usually, an early step is to construct a histogram underlying 
the distribution of a bell-shaped curve. Students are then asked to 
calculate the mean and standard deviation. After calculating the mean, 
the deviations from the mean are calculated, these deviations are 
squared, and then they are summed. The result is called the sum of 
the squares and commonly noted as “SS.” The sum of the squares is 
then divided by the number of observations (N) to produce the mean 
of the squares (MS). This is also called the variance as symbolized by 
σ2.  When the square root of the variance is taken, the result is called 
the standard deviation or σ. The variance is some notion of area, but 
area of what? The standard deviation is some notion of length, but 
length of what?

The primary purpose of regression analysis is to make predictions 
regarding the level of the dependent variable (outcome) based on the 
values of the independent variables (inputs). The basic idea is to plot 

Figure 2
Returns to Scale
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the dependent variable on the Y-axis and the independent variable on 
the X-axis to determine if these points tend to fall on a line. While 
this can be inspected visually, it can be measured with great accuracy 
mathematically.  The line is considered the “best fit” when the distance 
from the observation point to the regression line is squared, summed 
for all observations, and minimized.  This method is called the “least-
squared” solution. The line is represented algebraically as the slope 
of a line. It is presented in two forms, one using the original values, 
i.e., the regression coefficient, and another using standard scores—the 
standard regression coefficient. When the variables are measured in 
standard scores (Z-scores) and the slope is measured in terms of the 
standard regression coefficient ( ), the value of the outcome can be 
predicted from the value of the independent variable with the equation: 
Z(y) =  Z(x).

However, the regression analysis provides another estimate, the 
amount of variance explained by each of the variables. Regression 
programs calculate the sum of the squared deviations for the 
independent variable(s) and well as for the residual, what is not 
accounted for by the independent variable(s). These sums of the 
squared deviations are converted to percentages of the total and called 
the coefficient of multiple determination, or R2. It is a measure of the 
“goodness” or “strength” of the prediction of the variable(s), with the 
higher value indicating a greater strength. When the R2 is 100%, there 
is “total strength,” and when the R2 is 0%, there is “no strength.”  
When the percentage of what can be explained or attributed is added 
to the percentage of what cannot be explained or attributed, the sum 
is 100%.10 Can the R2 be related to the probability curve?

What Is the Probability Curve?
The idea of the probability curve is rather straightforward. If one 

tossed a number of coins a number of times and calculated the number 
of times each combination of heads and tails occurred, the result 
would form a histogram high in the middle and low at the edges.  
(The probability of each combination can be calculated via a binomial 
expansion and represented by the coefficients depicted in Pascal’s 
triangle.) The probability curve is merely the probability histogram 
as the number of observations approaches infinity and converted to 
a continuous bell-shaped curve. It answers questions regarding the 

probability that any event will occur. Of course, there are limits or 
boundaries to probability. No event can occur more than 100% or 
less than 0% of the time.

The continuous bell-shaped curve is represented by the expression, 
-Z2/2 2. The denominator of the exponent contains the variance ( 2) 

from the descriptive statistics. The area under the probability curve, 
when normalized, is by definition 1 because the chances of something 
happening cannot be greater than 100 percent; so there must also be 
a denominator added to the expression representing the area of the 
curve. When the denominator equals the area of the numerator, the 
result is 1. The area of the probability curve is √2π, so the complete 
expression for the normalized curve is (1/ √2π) ( -Z2/2 2). The standard 
deviation ( ) appears in the calculation of the area. The variance and 
standard deviation are parameters of the probability curve.

Reformulating the Regression Results Into the Normal Curve
From regression, the explained variance by the independent variable 

plus the unexplained variance equals 1, as represented by the following 
equation:

R2 + K2  = 1
 

R2 is the explained variance, and K2 is the unexplained variance.  
If additional variables are added to the equation, the proportional 
relationship is maintained as represented in the equation:   

R2
1 + R2

2 + K2 = 1

Therefore, each term in the equation explains a proportion or 
percentage of the total variance. Variance is a measure of area based 
on the principle of squared deviations.

For the ease of notation, I will call the area of the probability function 
ƒ(z), where the measurement of the X-axis is in terms of Z-scores, or 
standard scores, and the area of the probability curve is normalized 
(ƒ(z) = 1), and is represented by the following equations: 

(R2
1 + R2

2 + K2) ƒ(z) = 1 
or 

R2
1 ƒ(z) + R2

2 ƒ(z) + K2 ƒ(z) = 1  

Figure 3
Comparison of Variance
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Given a specific observation as measured by a Z-score, the relative 
position of that observation can be easily calculated and reported as 
the percentile ranking. Therefore, the predicted placement, measured 
as a percentile ranking Y(p), for a specific observation across all terms 
is calculated by substituting the appropriate Z-score for each term, 
with K2 representing the margin of error, as follows:

Y(p) = R2
1 ƒ(z1) + R2

2 ƒ(z2) + K2 ƒ(z3) 
or

Y(p) = R2
1 ƒ(z1) + R2

2 ƒ(z2) +/-1/2 K2 ƒ(z3) Q.E.D.

In other words, the reformulated equation is a regression equation 
measured in terms of the proportion of area under the normalized 
curve or percentile and the predicted outcome value can be calculated 
for any combination of Z-scores. This representation of the R2 is easily 
demonstrated graphically for it now relates to the proportion of area 
under the normal curve. (See Figure 3.)

Interpretation of the Normal Curve
While there is a maximum point at a Z-score of zero (the mean), 

the slope then turns negative, signifying declining returns rather 
than the more plausible diminishing returns. There is no evidence or 
theory suggesting that benefits would or should start decreasing when 
resources move past the mean. Is there another way in which to view 
theses curves that is more consistent with evidence and theory?    

