A method for finding the genetic map position of cloned DNA fragments

R. L. Metzenberg
J. N. Stevens
E. U. Selker

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation
 Metzenberg, R. L., J.N. Stevens, E.U. Selker, and E. Morzycka-Wroblewska (1984) "A method for finding the genetic map position of cloned DNA fragments," Fungal Genetics Reports: Vol. 31, Article 14.
 https://doi.org/10.4148/1941-4765.1608

This Technical Note is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

A method for finding the genetic map position of cloned DNA fragments

Abstract
A method for finding the genetic map position of cloned DNA fragments
Authors
R. L. Metzenberg, J. N. Stevens, E. U. Selker, and E. Morzycka-Wroblewska

and E. Mbrzycka- Wobl euska

A nethod for finding the genetic map
position of cloned DNA fragnents.

Sone genes cannot be readily mapped by classi cal nethods. Exampl es are genes of unknown function, maltiple genes of identical function, or any other genes for which mutants have not been found. We describe a method to genetically map any cl oned DNA (gene or otherwi se). The nethod uses restriction fragnent length pol ynprphisns (RFLPs) as genetic markers, and does not rely on gene function. The I ogic of the approach we describe bel ow has been uorked out in detail for the nore complex case of a di pl oi d or gani sm by Botstei n et al. (1980, Am J. Human

Genet. 32: 314-331) following work by others on i soenzyne pol ynorphi sns.
Principle: A cross of a laboratory strain of Neurospora crassa with a nominally "Oak Ridge" genetic background and carrying several conventional narkers is nade to a wild-collected strain which has not been inbred with laboratory strains. Such a cross is, in a sense, "narked" not only by the conventional narkers, but by thousands of nucl eotide differences scattered throughout the genone. The differences will be useful for mapping if they result in restriction site differences between the two strains. Any cloned DNA fragnent can be genetically napped if a restriction fragnent length difference is found in the honol ogous genomic DNA To map the DNA, it is only necessary to be able to classify each randomprogeny fromsuch a cross as having the allele from one parent or from the other. The allele assignnents are then compared with the allele segregation of markers that have al ready been mapped (These can be the conventional narkers that were used originally in the cross, or the can be other nolecular markers that have been mapped subsequently rel ative to the conventional markers.) Linkage is detected in the usual way: by reconbi nation between two markers being si gnificantly less than $\mathbf{5 0 \%}$

Practice: The Crosses: We have made and examined a number of such crosses, but the bulk of our data are fromtwo of them In each of these cases, the "exotic", wild-collected strain was Mariceville-lc-A, P538 (FGSC \#2225). Tho different I aboratory strains with largely or partly Cak Ridge ancestry were used as parents: (I) al-2; nuc-2; arg-12; cot-1; inl - a (FGSC \#4411). This strain was crossed to Mauriceville strain and random progeny spores, presunably all from different asci, were isol ated and cultures prepared from them These cultures were sorted by col or and norphol ogy so that about hal f the progeny incl uded in the experinent nould be of each allele. Progeny were then scored for the nutritional markers. arg- 12 and nuc-2, which are quite cl osely linked, segregated together in all cases, so only arg-12 is recorded bel ow (The battery of strains; to nake a conveni ent kit, the Mauriceville parent is included here anong the sequentially-nunbered strains as \#4416, even though it is al so present in the FGSC as \#2225.) Segregation of markers is listed in Table I. (2) "nulticent-2-a", a strain marked near the centronere of all linkage groups except V, and carrying several other conventional narkers as well. This strain is un- $2 ; \arg \mathbf{~} \mathbf{5}$; thi-4; pyr-1; lys-1; ini;nic-3, ars-1 - a (FGSC \#4488). Progeny from ordered tetrads were scored for these markers. From each ascus, cultures from tho nonsister spores from the sane half of the ascus were studied further and ultinately deposited in the Fungal Genetics Stock Center. If these two are concordant for a RFLP, segregation is firstdivision; if di scordant, the ascus is classified as second-division. By comparison of the RFLP type with the segregation of any one of the conventional markers, each ascus can al so be classified as parental ditype, nonParental ditype, or tetratype. Segregation of markers is listed in Table II. Note that in the case of ascus E , an isolate from each of the four spore pairs has been deposited. This allous one to see whether the gene bei ng st udi ed is under goi ng Mendel i an segregation.

