Fungal Genetics Reports

Volume 26

Article 9

Incorporation and degradation of lignoceric acid in cel

K. J. Friedman New Jersey Medical School

D. Glick New Jersey Medical School

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

Friedman, K. J., and D. Glick (1979) "Incorporation and degradation of lignoceric acid in cel," *Fungal Genetics Reports*: Vol. 26, Article 9. https://doi.org/10.4148/1941-4765.1697

This Research Note is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

Incorporation and degradation of lignoceric acid in cel

Abstract

Incorporation and degradation of lignoceric acid in *cel*

Friedman, K. J. and D. Glick,

Incorporation and degradation

of lignoceric acid in <u>cel</u>.

Several analyses (Friedman 1977 J. Membr. Biol. 32: 33;Kushwaha and Kates 1976 Lipids 1: 778) of the fatty acid composition of Neurospora indicate that a small number of fatty acids serve as the alkyl moieties of Neurospora phospholipids. Using the <u>cel</u> mutant (FGSC #165), and fattyacid supplemented media, it has been possible to change the proportions of the fatty acids present in the phorpholipid profile and to incorporate a branched-chain fatty acid (phytanic acid) normally not present in Neurospora (Brody and Allen 1972 J. Supramolec, Struct, 1: 125). In efforts to radically the lineaceric acid (C24) into the physpholipids of the cel mutant

alter the fatty acid profile, we attempted to incorporate lignoceric acid (C24) into the phospholipids of the cel mutant.

Our results (Table 1) suggest that lignoceric acid is degraded mainly into C_{18} and, to a lesser extent, into C_{16} chain lengths prior to incorporation into Neurospora phorpholipids.

Our experimental protocol was similar to that previously employed (Friedman 1977). Lignoceric acid was added to Vogel's minimal medium (containing 20 gms. sucrose/liter) as the Tween detergent (240 mg/liter). Tween-lignoceric acid was synthesized by transesterifying Tween 40 with the methyl ester of lignoceric acid. Calcultures were grown on solidified medium at 31° C and

harvested around mid-day. Freeze-dried hyphae were extracted for lipids using chloroform-methanol and a Folch washing procedure. The lipids were then separated into neutral and phorpholipidr via silicic acid column chromatography. Fatty acid methyl esters were mode via a transesterification process and analyzed both quantitatively and qualitatively by gas chromatography. As shown in Table 1, lignoceric acid is a minor constituent of the phospholipid alkyl chains present in hyphoe grown in this manner.

TABLE

Fatty acid composition of Neurospora phorpholipids. (mole per cent)

Fatty acid present	15:0ª	16:0	16:1	18:0	18:1	18:2	18:3	24:0
cel palmitic acid supplement		39.3	1.7	2.3	10.2	35.0	11.5	
cel lignoceric acid supplement	2.24	15.3	.64	1.05	4.6	57.1	18.6	0.4
wild-type (no supplement)		19.4	0.1	.7	4.2	48.3	27.3	

"Identified by retention time.

We have considered several possible explanations of there results. Since the <u>cel</u> mutant requires fatty acid supplementation for growth, we assume that the Tween-lignoceric acid satisfied this nutritional requirement. Since the Tween-lignoceric acid supplement contained 60% of the Tween conjugated to lignoceric acid, it is conceivable that the lignoceric acid was excluded from significant uptake or incorporation, and that the remaining 40% of nonreacted Tween 40 detergent supplied the growth requirements of the <u>cel</u> cultures. If this were the case, however, the fatty acid profile seen for <u>cel</u> growth with Tween-lignoceric acid supplementation would be similar to the profile seen for <u>cel</u> growth with Tween 40 (palmitic acid) supplementation. That this is not the case is shown in Table 1 which indicates that the fatty acid profile of <u>cel</u> grown on Tween-lignoceric acid more closely resembles the profile of wild-type Neurospora than that of cel grown on Tween 40.

Alternative explanations for the fatty acid profile observed for growth with lignoceric acid supplementation all involve some mechanism of fatty acid degradation. While we have no direct experimental evidence to support any particular degradative mechanism, the literature (reviewed by Weete 1974 Fungal Lipid Biochemistry) favors α oxidation as the probable mechanism of lignoceric acid degradation in Neurospora. Such a system has been found in yeast and is active on fatty acid chain lengths between C₁₈ and C₂₆ (Fulco 1967 J. Biol. Chem. 242: 3608). β oxidation seems a less likely pathway for lignoceric acid degradation since it is believed (Weete 1974) that the enzymes responsible for β oxidation utilize fatty acid chain lengths between C₄ and C₁₂, or C₈ and C₁₈.

Although we have yet to achieve radical alteration of the fatty acid profile of Neurospora, our data indicate the existence of a metabolic mechanism which will degrade long chain fatty acids, when necessary, to maintain a wild-type-like fatty acid profile in the <u>cel</u> mutant. (Supported by Notional Institute of General Medical Science Grant GM24017.)¹We are grateful to Dr. Josephine Readio for the custom synthesis of Tween-lignoceric acid. - - Department of Physiology, New Jersey Medical School, 100 Bergen Street, Newark, NJ 07103.