Fungal Genetics Reports

Inter- and intra-locus linkage analysis in Sordaria fimicola

Y. Kitani

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

Kitani, Y. (1988) "Inter- and intra-locus linkage analysis in Sordaria fimicola," Fungal Genetics Reports: Vol. 35, Article 8. https://doi.org/10.4148/1941-4765.1528

This Regular Paper is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

Inter- and intra-locus linkage analysis in Sordaria fimicola

Abstract
Research in Sordaria fimicola has been discontinued since Kihara Institute for Biological Research closed in 1984.

Kitani, Y.

Inter- and Intra-locus linkage analysis in Sordaria fimicola

Research in Sordaria fimicola has been discontinued since Kihara Institute for Biological Research closed in 1984. There is little prospect of completing work on four projects that were then in progress. It therefore seems appropriate to publish the substantial information already acquired.

The projects concerned: 1) Confirmation of three grey and two hyaline mutants as grey locus (g-locus) alleles; 2) determination of the conversion frequencies for these three alleles; 3) centromere distances and linkage relationships of ascospore color mutants; and 4) linkage relationships of morphological mutants to the indigo-locus (i-locus).

The three grey alleles were spontanious mutants, and the two hyaline mutants were induced with ICR 170. All were isolated and maintained by Kitani. The morphological mutants tested in the analysis of linkage relationship to the i-locus were of two groups: Dwarf or restricted growth mutants or spore shape mutants in the first group of 34 are listed in the Sordaria Stock List (Neurospora Newsletter 29:122-128, 1982). Mutants in a second group of 43 have been induced by Kitani with nitug/mI rosoguanidine. All the color mutants tested in the linkage analysis are listed in the Sordaria Stock List.

Determinations of both allelic relationship and conversion frequency (including conversion spectrum) of the five ascospore color mants were done under the microscope. The constitution of conversion asci was confirmed by testing progeny obtained by micromanipulation.

For the ascospore color mutant linkage analysis, ascus types were mostly determined under the microscope, and asci were dissected only when necessary to resolve an uncertainty. For the testing of morphological mutants to the i-locus, all the asci were dissected by micromanipulation, and the phenotypes of progeny were determined after cultivation.

All other procedures were as in previous reports (El-Ani, Olive and Kitani 1961 Am . J. Bot. 48:716-723, Kitani 1978 Genetics 89:467-497, Kitani 1978 Jpn. J. Genet. 53:301308, Kitani 1982 Jpn. J. Genet. 57:467-481, Kitani and Olive 1967 Genetics 57:767-782, Kitani and Olive 1969 Genetics $\overline{62}: 23-66$, Kitani and Olive 1970 Proc. Natl. Acad. Sci. 66:1290-1297 and Kitani, Olive and El-Ani 1962 Am. J. Bot. 49:697-706).

Results

1. Confirmation of five alleles in the g-locus. Lack of recombinant asci was confirmed

2. Determination of conversion frequencies and conversion spectra of the new g-locus alleles. The results are shown in Table 1. The conversion frequencies of the flve new alleles appeared virtually the same as previously determined for other g-locus alleles, about $2 \times 10^{\wedge}-3$. Conversion spectra of the three new grey alleles followed the grey alleles -- a relatively small proportion of the Aberrant 4:4 type and large proportion of ascus types having excess wild type spores. Conversion spectra of the two hyaline alleles also followed the general tendency of hyaline alleles -- large proportions were of the Aberrant 4:4 and the 5:3 types.
3. Centromere distances and linkage relationships of ascospore color mutants. Centromere distances are useful to know and are readily determined for ascospore mutants. First- (MI) and second- (MII) division segregation frequencies are shown in Table 2. Asci were scored microscopically without isolating progeny unless confirmation was necessary or stocks were desired. As has been generally true of ascospore color mutants in S. fimicola, all tested mutants appeared far from the respective centromeres. Only when the proportion of MII asci is below 67% is it useful to express the centromere distance in Morgan units; otherwise, the distance is shown as >30 in the table. The centromere distance for the g-locus is based on a very large number of asci from this and previous work (see El-Ani, Olive and Kitani 1961 Am. J. Bot. 48:716-723).

Linkage relationships of the 12 ascospore color mutants are shown in Fig. 1. The three numbers given in each box of the figure represent the numbers of asci that were parental ditype (PD), tetratype (T) and nonparental ditype (NPD). Ratios of PD to NPD indicate whether linkage exists: when the ratio is near $1: 1$, the genes are unlinked, and when PDs are significantly in excess of NPDs, the genes are linked. When linked, the frequency of the T type is proportional to the distance between genes.

The number of tetratype asci is not given in a box of the figure when a 1:1 ratio for PD:NPD indicated absence of linkage.