To review, the area under probability curve ( √2π) is determined 
by the width parameter σ (standard deviation). The probability curve 
is represented by the expression -Z2/2 2.  The Z symbol Z represents 
the standard score or Z-score, and  when Z  equals zero, the function  
equals one. (See Figure 3.) As one might expect, the calculations of 
area of this expression are messy, to say the least.  Instead, a single 
ideal normalized curve is established:   area = 1 when  = 1/√2π. The 
calculations of area are made on the ideal curve and given either in a 
table in a statistics book or as a part of a computer program. Hence, 
the cumulative area under the normal curve can be calculated for any 
given Z-score.11  The formal name of the resulting S-shaped curve is the 
standard normal cumulative distribution, or cumulative area curve for 
short. Given this metric, it is possible to determine easily the percent 
of observations above and below a given score—the percentile.

This cumulative area curve represents the concept of diminishing 
returns because the benefits gradually reduce as the variable increases 
but never reaches a maximum point. (See Figure 4, marked “Area.”)  
This representation appears to match the evidence and theory of the 
correlates of student performance. One could argue that having more 

textbooks in the classroom would be positively related to student 
outcomes, but only up to a certain point. After each student has one 
textbook, what would be gained by having more? Even in the case of 
class-size, it would seem illogical to argue that more than one teacher 
per student at any one given time would lead to higher achievement 
than having just one. A case can be made in virtually all circumstances 
that there is a point where additional resources would reap little or no 
benefit. Optimization will help determine where these points lie.

Importantly, the cumulative area curve can be used for solving 
simultaneous equations. Even more importantly, the shape of the 
cumulative area curve is determined by the R2 value from regression 
analysis. The probability and cumulative area curves are related through 
the mathematics of calculus. The cumulative area curve is the integral 
of the probability curve and the probability curve is the derivative of 
the cumulative area curve. This means the probability curve is the 
slope of the cumulative area curve at the same Z-score. At a Z-score 
of zero, the value of the probability curve is one, so the slope of the 
cumulative area curve is also one. When area curve is adjusted for 
the R2 value, the slope of the curve at a Z-score of zero is the R2 
value. Through the application of mathematics, the estimates from 
regression analysis can be transformed into a function suitable for 
solving simultaneous equations. 

By way of illustration, if there were a single independent variable in 
the equation and the R2 was 1.00, there would be a perfect relationship 
between the independent variable and the outcome. The key is that 
the distribution of the independent variable is measured in terms of 
standard scores, or Z-scores while the outcome or dependent variable 
is measured in terms of the proportion of variance explained—the 
cumulative area under a probability curve, or percentiles. For every 
standardized-unit increase (Z-score) in the independent variable, there 
is a corresponding increase in the outcome. In graphic terms, the 
distribution of the independent variable moving from the lowest to the 
highest corresponds with the cumulative area under the curve of the 
outcome from lowest to highest. In other words, the distributions of 
the outcome and independent variable would be identical but measured 
in different terms, and, thus, the independent variable explains all the 
variance of the dependent variable. (See Figure 5.)

If the R2 were zero (.00), there would be no relationship between 
the independent variable and the outcome. There would be no width 
to the outcome variable distribution and no width to the cumulative 
outcome distribution. In essence, every value of the independent 
variable would make the same predicted value for the outcome—the 
mean value. Instead of a spread of the cumulative distribution, there 
would be a single horizontal line at the mean (50th percentile). Thus, 

Figure 4
Normal Curve
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the independent variable would explain none of variation in the 
dependent variable, and the slope of the area curve would be zero.  
(See Figure 5.)

If the R2 were .50, there would be a strong relationship between 
the independent variable and the outcome. The mean value of the 
variable would still predict the mean value of the outcome, but what 
about the other values? Because the area of the independent variable 
would be half of the outcome, half of that area (or one-quarter) would 
be above the mean and half would be below. When graphed, the 
S-shaped cumulative curve will be asymptotic to lines representing 
.75 and .25 of the area. These parameters conveniently represent 
percentiles. (See Figure 5.)

The R2 terms can be calculated using the respective regression 
coefficient ( ) and the standard regression coefficient ( ). In one 
sense, this calculation is more precise because it can be negative if  
is negative, indicating an inverse relationship between the outcome 
and the independent variable. On the other hand, a negative R2 term 
will not satisfy the summation to 1.0 and is changed to a positive 
(absolute value) for that purpose in statistical programs. This anomaly 
should be considered when determining the value of R2 in a model. A 
negative coefficient makes the same contribution to the explanation of 
an outcome as does a positive value, so if there is an inverse relationship 
between the independent and dependent variables, the sign of the R2 

value should be set to negative in the simultaneous equations.12 

In summary, the relationship between the distribution of a probability 
curve and the cumulative area curve is a straightforward transformation 
suitable for solving simultaneous equations. Conceptually, it is merely 
converting the outcomes to percentiles and the independent variables 
to standard scores.  

The S-shaped curves are all asymptotic to the lowest and highest 
values as determined by the R2, thus solving the boundary dilemma 
of achieving perfect scores by allocating an infinite amount of 
resources. While an increase of resources may improve the outcome 
level, it is both conceptually and mathematically impossible in this 
interpretation to achieve perfection because the asymptotic curve will 
never reach the maximum. This situation is consistent with the basic 
assumption of school performance. When applied to actual estimates 
of the production function, the respective relationships are depicted 
in Figure 6.13

With this transformation, the mechanics of optimization are 
rather straightforward even though the preparation of the data is 
somewhat tedious. The multiple R2 weightings are inserted into a set 
of simultaneous equations based on the cumulative area function.  
Then, the principles of mathematical programming are applied to solve 
for the optimal levels of variables that will produce the highest level 
of summed outcomes. Importantly, the simultaneous equations model 
also requires the inclusion of constraints consistent with organization 
practice, the most notable being cost. Other upper and lower limits can 

Figure 5
Area Under Curve

Figure 6
Relationships
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10 Educational Considerations

be included as organizational practice requires. It should be emphasized 
that this solution is not for the weightings as they were estimated 
via regression analysis in the form of the R2. Rather, the solution is 
for the values of the independent variables that will predict the best 
result—the highest predicted level of outcomes summed across the 
several equations.  