Detailed Procedure
A Steps that need only be done once and have al ready been done:

1. Perform the crosses, isol ate progeny.
2. Score for conventional and nol ecular narkers.
B. Steps that need onl y be done once in each lab:
3. Grow the set of parental and progeny strains from one or both of the two crosses. The strains are grown at 25° C in' Vogel 's nedi um with 2% sucrose, supplenented in the first cross with 1 mML -arginine and $50 \mu \mathrm{~g} / \mathrm{mi}$ inositol, and for the second cross with 1 mM L-citrulline, 1 mM uridine, 1 mML -Iysine, $50 \mu \mathrm{~g} / \mathrm{mi}$ inositol, and $2 \mu \mathrm{~g} / \mathrm{mi}$ each of thi anine HCl and ni cotinamide. (Citruliine rather than argini'ne is used to avoid com petition with Iysine for uptake.)
C. Steps that need to be done for each cl oned DNA segnent that is to be mapped:
4. Prepare plasnid or phage DNA carrying the segnent and label it radioactively by nick translation or other neans.
5. Prepare digests of DNA from the two parental strains of a cross, with several arbitrarily chosen restriction enzynes to find one that will show a usable RFLP.

Prepare Southern bl ots from agarose gel. el ectrophoresis of these di gests and probe.
4. Choose the best enzyne, di gest an aliquot of DNA from progeny as well as from parentals, blot, probe and score. (In practice, we often skip steps 2 and 3 and arbitrarily choose one or nore enzynes to try si multaneously with parentals and progeny. The anount of pol ynorphism at least in the regi on of the 5 S rDNA genes, is large enough so that this is a reasonably efficient strategy.)

Il I ustrative Example: Mapping the Hypothetical Gene, " X ".
The enzyne EcoR shows a good RFLP with the two parental strains of the cross of al - 2; nuc- 2, arg-12; cot-1;inl - a to Mariceville-lc - A A genome bl having the parentalsinlanes 01 and 06 and progeny in the other lanes shous the following (Figure 1).

Fi gure 1. -- Segregation of a hypothetical mol ecul ar marker.

The scoring strip can be compared with the information listed for previ ously scored genes. In the present case, it is obvi ous that Gene X segregates in the same way as mating type (A / a a) and therefore is at or near that gene on LG I (see Table II). It is al so easy to map genes into this cross even if they are on chronosones that were not previ ously narked by conventional markers. This has been done by crossing "Mari ceville" to an "Oak Ridge" strai n that is suitably marked (e.g., in LG V with chol-2, ylo-1, trp-2), scoring for the Iinked nol ecular marker (5 S gene 50), and then mapping the 55 gene 50 into the original cross. A marker fromthe right arm of LG III, $5 S$ gene 45, has si nilarly been mapped into the cross.

Other Crosses:

Ue have made a number of other crosses that are sonewhat more satisfactorily narked on particular chronosones, and in which 5 Senes have been soneti nes more cl osel y mapped than with the two general purpose crosses listed here. We have not deposited these in the FGSC because of the large number of them invol ved, and because of our belief that it would be better to expand the data base on progeny of one or two crosses onl y. One set of crosses that has been useful to us allows detection of a cloned gene at or near the tip of any armexcept IIIL This is done with insertional translocations, which nove a distal portion of one chronosone to another chronosone arm Crossing of such a strain to Mariceville-Ic - A allous isoIation of a partial diploid which is heterozygous for any genes that are covered by duplication. While there is not yet a translocation on hand in which each arm of each chronosone has functioned as a donor, every armexcept LG IIIL has acted either as a donor and/or recipient. Thus a gene at the tip of a linkage group can be identified either by its heterozygosity in the case of a donor, or by its tight linkage to the junction, in the case of a recipient. Progeny of sone or all of these crosses will be deposited if there seens to be interest in them

Maki ng a Rough Map:

Data fromthese tuo crosses and a number of others have allowed us to nake a composite map of the 5 S genes and the rDNA (nucl eol us organizer). This is shown in Figure 2. Fine detail of the gene order is sonewhat uncertain, bei ng based on differences of one or two crossovers, and the genetic di stances are not shown. Even with these limitations, the nethod allows rough mapping to be done quickly and easily. If the strai ns are used in other laboratories, the data base will expand and even mapping that has al ready been done will becone increasi ngly accurate.