Linkage maps of two linkage groups have been published previously (El-Ani, Olive and Kitani 1961 Am. J. Bot. 48:716-723). Figure 2 shows current maps for all seven linkage groups.
4. Linkage relationship of morphological mutants to the i-locus. Efforts were made to find flanking markers that would improve the efficiency of conversion analysis at the ilocus (Kitani 1982 Jpn. J. Genet. 57:467-481). As shown in Table 3, all the morphological mutants deposited with $F G S C$ showed no linkage to the $\underline{\underline{-}}-10 c u s$. In this table, $\underline{\underline{r}} \mathbf{- 8}$, dw-4 and a-14 appeared to be located very close to their rēspective centromeres.

Three colony morphology mutants out of 43 newly induced ones were linked to the ilocus, as shown in Table 4. Morphological mutants $\underline{r-22}$ and $d w-18$ might well be useful as flanking markers. The other 28 mutants were unlinked, as Shown in Table 5. Table 6 gives data for the 12 mutants known to be located near one of the seven centromeres. These mutants would be useless as flanking markers even if linked with the i-locus which is located far from the centromere.
5. Alteration of some allelic symbols in the i-locus. Some mutants deposited with FGSC under different names were later found to be alFeles at the i-locus (Kitani 1982 Jpn. J. Genet. 57:467-481). Table 7 shows the revised names.

Table 1. Frequency and spectrum of gene conversion of new alleles in the g-locus

Ascus type	g1	h2	h3	h4	h5	g6	97	8*	g9*		h1	h12*
$6+, 2 \mathrm{~m}$	76	5	1	0	14	60	37	55	39	57	9	6
5+,2m	95	27	21	8	28	88	67	73	59	71	21	24
Ab 4:4	9	30	48	24	25	15	23	19	12	17	28	33
$3+, 5 \mathrm{~m}$	22	30	59	37	11	31	27	18	20	14	36	46
$2+, 6 \mathrm{~m}$	10	4	10	5	1	5	4	7	13	8	13	7

Conversion

frequency	2.03	2.09	2.32	2.28	2.24	2.34	2.17	2.09	2.16	2.12	2.44	2.21

at 10^-3

Table 2. Centromere distances of the ascospore color mutants in Sorderia fimicola MI (\%) MII (\%) Total Centromere distance

g		(33)		(67)	--	>50
m	3922	(47.0)	4428	(53.0)	8350	26.5
t	1496	(38.1)	2434	(61.9)	3930	30.1
i	1111	(38.3)	1792	(61.7)	2903	30.1
Y	1542	(47.6)	1699	(52.4)	3241	26.2
am	1116	(42.9)	1483	(57.1)	2599	28.6
ha	1086	(46.4)	1251	(53.6)	2336	26.8
su	1320	(44.6)	1641	(55.4)	2961	27.7
buff	808	(32.4)	1688	(67.6)	2496	>30
mo	876	(32.8)	1793	(67.2)	2669	>30
sky	308	(34.2)	592	(65.8)	900	>30
br-3	438	(37.8)	721	(62.2)	1159	>30
br-5	861	(35.4)	1568	(64.6)	2429	>30
br-6	777	(35.8)	1359	(64.2)	2172	>30
br-7	1064	(40.1)	1590	(59.9)	2654	>30