The shift from the standard regression model to an optimization 
model may be more difficult psychologically than mathematically.  
Because of common use, most people are more comfortable with 
regression, but the critical difference is in the acceptance of the 
deficiencies listed above and their practical consequences.  It is much 
easier to believe in continuous improvement for increased resources 
than it is to believe in diminishing returns—a point where an increase 
in resources produces little, if any, improvement. However, can the 
simultaneous equations with the transformations actually be solved and 
will the solution provide insights into the fundamental question—what 
is the best allocation of resources to achieve the optimal outcomes?

The Optimization Model
The optimization model takes a form common in mathematical 

programming, with the following elements:  Objective function as the 
sum of the outcomes; equations defining the relationships between 
multiple variables and the outcomes; equations calculating the cost; and 
constraints limiting the upper and lower bounds of the variables

There is no method to predict future outcomes with complete 
accuracy. There are changes in the organization plus there is a 
certain degree of measurement uncertainty. As a result, the estimated 
outcomes are stochastic and based on predictions. Therefore, there 
must be two sets of simultaneous equations defining the outcomes, 
somewhat like a “before” and “after.” Before and after are not different 
time periods; rather, they are the predicted results before and after the 
optimization. Before estimates the actual predicted target utilizing the 
existing variable values, and after estimates the optimized predicted 
target utilizing the optimized values.  

The basic structure of the equations is similar in form to regression 
equations:

Outcomea  = Wa1*V1 + Wa2*V2 +… Wan*Vn + Residual

Outcomeb  = Wb1*V1 + Wb2*V2 +… Wbn*Vn + Residual

Outcomen  = Wn1*V1 + Wn2*V2 +… Wnn*Vn + Residual

W’s are weightings, potentially different in each equation while V’s 
are variables, the same in each equation. For each set of equations, 
the outcomes are summed to produce a target:

Actual Predicted Target  (Before) = Set One (Outcomea + 
Outcomeb + … Outcomen)

Optimized Predicted Target (After) = Set Two (Outcomea +
Outcomeb + … Outcomen)

The objective function, the value to be maximized, is the gain in 
the predicted outcomes achieved by changing the resource allocation 
pattern:

Objective Function = Optimized Predicted Target (After) – 
Actual Predicted Target (Before)

The constraints control the total cost as well as minima and maxima 
for each of the variables:

Total Cost = V1*$1 + V2*$2 + … Vn*$n  

Total Cost = specified value	
Vn ≥ = specified value
Vn ≤ = specified value
	
The weightings (W’s) are the R2 for the respective variables (V’s).  

The R2 are estimated via regression analysis, but, as noted earlier, it can 
be negative. The respective variables (V’s)  are the actual observation 
values for calculating the actual predicted target in the first equation, 
and the optimized values for calculating the optimized predicted target 
in the second equation. The total cost of each set of equations is 
calculated by multiplying the value of the variable (V) by the average 
cost of the variable ($).

There must be a cost constraint; organizational resources are always 
limited. The values of V1*$, V2*$… Vn*$ when added must be equal to 
or less than a specified amount, the total cost of the resources available 
to the organization. The purpose of optimization is to maximize the 
sum of optimized predicted outcomes while staying within the cost 
boundary. A “cost” expression is inherent to optimization but missing 
in regression.  

What makes this model unique is the function used to represent 
the relationship between the independent variables and the outcomes.  
Because achievement outcomes are measured in stochastic terms—
normal distributions—the relationships are measured in the same way.  
Rather than defining the relationship between the independent and 
dependent variables as the linear slope, the relationship is defined in 
terms of a type of standard scores. Because the area under the normal 
curve can be represented in terms of percentiles, the unique function 
is the integral of the normal curve—an S-shaped curve—adjusted 
by the degree of relationship, the R2. The higher the R2, the more 
vertically expanded the S-shaped curve, and vise versa. The integral 
of the normal curve is asymptotic at high and low points, so it is 
impossible to reach the absolute maximum or minimum points.  While 
the slope at the mid-point (Z-score of zero or the 50th percentile) is 
the R2 value, the slope gradually diminishes as it progresses upward 
and is symmetrical downward. (See Figure 4.) The basic idea is to 
increase the allocation level in favor of the variable when the slope is 
the greatest and decrease the allocation level in disfavor of the variable 
when the slope is the least. This decisionmaking rule is the essence 
of diminishing returns.

Data Requirements
Most state departments of education have data on the most 

frequently considered variables, such as the numbers of staff, salaries, 
qualifications, etc. The model can be specified for either school districts 
or school buildings. There is the obvious relationship between the 
sophistication of the data and the model; that is, the more sophisticated 
the data, the more sophisticated the model will be. With advancements 
in technology, the data for the model are easily obtainable through 
information systems.

The following data are required for the model:  (1) Population data on 
the outcomes and variables to calculate means and standard deviations; 
(2) observation data for the outcome and variables, including actual 
levels; (3) cost data for the variables of the observation; and (4) 
estimates of the relationships between the outcomes and the various 
variables in terms of the R2.

The model can be established based on two types of scenarios:  
Improvement based on redistribution of existing resources when the 
constraint of total cost is set at the existing level (an increment of 
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zero); or improvement based on a cost increment when the constraint 
of total cost plus an increment is set.