Fi gure 2. -- Map of sone conventional and nol ecul ar markers. Di stances are not to scale (see text), and minor errors in order are possible.
N $\overrightarrow{0} \vec{\infty} \vec{\sigma} \vec{ज} \Rightarrow \vec{\omega} \vec{N} \overrightarrow{0} \infty \infty+\sigma \vec{\omega}$

LG I

i sol	FGSC\#	12	A a	m- 2	33	1	18	52	32	arg- 5	55	3	34	17
Al	4450	M	M	M	M	M	M	0	M	M	M	0	0	0
A4	4451	0	0	M	M	0	0	M	M	M	M	M	M	M
B6	4452	M	M	M	M	M	M	0	0	0	0	0	0	0
B7	4453	M	M	M	M	M	0	0	0	0	0	0	0	0
C	4454	M	0	0	0	M	0	-	M	M	M	M	M	M
C4	4455	0	0	0	M	0	0	M	M	M	M	M	M	M
D5	4456	M	M	M	M	0	0	0	0	0	0	0	0	0
D7	4457	0	M	M	M	M	M	0	0	0	0	0	M	M
El	4458	M	M	M	M	M	M	M	M	M	M	M	M	M
E3	4459	M	M	M	M	M	M	M	M	M	M	0	0	0
E5	4460	0	0	0	0	0	0	0	0	0	0	0	0	0

E7	4461	0	0	0	0	0	0	0	0	0	0	M	M	M

FI	4462	M	M	M	M	-	M	0	0	0	0	0	M	0

F3	4463	M	M	M	M	0	0	0	0	0	0	0	0	M

\mathbf{G}	$\mathbf{4} 464$	M	M	M	M	M	\mathbf{O}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	M	M	\mathbf{O}

| $\mathbf{G 4}$ | $\mathbf{4} 465$ | \mathbf{O} | \mathbf{M} | \mathbf{M} | \mathbf{M} | \mathbf{O} | \mathbf{M} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| Њ | 4466 | O | O | M | M | M | M | M | M | M | M | M | M | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

H	4467	M	0	0										
I 6	4468	M	\mathbf{O}	M	M	M	\mathbf{O}	M	M	M	M	\mathbf{O}	\mathbf{O}	\mathbf{O}

$\mathbf{I} 8$	4469	\mathbf{M}	$\mathbf{0}$											
$\mathbf{J} \mathbf{1}$	$\mathbf{4 4 7 0}$	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{O}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}

| 34 | 4471 | M | M | M | M | M | \mathbf{O} | \mathbf{M} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| K | 4472 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | M | M | M | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| K4 | 4413 | O | O | O | O | M | O | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LI	4474	O	O	O	M	M	M	O	O	M	M	M	M	0

| $\mathbf{L 4}$ | 4475 | O | O | 0 | O | O | O | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| M | 4476 | O | O | O | O | O | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MB	4477	0	0	0	0	0	0	M	M	M	M	0	0	0
NR	4478	0	0	0	0	0	0	0	0	0	0	0	0	-

