Fungal Genetics Reports

Centromere distance on asco (37402)

B. C. Lamb

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License

Recommended Citation

Lamb, B. C. (1968) "Centromere distance on asco (37402)," Fungal Genetics Reports: Vol. 13, Article 12. https://doi.org/10.4148/1941-4765.1945

This Linkage Data is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

Centromere distance on asco (37402)

Abstract
Centromere distance on asco (37402)

Jeэsivil v. ivisceiloneous ropics.
Research Notes

$$
\text { Brescia, V. T. - Tyrosine transport in Neurospora . } 16
$$

Griffiths, A. J. F., H. Bertrand ond T. H. Pittenger - Cytochrome spectra of cytoplasmic mutants 16
Nomenclature
Kolmark. H. G. - A note on the symbol for urease defective mutants 17
Technical Notes
Woodward, V. W. and C. K. Woodward - The core and feeding of slime 18
Linkage Data
Murray, N. E. - Linkage information for cysteine ond methionine mutants 19
Beske, J. L. and R. L. Phillips. - Preliminary mapping of nineteen new translocations 19
Newmeyer, D., C. W. Toy lor ond D. C. Bennett - Gene sequencer in linkage group I 21
El-Eryani, A. A. - Linkage data on phen and tyr mutants 21
Ahmad, M. and S.H. Mirdha \rightarrow Linkage data for four linkage group III markers 22
K\&mark, H. G. - Linkage data for two urease loci in linkage group V 23
Lamb, B. C. - A cautionary note 24
Lomb, B, C. - Centromere distance on asco (37402) 24
Requests for Stocks 24
Neurospora Stock List, 4th Revision (June 1968) DE
aple or tonrents
Report on the Fourth Neurospora Information Conference
Session I. Genic and chromosomal mutagenesis and nonallelic complementation 3
Session II. Recombination 5
Supplementary Session on Fungal Genetics Stock Center ond Neurospora Newsletter 6
Session III. Gene clusters and enzyme aggregates 7
Session IV. Regulation 9
Supplementary Session on Cytoplasmic incompatibility 12
Session V. Misceflaneous topics. 13
Research Notes
Brescia, v. T. - Tyrosine transport in Neurospora 16
Griffiths, A. J. F., H. Bertmnd and T. H. Pittenger - Cytochmme spectra of cytoplasmic mutants 16
Nomenclature
K σ lmark, H. G. - A note on the symbol for urease defective mutants 17
Technical Notes
Woodward, V. W. and C. K. Woodward - The care and feeding of slime 18
Linkage Data
Murroy, N. E. - Linkage information for cysteine and methionine mutants 19
Beske, J. L. and R. L. Phillips - Preliminary mapping of nineteen new translocations 19
Newmeyer, D., C. W. Taylor and D. C. Bennett - Gene sequences in linkage group I 21
El-Eryani, A. A. - Linkage data on phen and tyr mutants 21
Ahmad, M. and S.-H. Mirdha - Linkage data for four linkage group III markers 22
K \varnothing lmark, H. G. - Linkage data for two urease loci in linkage group V 23
Lamb, B. C. - A cautionary note 24
Lamb, B. C. - Centromere distance on asco (37402) 24
Requests for Stocks 24
Neurospora Stock List, 4th Revision (June 1968)
Introduction 25
Part I. .Single mutant stocks. 26
Part 11. Multiple mutant stocks 69
Part III. Extrachromosomal (cytoplasmic) mutant stocks 76
Port IV. Wild type strains 78
Port v. Aberration stacks. 84
Part VI. Key to symbols and References 90
Neurospora Bibliography 1967 96
Additions to the Mailing List 103
Changes of Address 103

RESEARCH NOTES

Brescia, V. T. Tymsine transport in Neurospora.
Uptake of tyrosine by Neurospore conidia was studied using tyrosine in the manner described by DeBusk and DeBusk (1965 Biochim. Biophys. Acta 104: 139) for phenylalanine. Conidiol suspensions which consistently gave $0.19=0.28 \mathrm{mg}$ dry weight of conidia per 5 ml sample were prepared by adjusting $0 D_{397}$ to $0.9-0.95$ (B and L Spectronic 20). The usual conditions were a temperature of $30^{\circ} \mathrm{C}$ and tyrosine concentration of $\mid \mu \mathrm{mole} \mathrm{per} 25 \mathrm{ml}$ $\left(4 \times 10^{-5} \mathrm{M}\right.$) reaction mixture (Vogel's minimal $+c e l l s$). The optimum temperature was later found to be between $31-33^{\circ} \mathrm{C}$ and the pH optimum 5.8.