An Optimization Example
The optimization model is illustrated here using fictitious data from a 

state and a school building—Elmstown. The purpose of the optimization 
is to improve the predicted achievement outcome levels by changing 
the staffing levels in the categories of classroom teachers, support 
staff, teacher aides, and administrators. For the state data, converting 
each variable into “staff per one thousand students” normalizes the 
raw numbers. The means and standard deviations are required in order 
to calculate Z-scores and percentiles. Also, the mean and standard 
deviation are required for each of the outcome variables, in this case 
mathematics and reading at the third and fifth grades, in order to 

Staffing

Students
Classroom 
Teachers

Support 
Staff

Teacher 
Aides

Adminis-
trators

Sum

State
n (total) 100,000 4,000 1,000 750 650 6,400

Per thousand 40.00 10.00 7.50 6.50 64.00
Std Devition 5.00 2.00 2.00 2.00 11.00

School

n (total) 1,000 40 10 8 7 64
Per thousand 40.00 10.00 7.50 6.50 64.00

Z-Score 0.00 0.00 0.00 0.00
Percentile 0.50 0.50 0.50 0.50

Salaries
Classroom 
Teachers

Support 
Staff

Teacher 
Aides

Adminis-
trators

Sum

School
Mean $50,000 $55,000 $25,000 $75,000
Total $2,000,000 $550,000 $187,000 $487,500 $3,225,000

Student Achievement and Socioeconomic Status
Math3 Math5 Read3 Read5 SES

State
Mean 1,400 1,200 1,400 1,300 50

Std Deviation 300 200 350 250 10

School
Z-Score 0.00 0.00 0.00 0.00 0.00

Percentile 0.50 0.50 0.50 0.50 0.50
Effectiveness

Math3 Math5 Read3 Read5
State Mean 0.00 0.00 0.00 0.00

Std Deviation 0.06 0.06 0.06 0.06
School Mean 0.00 0.00 0.00 0.00

Z-Score 0.00 0.00 0.00 0.00
Percentile 0.50 0.50 0.50 0.50

Table 1
Summary Table of Data for Elmstown School and State

calculate Z-scores and percentiles. The same statistics are required for 
SES and effectiveness variables for each of the outcomes.
At the school building level, data are required for the number of 

staff in each category as well as the average salary for each staffing 
category. With this data, the salary total is calculated (number of 
staff times the average salary summed across categories). Using the 
state data, Z-scores and percentiles are calculated for the achievement 
variables. These data are seeded into an Excel spreadsheet to carry out 
the optimization. In order to focus on the school input variables, SES 
and effectiveness variables are set to the mean, or 50th percentile. In 
an actual example, these data will assure the analysis optimizes the 
school variables without the influence of the other factors. Table 1 
illustrates the state and school data.
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Setting Model Parameters
In order to carry out the optimization, two sets of parameters must 

be added. These estimates do not have to be exact, but do have to 
fall within a reasonable range. According to Schrage, “The first law 
of modeling is don’t waste time accurately estimating a parameter if 
a modest error in the parameter has little effect on the recommended 
decision.”14 The first set of parameters includes the estimates of the 
relationships between the staffing categories and the multiple outcome 
variables as measured in terms of the R2, the proportion of variance 
explained by each of the staffing variables. The researcher selects these 
estimates based on ranges produced by regression analysis of the 
population.  There is, however, a mathematical limit to these estimates:  
The sum may not exceed 1.00.  The second set of parameters contains 
the minimum and maximum levels for each of the staffing categories.  
These constraints address other practical considerations required by 
the organization and are selected by the researcher. There also must 
be a cost constraint, the total amount available to spend.

Calculations in the Equations
The model contains two sets of equations predicting the outcomes 

before and after the optimization. The before scenario is based on the 
actual organization values—the predicted target—and the after is based 
on the optimized values--the optimized target. The calculation for each 
of the terms (variable times weighting) is particularly noteworthy.  The 
calculation is based on the notion that the best predictor of an outcome 
is the mean (Z-score = 0, or 50th percentile) when no other information 
is available. So when some information is available, the calculation is 
measured by how much the estimate varies above or below the 50th 
percentile. The calculation for each term is as follows: 

Term = R2 * (Percentile - .5)

The predicted outcome is the sum of the terms plus the 50th 
percentile. The calculation answers the question: How many percentiles 
above or below the 50th percentile will the prediction be? The 
calculation is as follows: 

 
	 Outcome =  Terms + .5

The optimization process selects new values for each of the staffing 
categories producing the optimal gain above the predicted target, also 
known as (the objective function or “gain in target,” given several 
constraints. In this illustration, the major constraint is the total cost 
of staffing, which must be the same for the before equations and the 
after, or optimized, equations. Of course, the conditions of maximums 
and minimums for the respective variables in both equations must 
be honored. In essence, this scenario is to redistribute the existing 
financial resources across the staffing categories. If the total cost of 
the optimized equations were set higher than the before cost, the 
scenario would be incremental in nature. In Excel, the solver identifies 
the objective function as the “target cell” and optimum values as “by 
changing cells.” The constraints are identified in under the heading, 
“subject to the constraints.”

Because the optimization is conducted here on a single observation—
here a school building—the solution is unique to this building. The 
regression model implies the same outcome increase for the same 
change in variable level for every observation regardless of starting 
point. In contrast, the optimization depends on the unique starting 
points of each observation, so the amount of increase is always 
unique.

In order to make the results of the two predicted outcome values as 
close as possible to the actual outcome values, it is critical to include 
SES as a variable in the model. In virtually all studies, SES is the highest 
predictor of student achievement.15  A measure of school effectiveness 
is also included to make the predictions as robust as possible.

Return to the Production Function
Earlier, the notion of the production function was introduced. The 

original conceptualization was:

Outcome = Input + Process 
At this point in the discussion, it has more practical implications. 
Through the refinement process, the function has become more 
sophisticated. First, the input has been divided into two categories, 
the school inputs and the community input of SES. Second, the 
process element has taken on the character of the effectiveness variable 
represented by the regression residual. The residual of a regression 
equation is comprised of an unobserved variable, a variable not in 
the equation, and error due to the inaccuracies in measurement.  
Assuming the residual is an unobserved variable of effectiveness, it 
can be separated from the error by averaging the residual over time.  
The average is the effectiveness portion, and the difference between 
the average and the residual is the error. The production function 
evolves into the form:  

Outcome = SES + Effectiveness + School Inputs + Error

For the sake of illustration, assume the SES and Error terms are 
identical over two periods of time. The function express in terms of 
change (Δ) is then:  

Δ Outcome = Δ School Inputs + Δ Effectiveness 

Consider the following scenario. What if the school input weightings 
in the optimization are inflated or raised higher than what might 
be considered reasonable? The predicted optimized target will then 
increase, but what if the actual outcome level does not increase at 
the same pace? The equation demands balancing, so effectiveness 
declines. Simply stated, within the rigors of the mathematical model, 
any overstatement of school inputs will be offset by an decrease in the 
level of school effectiveness. Hence, attempts to “game the system” 
by inflating inputs will have the consequence of being labeled less 
effective.