N3	4479	-	0	0	0	-	M	O	0	O	M	M	M	M

02	4480	O	O	M	M	M	O	-	0	0	0	0	0	M

04	4481	M	M	M	M	O	M	M	0	0	0	0	0	0

PI	4482	0	0	M	0	0	0	0	0	0	0	0	0	0

P4	4483	M	M	M	O	M	M	O	O	O	O	O	O	M
Q	4484	M	O	O	O	O	O	M						

	LG III		LG IV							LG V						LG V		LG VI
i sol .	thi-4	45	63	pyr-1	62	51	13	4	I sol.	rDNA	16	9	I ys-1	i nl	20	50	nit-	3 ars-1
Al	0	M	M	M	M	M	M	M	A	0	M	M	M	M	0	M	M	0
A4	0	0	M	M	0	0	0	0	A4	M	M	M	M	M	M	M	0	0
B6	0	M	M	M	M	M	M	M	B6	M	0	0	0	0	0	M	0	0
B7	0	0	0	0	0	0	0	0	B7	0	0	0	0	0	0	M	0	0
CI	M	0	M	M	M	M	M	M	a	M	0	0	0	M	M	M	M	M
C4	M	0	M	M	0	0	0	0	C4	M	M	M	0	0	M	M	M	M
D5	M	0	0	0	0	0	0	0	D5	M	0	0	0	0	0	M	M	M
D7	0	M	0	0	0	0	0	M	D7	0	0	0	0	M	M	M	M	M
El	0	0	M	M	M	M	M	M	El	M	0	0	0	0	0	0	0	0
E3	0	M	M	M	M	M	M	0	E3	0	0	0	0	0	0	0	0	0
E5	M	0	0	0	0	0	0	0	E5	M	M	M	M	M	M	M	M	M
E7	M	M	0	0	0	0	0	M	E7	0	M	M	M	M	M	M	M	M
FI	M	M	0	0	0	0	0	0	FI	M	-	M	M	M	M	-	0	0
F3	M	0	0	0	0	0	0	M	F3	M	M	M	M	0	M	M	0	0
G	M	M	M	M	M	M	0	0	G1	M	0	0	M	M	M	0	0	0
G4	M	M	M	M	M	M	M	M	G4	0	0	0	M	M	M	0	M	0
НБ	M	0	0	0	0	0	0	0	Њ	M	M	M	M	M	M	0	0	0
H7	M	0	0	0	M	M	M	0	H	0	M	M	M	M	M	0	0	0
16	0	M	M	M	0	0	0	0	16	0	-	0	0	0	0	0	M	0
18	0	0	M	M	0	0	0	M	18	M	-	0	0	M	M	0	0	0
J	M	M	M	M	M	M	M	0	JI	M	-	M	M	0	0	0	0	0
J 4	M	0	M	M	0	0	0	0	J 4	0	-	M	M	M	M	0	0	0
KI	0	0	M	M	M	M	M	0	K	M	M	M	M	M	M	0	0	0
K4	0	M	M	M	M	M	M	M	K4	M	M	M	M	0	M	0	0	0
LI	0	0	M	M	M	M	M	0	LI	M	0	0	0	0	0	M	0	M
L4	0	0	M	M	M	M	M	M	L4	0	0	0	0	M	M	M	M	M
ME	0	0	M	M	M	M	M	0	Mb	M	M	M	M	M	M	0	M	M
MB	0	M	M	M	M	M	M	M	MB	0	M	M	M	M	M	0	0	M
N2	M	0	0	0	M	0	0	0	N2	0	0	0	0	0	M	0	0	0
NB	M	0	-	0	0	0	0	-	NB	0	-	0	0	M	-	-	0	0
$\mathbf{O R}^{1}$	M	0	0	0	0	0	0	M	02	M	M	M	M	0	0	M	M	M
04	M	M	0	0	M	M	M	0	04	M	M	M	M	M	M	M	M	M
P1	M	M	M	M	M	M	M	0	Pl	0	M	M	M	M	M	M	0	0
P4	0	0	0	0	0	0	0	M	P4	M	-	M	M	M	0	M	0	0
Q2	M	0	M	M	M	M	M	M	Q	M	-	M	M	0	0	0	M	M
Q4	M	M	M	0	0	0	0	M	Q4	M	-	M	M	M	M	0	M	M
R	0	M	M	M	M	M	M	M	R	0	0	0	0	M	M	M	0	0
R4	0	0	M	M	M	M	M	0	R4	M	0	0	0	0	0	M	0	0

R. L. M gratefully acknow edges the support of a Guggenhei m Fellowship and hospitality from Dr. David D. Perkins during part of this work. E.U.S. is gratef ul for support from the Hel en Hay Whitney Foundation. (This research was supported in part by a grant to R.L.M from the National Institutes of Heal th, GM 08995, and in part by a National Institute of Health grant to Dr. David D. Perkins, Al-01642.) .-. Departnent of Physi ol ogi cal Chemi stry, Uni versity of Wisconsi n, Madi son, W 53706.