Incubation of $45^{\circ} \mathrm{C}$ for 20 minutes did not inactivate the transport system - as little as 2 minutes af 50 " did temporarily inactivate (uptake less than 70% of control at 20 minutes). Recovery occurred in cells held af 30° for 30 minutes following $50^{\prime \prime}$ heat inactivation. Concentrations from $0.2 \mu \mathrm{~mole} / 25 \mathrm{~m}$ to $3.2 \mu \mathrm{~mole} / 25 \mathrm{ml}$ gave increasing initial rates of uptake; no increase wos observed above 5μ mole $/ 25 \mathrm{ml}$. A reciprocal plot of initial uptake vs tymsine concentration (Lineweaver-Burke) gave a straight line. By extrapolation, the Km was estimated at $1.2-\mathrm{I} .8 \times 10-\overline{4 M}$ in three experiments. After 50 minutes uptake, the amount of label chromatographically identical with tyrosine that can be extracted with 5% TCA at room temperature in 10 minutes is at least $30 \times$ the external concentration.

Glucose (final conc. 1\%) added to an actively transporting system will inhibit further transport within 6 minutes and will continue inhibiting for af leas 15 minutes, after which transport is resumed, apparently at the same rate. Sodium azide and 2,4 -dinitrophenol at $10^{-3} \mathrm{M}$ restrict transport to about 10% of the control. With azide, at least the inhibition is almost instantaneous. A variety of compounds were tested at concentrotions $25 \times$ that of tymsine for their effects on uptake of 14 C L-tyrosine at a concentration of $4 \times 10^{-5} \mathrm{M}$. Shikimic acid and pora-hydroxyphenylpyruvate, among others, had no effect whereas L-tryptophon and L-phenylalanine reduced uptake to 20% or less of control. Since all of the \&we-mentioned compounds con supplement appropriate mutants, they must be capable of entering the cell. Therefore, the lack of effect of shikimic acid and para-hydroxyphenylpyruvate must reflect a stereospecificity of the tyrosine transport system. This is further demonstrated by the fact that D-tyrosine reduces uptake to 87% of control, whereas an equivalent amount of 12 C L-tyrosine reduces it to 25% of control. - - Deportment of Biological Science, Florida State University, Tallahassee, Florida 32306.

Griffiths, A. J.F., H. Bertmnd and T. H.Pittenger.
Cytochmme spectra of cytoplasmic mutants in

Neurospora

crude mitochondrial suspensions. The present work essentially repeats their experiments, but derives the cytochmme spectra spectrophotometrically from disrupted mitochondrial preparations. Other maternally-inherited mutants ore also examined.

Mitochondrio were prepared by a method similar to that used by Luck (1965 J . Cell Biol , 24: 445). Mycelium was grown in liquid shake cultures $a \neq 30^{\circ} \mathrm{C}$ and harvested in the exponential growth phase. After grinding with sand in 0.01 M Tris buffer containing 0.001 M EDTA (adjusted to pH 7.3) and 0.44 M sucrose, cell debris was removed by two 10 minute centrifugations at $1000 \times \mathrm{g}$. Mitochondria were spun down in $\mathbf{a} 30$ minute centrifugation at $20,000 \times \mathrm{g}$ and washed once in the buffered sucrose. The resulting crude mitochondrial pellets were disrupted by sonication and the solutions cleared by adding sodium deoxycholate to a concentration of 2%. Spectra were read in a Cary 16 spectrophotometer, a few crystals of sodium dithionite being added to the sample cuvette to reduce the cytochromes. All the spectm were read from solutions containing $10-20 \mathrm{mg} / \mathrm{ml}$ of protein, estimated by the Folin test.