Subject SES Effectiveness Error

Math3 0.532 0.381 0.087
Math5 0.635 0.297 0.068

Reading3 0.712 0.223 0.065
Reading5 0.706 0.226 0.068

Mean 0.646 0.282 0.072

Table 2
Range of Weightings
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Table 3.1 Original Values and Optimal Values

SES Effectiveness
Classroom 
Teachers

Support 
Staff

Teacher 
Aides

Adminis-
trators

Total 
Cost

Incre-
ment

Original 
Values

50.00 0.00 40.00 10.00 7.50 6.50

  Percentile 0.50 0.50 0.50 0.50 0.50 0.50

  Cost 2,000,000 550,000 187,500 487,500 3,225,000 100,000

Optimized 
Values

n/a n/a 44.42 5.00 10.63 7.51 3,325,000*

  Change 4.42 -5.00 3.13 1.01

  Z-Score 0.88 -2.50 1.57 0.51

  Percentile 0.81 0.01 0.94 0.69

  Cost 2,220,846 275,000 265,806 563,348 3,325,000*

  Minimum 35 5 5 3

  Maximum 50 15 15 10

*Must be equal

Table 3.2 R-Square with Goal

SES Effectiveness
Classroom 
Teachers

Support 
Staff

Teacher 
Aides

Adminis-
trators

All 
School

Total Error Total

Math3 0.600 0.2500 0.030 0.020 0.010 0.020 0.080 0.930 0.070 1.000

Math5 0.600 0.2500 0.035 0.020 0.010 0.020 0.085 0.935 0.065 1.000

Reading3 0.650 0.2000 0.035 0.020 0.020 0.010 0.085 0.935 0.065 1.000

Reading5 0.650 0.2000 0.030 0.020 0.020 0.010 0.080 0.930 0.070 1.000

Average 0.617 0.233 0.033 0.020 0.013 0.017 0.083 0.933 0.067 1.000

Table 3.3 Predicted Target

SES Effectiveness Contribution School
Pre-

dicted
Actual

Effi-
ciency

Math3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 50.00% 50.00% 0.00%

Math5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 50.00% 50.00% 0.00%

Reading3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 50.00% 50.00% 0.00%

Reading5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  50.00% 50.00% 0.00%

Sum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 50.00% 50.00% 0.00%

Table 3.4 Optimized Target

SES Effectiveness Contribution School
Pre-

dicted

Math3 0.0000 0.0000 0.0093 -0.0099 0.0044 0.0039 0.0078 50.78%

Math5 0.0000 0.0000 0.0109 -0.0099 0.0044 0.0039 0.0093 50.93%

Reading3 0.0000 0.0000 0.0109 -0.0099 0.0088 0.0019 0.0118 51.18%

Reading5 0.0000 0.0000 0.0093 -0.0099 0.0088 0.0019 0.0102 51.02%

Sum 0.0000 0.0000 0.0405 -0.0395 0.0265 0.0116 0.0391

Average 0.0000 0.0000 0.0101 -0.0099 0.0066 0.0029 0.0098 50.98%

Gain in Target 0.0000 0.0405 -0.0395 0.0265 0.0116 0.0391 0.98%

Table 3
Optimization Results
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Ranges of Relationship Weightings
There is no fixed set of weightings measuring the relationship 

between the outcome and the model variables. Every study will 
produce different estimates. Nevertheless, most studies fall within 
some consistent range. The author has not completed a thorough study 
to document these ranges, but based on data from one state, these 
ranges, measured in terms R2 or percentile points, seem to be justified.  
(See Table 2.) In this state, the influence of SES tends to be about 10 
points higher for reading than for mathematics while the influence 
of effectiveness tends to be about 10 points higher for mathematics 
than for reading.16 Each investigator will have to determine a range 
based on what data are available for the population under study. The 
consequence of overestimating has already been addressed.

After the data have been entered into the spreadsheet model and 
the optimization conducted, the results can be presented in a format 
illustrated by Table 3.

Summary of Results and Analysis
All the school variables in this illustration were set to the mean 

to more easily focus on the features of the optimization. Therefore, 
the predicted target and actual outcome levels were all at the 50th 
percentile. In a real situation, these variables will reflect the actual status 
of the school. When the optimization is applied, the optimized values 
are indeed changed in that there is an increase in the more cost-effective 
variables and a decrease in the less cost-effective variables. The total 
cost of the pre-optimization and post-optimization is equal, thus an 
incremental scenario. There is an incremental value that could be set 
to zero by the researcher for a redistribution scenario. The constraints 
have been met in that the support category is at the minimum. The 
gain in the predicted gain in target is an average of .98 percentiles.

The optimization also produces some analytical information of 
potential usefulness. The contribution of each of the variables for each 
of the outcomes is provided indicating the respective cost-effectiveness.  
The average contribution for each of the variables is also provided.  
The contributions of the school variables are provided separately. 
There is a check of the R2 sum to assure that it is not greater than 
1. The sum of the R2 of the school input terms is provided to assure 
it falls within a reasonable range. A measure of efficiency is given, 
calculated as the difference between the optimized predicted outcome 
and the actual outcome level. It could be considered error or doing 
better (or worse) than predicted. As this example demonstrates, there 
is a mathematical solution to the stochastic simultaneous equations 
model. Only by building and interrogating a “live-data” model with all 
of the policy relevant variables will it be known if there is a practical 
policy solution.