Table 3. Tests for linkage of morphological mutants to the i-locus

	g	m	t	i	y	am	ha	su	buff	sky	br-3	br-5
g					X	DI	X	X	A	A	X	X
[]						DI	X	X	X	X	X	X
t				X	DI	X	DL	X	X	X	X	DI
i			$\begin{gathered} 177 \\ 375 \end{gathered}$		X	X	X	X	X	X	X	L
y	$\begin{gathered} 307 \\ 532 \\ 220 \end{gathered}$		177 396 78	$\begin{gathered} 142 \\ 324 \\ 122 \end{gathered}$		DL	A	X	X	X	X	L
am	$\begin{gathered} 278 \\ 521 \\ 106 \end{gathered}$	$\begin{aligned} & 93 \\ & 154 \end{aligned}$ 43	$\begin{gathered} 174 \\ 414 \\ 162 \end{gathered}$	$\begin{array}{r} 235 \\ 562 \end{array}$ 199	$\begin{array}{r} 143 \\ 256 \end{array}$		X	A?	X	X	L	X
ha	$\begin{gathered} 239 \\ 419 \\ 197 \end{gathered}$	$\begin{gathered} 43 \\ 93 \\ 40 \end{gathered}$	$\begin{array}{\|c} \hline 179 \\ 386 \\ 81 \end{array}$	$\begin{gathered} 43 \\ 154 \\ \quad 32 \\ \hline \end{gathered}$		$\frac{128}{109}$		X	DL	X	X	X
su	$\begin{gathered} 126 \\ 240 \\ 101 \end{gathered}$	99 209 69	151 369 128	$\frac{63}{--}$	$\begin{gathered} 68 \\ 99 \\ 38 \end{gathered}$	*?	$\frac{163}{151}$		X	X	L	X
buff	*	$\begin{gathered} 213 \\ 410 \\ 144 \end{gathered}$	76 154 60	$\begin{gathered} 176 \\ 335 \\ 161 \end{gathered}$	$\begin{gathered} 232 \\ 446 \\ 131 \end{gathered}$	$\begin{gathered} 174 \\ 457 \\ 113 \end{gathered}$	$\begin{gathered} 282 \\ 545 \\ 135 \end{gathered}$	$\begin{gathered} 216 \\ 394 \\ 130 \end{gathered}$		A	X	X
sky	-	$\begin{gathered} 246 \\ 460 \\ \quad 209 \\ \hline \end{gathered}$	$\begin{gathered} 242 \\ 408 \\ 168 \end{gathered}$	$\begin{gathered} 1694 \\ -1397 \end{gathered}$	$\begin{aligned} & 70 \\ & 298 \\ & 63 \end{aligned}$	$\begin{gathered} 183 \\ 436 \\ 162 \end{gathered}$	$\begin{gathered} 239 \\ 426 \\ 218 \end{gathered}$	$\begin{gathered} 303 \\ 738 \\ 279 \end{gathered}$			X	X
	117	85	165	178	180	383	153	1003	121			
br-3	218	185	329	370	393	402	345	211	236	415		A ?
br-5		153	186	213	118	225	79	188	204	188		
br-s	3138	345	4669	322	195	543 206	867	469 126	4998	495	*	

Figure 1. Numbers of Parental ditype (upper left), Tetratype (middle), and Nonparental ditype (lower right) asci, and linkage relationships of ascospore color mutants.
A : allelic \quad : linked

* : recombination rare

DL : distantly linked?
X : unlinked
*? : allelic or epistasis of mutant over wild type

Figure 2. Seven chromosome linkage map of Sordaria fimicola

Table 4. Linkage of colony morphology mutants to the i-locus

| Gene | PD | $:$ | T | $:$ | NPD |
| :--- | :--- | ---: | ---: | :---: | :---: |\quad MI /MII

Table 5. Nonlinkage of colony morphology
mutants to the i-locus
Gene \quad PD : $\quad \mathrm{T}: \quad \mathrm{NPD}$ Total

$r-21$	0	6	2	8
$r-23$	0	7	1	8
$d w-8$	1	3	3	7
$d w-9$	0	5	3	8
$d w-10$	1	5	2	8
$r-26$	6	14	3	23
$r-27$	1	5	1	7
$r-30$	5	14	3	22
$\mathbf{r - 3 2}$	$\mathbf{1}$	6	1	8
$\mathbf{r}-33$	1	12	3	16
$\mathbf{r - 3 4}$	$\mathbf{6}$	24	11	41
$d w-11$	1	6	1	8
$d w-12$	1	6	1	8
$d w-14$	1	6	1	8
$d w-15$	1	4	2	7
$d w-16$	3	13	$\mathbf{1}$	17
$d w-17$	8	27	3	38
$r-38$	2	9	5	16
$r-39$	1	4	3	8
$r-40$	2	8	$\mathbf{0}$	10
$r-42$	0	6	1	7
$r-43$	6	17	3	26
$d w-20$	3	10	3	16
$d w-21$	1	11	$\mathbf{3}$	$\mathbf{1 5}$
$r-44$	8	24	8	40
$r-45$	5	6	$\mathbf{4}$	15
$d w-22$	2	5	$\mathbf{1}$	8
$d w-23$	$\mathbf{2}$	5	$\mathbf{1}$	$\mathbf{8}$

Table 6. Ascus type distribution of colony morphology mutants close to a centromere

Table 7. Revised symbols for i-locus allele
present Former name and FGSC no.
name

i1	i1	(2811)
i2	i2	(2812)
i5	i5	(2815)
i8	gr	(2840)
i10	ny	(2841)
blu3	i3	(2813)
blu4	blu4	(2814)
blu6	bg	(2839)
blu7	blu7	(2817)
blu9	cy	(2836)

Acknowledgement: This work was supported by Grant-in-Aid no. 448007 from the Ministry of Education, and Grant 78-1904 from the Toray Science Foundation. - - - Takasago Research Institute, 36-31 Kamata 5-Chome, Ohta-Ku, Tokyo 144, Japan.

