Kansas Agricultural Experiment Station Research Reports

Volume 0 Issue 12 *Keeping up with Research*

Article 123

1974

Soybean Choices for Iron-Deficient Soils

Merle D. Witt

William T. Schapaugh Jr.

Follow this and additional works at: https://newprairiepress.org/kaesrr

Recommended Citation

Witt, Merle D. and Schapaugh, William T. Jr. (1974) "Soybean Choices for Iron-Deficient Soils," *Kansas Agricultural Experiment Station Research Reports*: Vol. 0: Iss. 12. https://doi.org/10.4148/2378-5977.7360

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1974 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.

Soybean Choices for Iron-Deficient Soils

Keywords


Keeping up with research; 4 (April 1974); Kansas Agricultural Experiment Station contribution; no. 33; Soybean; Iron-deficient soils; Choices

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu.

Keeping Up With Research

> **108** May 1995

SOYBEAN CHOICES FOR IRON-DEFICIENT SOILS

Merle Witt and William Schapaugh*

Yellow etiolated soybeans with reduced yields caused by a shortage of available iron are increasing problems in Kansas. In the central and western portions of the state, the iron-deficient areas that often are associated with highly calcareous soils are becoming more apparent. In severe cases of iron deficiency, other crop choices should be considered rather than soybeans. However, where soybeans are grown, partial solutions to this crop problem are possible.

Yield losses from iron deficiency often can be minimized in soybeans by:

(1) Growing varieties with genetic tolerance to iron chlorosis.

(2) Making field applications of livestock manure.

(3) Making foliar applications of iron-containing materials.

Among those three alternatives, using varieties tolerant of iron-deficient soils is generally the most desirable. Livestock manure applications to a field are often effective, but drawbacks include lack of accessibility to manure, high transportation costs, and frequent presence of weed seed. Foliar iron applications often are not very effective with soybeans, and the materials also tend to be expensive, difficult to maintain in suspension, and abrasive to application equipment.

AGRICULTURAL EXPERIMENT STATION

Kansas State University, Manhattan Marc A. Johnson, Director This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu.

Procedure

Sixty soybean varieties were studied in 1994 in field plots at the Southwest Research–Extension Center near Garden City, KS for their response to soils with limited available iron. Iron uptake values were recorded as chlorophyll (greenness) measurements using a Minolta SPAD-502 Chlorophyll Meter. Ratings were averaged from three plots for each entry. This soil site contained approximately 5 ppm iron (DPTA test).

Results

The reactions of some public and private soybean varieties are given in Table 1. These data cover released varieties available to the public or experimentals nearing release and of interest to producers.

The first 12 varieties listed rank significantly better than other entries in tolerance to limited available iron. The very poorest tolerance was shown by the variety Ohlde 4040.

Conclusions

Although no soybean varieties are available with complete tolerance to iron chlorosis, some show moderate levels of tolerance. Moderate tolerance allows improved soybean production in all but the most severe problem areas. Thus, variety selection is often the most practical solution to chlorosis caused by iron deficiency.

Table 1.	Evaluation	of soybean	varieties	for	iron	chloro-
	sis toleranc	e.				

sis tolerance.						
Brand	Entry	Maturity Group	Iron Uptake Reading ¹ /			
Ohlde	3214	III	33.0			
Ohlde	3431A	III	30.7			
DeKalb	CX458	IV	30.3			
Midland	8413	IV	30.3			
	Sparks	IV	29.3			
Ohlde	3820	III	29.0			
	K1231	IV	29.0			
	K1261	IV	28.7			
	KS4390	IV	28.0			
Deltapine	DP 3456	IV	28.0			
Deltapine	DPX 3432	IV	28.0			
	K1213	IV	27.7			
Pioneer	9393	Ш	27.3			
Drussel	DSS Exp 35203	III	27.0			
Midland	8355	Ш	27.0			
Midland	8375	III	27.0			
	KS4694	IV	27.0			

Brand	Entry	Maturity Group	Iron Uptake Reading ¹ /
Agripro	AP 4510	IV	27.0
ngripro	Williams 82	Ш	26.7
Drussel		Ш	26.7
Drussei	DSS Exp 4358 K1235	III IV	26.7
	KS3494	IV	26.3
Dmasal	DSS 3880	III	26.3
Drussel		III	20.3 26.3
Ohlde	X3660 9341	III	26.0
Pioneer	9341 HY 351	III	20.0
Hyperformer Midland		III	25.3
	8393 A3510	III III	25.0
Asgrow		III	25.0 25.0
Drussel	DSS Exp 6353	Ш	
Golden Harvest	H-1388	III	$\begin{array}{c} 25.0\\ 25.0\end{array}$
Ohlde	3272	III	25.0 24.7
Ohlde	3750A	III	24.7 24.7
Ohlde	X3550	IV III	24.7 24.7
Me II J	HC89-2170	IV III	24.7 24.3
Midland	Exp 372	III	24.3 24.0
Ohlde	X816	III IV	24.0 24.0
DeKalb	CX411	IV III	24.0 23.3
	Resnik	III IV	23.3 23.3
	Corsica	IV	23.3 22.7
California Harrison	Flyer		22.7
Golden Harvest	H-1353	III III	22.3
Ohlde	3570 K1262	III IV	22.3
		II	22.3
	Kenwood KY88-5037	IV	21.7
II		IV	21.7
Hyperformer	HY 446	IV	21.7
Agripro Pioneer	AP3800 9381	III III	20.3
Flotteer		III	20.3
Ohlde	Edison 3870	Ш	20.0 20.0
	3870 HSC 398	III	20.0 19.3
Hyperformer		III IV	19.3 19.0
Asgrow	A4138 C1832	IV III	18.7
		Ш	18.7
Diamaan	Sherman	III	18.7
Pioneer	9362	Ш IV	17.3
Hyperformer	HY 498	IV	13.7
Deltapine	DP 3478	IV	14.3 14.3
Stine Northmun King	3490 542.60	IV	14.3 14.0
Northrup King Ohlde	542-60 4040	IV	14.0
Test Average			24.0
L.S.D. (5%)			5.7

¹/ Highest value is best.

This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu.

Note: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

*Research Agronomist, Southwest Research-Extension Center, 4500 E. Mary, Bldg 924, Garden City, KS 67846 and Research Soybean Geneticist, Department of Agronomy, Kansas State University, Manhattan, KS 66506-5501.

Contribution No. 95-450-S from the Kansas Agricultural Experiment Station.

SRL 108

Agricultural Experiment Station Kansas State University Manhattan 66506-4008

May 1995

Kansas State University is committed to a policy of nondiscrimination on the basis of race, sex, national origin, disability, religion, age, sexual orientation, or other nonmerit reasons, in admissions, educational programs or activities, and employment (including employment of disabled veterans and veterans of the Vietnam Era), all as required by applicable laws and regulations. Responsibility for coordination of compliance efforts and receipt of inquiries, including those concerning Title IX of the Education Amendments of 1972, Section 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act, has been delegated to Jane D. Rowlett, Ph.D., Director of Unclassified Affairs and University Compliance, Kansas State University, 111 Anderson Hall, Manhattan, KS 66506–0124 (913-532-4392).