Observations Regarding the Optimization Model

Modeling through Estimates
There will never be enough comprehensive and accurate data.  

Realistically, data can be used to make estimates of relationships 
between outcomes and input variables; however, these estimates will 
always vary over time and populations. Importantly, this optimization 
model is most effective when realistic ranges of the relationships are 
examined. Because the cost of a variable is known with great accuracy, 
it is logical that there is an implied relationship between the cost and 
the cost-effectiveness of the variables. That is to say, if variable A is 
three times as costly as variable B, then variable 1 must be three times 
as effective for the two variables to be equally cost-effective

Setting the relationship variables first produces the predicted target 
level. Importantly, the higher the relationship, the higher the predicted 
target values. This is not a “freebie,” in that the actual relationship 
values are, by definition, set so half of the observations will do better 
than predicted and half will not. This difference is in small part due 
to error in data measurement, but mostly the difference is due to the 
inescapable fact that some organizations are more effective in turning 
resources into outcomes. Therefore, if the relationship variables are 
set too high, indicating that more resources will produce higher 
predicted outcomes, it will also tend to increase the gap between the 
predicted outcome and the actual outcome, indicating a higher degree 
of ineffectiveness. Increasing the relationship coefficients will have 
the effect of indicating higher potential achievement scores for greater 
resources, but it will also render the school less effective when the 
actual results are measured and the school fails to meet the prediction.  
In essence, the greatest value is achieved when the parameters are set 
realistically rather than quixotically.

Inevitable Conclusions
As outlined above, there are some inevitable conclusions associated 

with the optimization model as compared with the regression model.  
First, because of the inherent nonlinear structure of the optimization 
model, it is impossible to achieve entirely the desired goal unless the 
goal has been completely achieved by other similar organizations. That 
is to say, it is impossible to set values predicting a perfect outcome 
score unless it has been actually achieved by other organizations, and 
the Z-score for that organization can be identified. In terms of student 
achievement testing, it is highly unlikely any organization records 
perfect scores for all students.

Second, there is an inherent point of diminishing returns due to the 
nonlinear stochastic function. At a certain point, any given variable 
will have reached its potential, and investments in other variables will 
indicate better results. As a general rule, if an organization is among 
the highest on a given variable when compared to other organizations, 
an increase the variable will indicate little increase of outcome in the 
model. On the other hand, an increase in a variable for which the 
organization is low as compared to others will indicate a larger increase 
of outcome. Of course, the variables must be compared based on the 
cost-adjusted value.

Third, as suggested by point two, the solution to the model will be 
different for each organization, because the starting point is unique 
to each organization. Theoretically, if all organizations were moved 
to the high end (for example, the third standard deviation above the 
mean) for all variables, the predicted results for all organizations based 
on the allocation of resources would be similar. Any differences in 
predictions would be based on variables not included in the resource 
allocation category such as socioeconomic status or effectiveness.  
In other words, achievement equity is not possible solely through 
resource allocation. For complete outcome equity, resources, SES, and 
effectiveness must all be equal.

The optimization model has two basic strategies: (1) Invest in high 
cost-benefit variables where the organization level is low compared 
to other organizations; and (2) Do not invest in low cost-benefit 
variables where the organization level is high compared to other 
organizations.
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Ranges of Input and Process Categories
In supplying the estimate of weighting in the equations, these 

conditions must be recognized. First, there is a maximum of an 
R2 of 1.00. Second, if the estimated weightings are larger than the 
actual weightings, the effectiveness ratings of the observations will 
be reduced; that is, the actual performance on outcome will be less 
than the predicted outcome level. In theory, the weightings will be 
close to correct when the effectiveness of all observations is normally 
distributed with a mean of zero. Over the last several decades, 
educational research has identified several categories thought to be 
associated with student learning outcomes. The community and school 
inputs are: SES; staffing quantity (ratio of various staff classifications 
to students); (3) staff quality (qualifications, experience, etc); and (4) 
materials and supplies. Less attention has been paid to the process 
categories of instruction, including time, curriculum, out-of-school 
influences; and effectiveness. A comprehensive model could include 
all these independent variables as long as there are data defining the 
variables and statistics estimating their relationships with outcomes.  
While outcomes are usually defined by student achievement measures, 
other desirable outcomes such as dropout rates and college-bound rates 
could be included in the model as long as the data for the variables 
and estimates of the relationships are available. Because there tends 
to be a high degree of correlations among school variables, adding 
variables to the model does not always have the effect of increasing 
the predicted levels of the outcomes.  Instead, adding variables merely 
redistributes the influences. Also, because of the correlation between 
some school variables and SES, it is appropriate to test the model 
within reasonable ranges.

Testing the Model
There are some elements of school operations for which there are 

no estimates of the relationship with outcomes. Probably the best 
example is that of the school year. Mostly because of state laws, 
virtually all schools are in operation for the same amount of time. 
Because there is little variation, there can be no estimated relationship 
in a regression analysis. But there are options within the optimization 
model. First, the cost of an extension of the school year can be 
calculated. Second, the cost can be compared with the cost of other 
options where the relationship with outcome is estimated. With this 
information, a calculation can be made as to the relationship level of 
extending the school year to make an equal contribution as the other 
option. In a more ideal situation, a national or state research initiative 
could be conducted by first applying the optimization model and then 
applying an experiment—in this illustration, a longer school year—to 
determine if the estimates in the model are realized. Surely this is a 
more practical method than instituting a statewide policy without any 
experiment evidence.

Sensitivity Analysis
There is a notion of  opportunity cost developed by accountants.  

Simply, it is how much profit can be gained by increasing production 
by a given amount. In the optimization illustration, a marginal cost-
benefit is provided for each element within the model indicating how 
much would be gained in student outcome by a certain investment.  
Obviously, it would be appropriate to invest in the element with the 
highest cost-benefit. However, the cost-benefit will not be the same 
for each school because each school has a unique starting point.

Summary, Research, and Policy Issues
The model used for investigating school resource allocation 

questions has a definite influence on the policy conclusions reached. 
At the beginning of this article, three potential benefits of building a 
model were identified. First, building a model often reveals structures, 
elements, and relationships usually taken for granted until the 
underlying assumptions are stated and tested. Once the original ideas 
are stated and tested, they usually give way to more sophisticated 
and accurate representations of the actual situation. Second, once the 
model is constructed, analyzing it mathematically suggests different 
courses of actions not readily apparent. In essence, the model becomes 
a challenge to conventional thinking. Third, experimentation that is 
not practical in actual situations is possible within a model. Through 
experimentation, more potentially successful options may be identified.  
In essence, models can be tested, unlike “seat-of-the pants” decisions.  
Now it is time to assess if any of these potential benefits have been 
realized through the process of building an optimization model.

Underlying Assumptions of the Optimization Model
In building this optimization model, the structures and relationships 

of other models were analyzed and their underlying assumptions 
challenged. The optimization model makes different assumptions 
and, most importantly, the model defines the relationships between 
outcomes and inputs differently.  

The fundamental assumption regarding education is that it is 
stochastic in nature because the goals of education are mostly measured 
by student achievement tests having theoretical and practical upward 
limits. The critical step in actually building the optimization model was 
identifying the mathematical function fitting the stochastic nature of 
education to a diminishing returns curve rather than a constant returns 
line. Considerable attention was paid to the mathematical evidence 
demonstrating the existence of a diminishing returns curve derived 
from a transformation of the regression analysis. Using the principles 
of mathematical programming, it was possible to: (1) Incorporate 
these diminishing returns curves into multiple regression equations 
representing the simultaneous educational goals; (2) Incorporate 
additional equations reflecting the constraints on the organization, 
most importantly, cost; and (3) Develop the methodology for finding 
feasible solutions to this optimization model. The optimization model 
is more sophisticated than other models because these concepts are 
incorporated; and because they are incorporated, the optimization 
model more accurately represents the actual situation.

Observations Regarding the Optimization Model
The generalized results of the optimization model suggest different 

courses of action challenging conventional thinking in several ways.  
First, there is a unique resource allocation strategy for every school, 
depending on its starting conditions, rather than a common strategy 
applying to all schools as is the case with other models. Second, 
while additional resources can make some difference, merely adding 
educational resources will never completely overcome the influence 
of SES or the shortcomings in organizational effectiveness. This 
distinguishes the optimization model from those that resources can 
overcome all other shortcomings. Third, in some cases, more is better, 
but in other cases more (e.g., money) produces little or no increased 
in benefits. In other models, more is always better. Unquestionably, 
these findings are in direct contrast to the conventional and somewhat 
“seat-of-the-pants” thinking prevalent in education today.
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Identifying and Testing Potentially More Successful Options
There are many “ifs” in model building. In this case, there is the 

question of whether the stochastic model presented here has greater 
logical and mathematical merit than other models. Next is the question 
of the accuracy of magnitude of the relationships presented. Are the 
estimates of the influence of SES, school effectiveness, and school 
inputs reasonable? Assuming the responses to these questions are in 
the affirmative, then there is the inescapable question: Why focus so 
much attention on the allocation of school resources when the largest 
impact on student achievement will come through improving school 
effectiveness and addressing the issues associated with community 
SES?

SES poses its own set of problems. First, SES is not a changeable 
“thing,” at least changed in a way that relates to student achievement.  
SES is a concept, and researchers employ proxies to measure the 
concept. The measure usually includes, for example, income, 
education levels,  and verbal aptitude of the mother. No one seriously 
proposes policy changes in these variables in order to improve 
student achievement. More likely, the concept of SES represents a 
set of behaviors associated with families and communities where 
students test favorably. Is it the amount of time devoted to reading 
or homework, or the amount of time not devoted to television? Is it 
the amount of time parents spend talking with their children about 
school or the amount of time a family engages in serious discussion 
about the importance of an education? We do not know. It does 
seem potentially rewarding, however, to find out more about these 
behaviors and then devise programs for schools, communities, religious 
organizations, and social service agencies to become more engaged 
in an way that is likely to bring more success.  

Education is not well-suited for testing the optimization model—or 
any model—through experimentation. State laws, professional attitudes 
and traditions, and public opinion make it all but impossible to 
adopt the conclusions of the optimization model into practice. Some 
expectations of change have been placed on charter schools, but the 
evidence is not hopeful. Perhaps the critical question is whether using 
a different model—an optimization model—can have an impact on 
lawmakers' actions, professional attitudes, and public opinion?

The Optimization Model as a Paradigm
This article was heavily influenced by Kuhn’s ideas and, especially, 

his thoughts regarding a “paradigm shift” in The Structure of Scientific 
Revolutions.13 The optimization model in the context of a paradigm 
has a larger purpose:  To put all the individual pieces of an educational 
organization into a single, comprehensive, and logical framework, 
much like particle physics and the “Standard Model.” With such a 
framework in place, it is possible to make more sophisticated inquiries 
and predictions. The results then become the empirical basis for policy 
decisions. The driving force for a new model was the anomaly presented 
by regression analysis; that is,  regression could not accommodate all 
the elements and outcomes of the organization simultaneously, and 
it could not comprehensively respond to the best use of resources 
questions.

The intent of the optimization model as a paradigm is to 
demonstrate its greater robustness compared to its competitors 
in that it substantially adds scope and precision to the “what if” 
questions. In addition, the model establishes a framework for future 
research. First, it builds upon the idea of the production function 
by adding the element of effectiveness with a theoretical basis and 

a practical method for its measurement. Second, it incorporates a 
reformulation of the regression statistics into a type of  glue serving to 
hold the multiple outcomes together with the multiple elements in a 
comprehensive and mathematically logical way. Finally, it incorporates 
a mathematical programming methodology for modeling the intricacies 
of the educational organization.

What is missing?  There seem to be at least three major pieces missing 
for a concerted research strategy: (1) A conceptual structure guiding 
research efforts; (2) a set of reliable and replicated measurements of 
the structure elements and their relationship with outcomes; and (3) 
methods to address technical shortcomings.

Other sciences have conceptual structures guiding research efforts.  
While there are many illustrations, the periodic table from chemistry 
serves as an instructive analogy. The periodic table identifies the basic 
chemical elements by their measurable characteristics. Based on these 
characteristics, research is directed toward understanding how they 
interact with one another in more complex situations. What if there 
were a comparable conceptual structure for educational organizations?  
What if there were a consensus regarding the structure and elements 
of the educational organization along the lines presented herein? It 
would encourage the direct comparison of research results—a type 
of unification. Like chemistry, additional elements could be included 
as their unique characteristics and contributions are identified and 
measured. With a consensus of the structure and elements of an 
organization, research would focus on what is in common among 
organizations so the anomalies could be identified and addressed.

What if there were a comprehensive set of measurements estimating 
the characteristics of these elements and their relationship to outcomes?  
While they would not be exact, as they are in chemistry, they would 
fall within ranges, and these ranges would be valuable in seeding 
the optimization model. While they will undoubtedly be difference 
estimates, there is no reason to believe the underlying effect of 
staffing quality or staffing quantity would be different due to the 
school district or state of residence of a student. Most likely, it is the 
unique combination of factors making the difference. Therefore, the 
key is to identify those underlying factors, their magnitudes, and their 
relationships.

What if there was a concerted effort to address some of the technical 
shortcomings of this and other models—the multicollinearity among 
variables, for example?  For example, it may be possible to incorporate 
the multicollinearity into the optimization model by adding defining 
equations.

Walberg worked on developing a comprehensive framework for 
the analysis of productivity starting in 1975.14 (While he developed 
a method of measuring relationships between outcomes and school 
variables—effect size—he neither proposed an economic adjustment nor 
an optimization method.) Levin addressed the important relationship 
of cost-effectiveness with educational policy,15 and Monk described the 
pro’s and con’s of the production function.16 The optimization model 
builds on Walberg’s plea for a comprehensive framework, Levin’s push 
for cost-effectiveness, and Monk’s call for greater sophistication in the 
production function.

With these caveats in mind, the ultimate value of this model is 
its potential for becoming a paradigm for the continued pursuit of 
educational productivity.
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Appendix A
Observations Regarding Meta-Analysis of Class-Size

For those who might cite the class-size meta-analysis by Glass 
and Smith as an example of increased returns to scale rather than 
diminishing returns, they may wish to consider the following.1 First, 
the equation Glass and Smith used to plot the frequently cited curve 
included a squared term, indicating the plot is a parabola. When fully 
plotted across the entire class-size range in the data, the achievement 
prediction for a class-size of 60 was the same as for a class-size of 10, 
with the minimum being a class-size of about 32. Because the data 
included substantial observations of class-size above 40, the full curve 
should be considered when drawing conclusions rather than just the 
“attractive” side of the curve. Second, because the report included 
the data, a re-analysis is possible. When this author conducted a re-
analysis, no relationship was found between class-size and achievement 
levels when the range was restricted to class-sizes between 10 and 
60. Third, the class-size scale is not equal interval; therefore it would 
take four times as many teachers to reach a class-size of 10 starting 
at 40 as it would to reach 20.

When looking at the entire curve, three first-impression questions 
come to mind: (1) Can it be that a class-size of 65 will produce the same 
results as a class-size of 1? (2) What will be the results if there were 
more teachers than students in the class- would achievement continue 
to improve? (3) At what class-size does the left-hand side of the curve 
level off or is perfect achievement attainable? (See Figure A.)

1 Gene V. Glass, and Mary Less Smith, Meta-analysis of Research on 
the Relationship of Class-size and Achievement (Portland, OR: Far 
West Laboratory of Educational Research and Development, 1978).

Figure A
Range of Weightings

Appendix B
What Makes Education Stochastic?

After describing much of the details of the stochastic model, it may 
be useful to revisit the reasons why education evaluation is stochastic.  
Student achievement tests are based on the properties of the normal 
or probability curve and administered to students usually during the 
same grade in school producing another normal-like distribution. This 
is unlike most outcome measures in other organizations. Therefore, 
the relationship between student achievement and independent 
variables should also be based on these same properties.  What are 
these properties?  

First and most importantly, the normal curve is bounded. While the 
curve actually extends from minus infinity to plus infinity, both arms 
are asymptotic to the abscissa;  that is, while the extreme values may 
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18 Educational Considerations

closely approach the boundary, they never do. If in a mathematical 
model the boundaries could be reached, there would be the “out of 
bounds” paradox. In the case of education, it would mean all students 
can be above average, and under some circumstances all students 
can be perfect. Because this is not the case in practice or in theory, 
modeling education with stochastic functions more appropriately 
resembles reality. Second, the relationship among normally distributed 
variables is nonlinear, a critical condition for solving simultaneous 
equations. Third, when the predicted results are presented in terms 
of percentiles, one may answer the question: What are the chances 
the result will be achieved when the conditions of the model have 
been met? As the following illustration will show, the changes are 
limited largely because of the SES element and, to a lesser degree, 
school effectiveness.  In contrast, the regression model implies a 100% 
chance of achieving perfection given enough resources, regardless of 
SES or effectiveness.

Because of the stochastic nature of student achievement testing, 
there is a fundamental difference in how schools are judged compared 
to most other organizations. All widget-making companies are thought 
to be successful as long as they stay in business; there is no stochastic 
judging scheme. While there have been other attempts to judge the 
performance of schools--for example through accreditation—with the 
current emphasis on standardized testing, schools have been relegated 
to a unique fate prescribed by the normal curve.
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