It has been found that the cytoplasmic mutants tested fall into two groups on the basis of their spectra. The first group,
 [SG-3] (no isolation ", FGSC ${ }^{*} 1452$), a UV-induced stopper strain ([stp] 300 A, FGSC 1573 McDougall and Pittenger 1966 Genetics 54: 551), and two stopper stroins spontaneously arisen in separate continuous growth tubes ([stp-A] A40-4, and [stp-B] 17-2a-1, Bertmnd and Pittenger 1968, in preparation). All of these strains show identical mutant spectra of the type shown in Figure 1. The notable features are an absence of cytochromes a ($610 \mathrm{~m} \mathrm{\mu}$) and $b(560 \mathrm{~m} \mathrm{\mu})$, and a very marked a-cytochrome c peak ($550 \mathrm{~m} \mathrm{\mu}$). The published data of Diacumakos et al. (1965 J . Cell Biol. 26: 427) reveal that $[a b n-1]$ also belongs to this group. A typical wild type spectrum is shown in Figure 2. r \& o r [mi-1] FGSC 343 exhibited a wild type spectrum.

The second group consists of the [mi] strains, $[\mathrm{mi}-2]$ to $\left[\mathrm{mi}-8\right.$] (mi-2R1 to mi-7RI and mi-8R6) (FGSC ${ }^{\text {\#'s }}$ 1233, 383, 1234, 1235, 1236, 1237, 1238), and a typical spectrum is shown in Figure 3. Cytochrome a is again absent, cytochrome b is present in wild type amounts, and cytochmme c is again in excess. In the work of Mitchell et al. a strong band was obsewed at $590 \mathrm{~m} \mathrm{\mu}$ in [mi-31, and was labelled cytochmme a_{j}; this has never been observed in our experiments. The [mi] strains $\mathrm{mi}-2]$ to $[\mathrm{mi}-8]$ are in fact probably replicates of the same mutant (M. B. Mitchell, personal communication).

On occasion (mi-31 A (FGSC ${ }^{\# 83}$) has shown a spectrum closer to that of wild type. The cause of this apparent reversion is not known, but it has also been obsenved by other workers (Grindle and Woodward 1967 Neurospora Newsl. 12: 9).

The two nuclear genes known to affect cytochrome content in Neurospora hove also been examinedcyi- $<$? (C117) (FGSC *339) is shown in Figure 4, and is similar to the spectrum obtained for this strain by Mitchell et al., in t ahat echromes a and c ore both absent, but differs in that no cytochrome e is detected at 553 mu . $\mathrm{cyT} \mathrm{T}^{-}$($C 115$) ($\overline{\mathrm{FG}} \overline{\mathrm{SC}} / 355$) shows on essentially wild type spectrum. Tissieres and Mitchell (1954) have, however, indicated t that $C 115$ is particularly prone to suppression, so it must be concluded that this is the case in the culture tested. cyt-1 (C115) (FGSC 1217) was not tested.
The B-peaks of cytochromes $\mathbf{c}(520 \mathrm{mq})$ and $\mathbf{b}(530 \mathrm{my})$ are seen to vary in accordance with the a-peaks. From the curves it is possible to calculate the absolute amounts of cytochrome present. However, it is apparent that the relative amounts ore more useful in diagnosing mutant types. The fact that the above spectra ore in the main port very similar to the mycelial spectra produced by Mitchell et al. is indicative that the whole-cell cytochrome content reflects, to a lorge degree, the mitochondrially bound complement, which in turn is presumably dependent on the basic genetic lesion responsible for the maternal inheritonce of the metabolic defects. The gene f does not suppress [mi-3), and the cytoplasmic mutants in the first group described above were induced in a voriety of nuclear backgrounds. Thus it geems reasonably certa in that the groups represented by [poky] and [mi-3] reflect tuly different types of genetic lesions, in two regions of either one or two mitochondrial 'genes', (concemed, perhaps, with structural protein) and ore not nuclear modifications of each other. = - - Division of Biology, Kansas State University, Manhattan, Konsos 66502.

NOMENC LATURE

K\&mark, H . G . A note on the symbol for urease defective mutants.

The isolation of urease defective mutants was reported previously (Kбlmark 1965 Neurospora News. 8; 6). The symbol ur was used in this first report For permanent use it appears that the symbol ure would be a preferential choice for the reasons explained below.

The symbol ur is sometimes used for umcil requirement, e.g., in yeast (von Borstel (ed.) 1963 Microbial Genet Bull ,, Suppl. to No. 19). On the other hand, it is proposed in a list of symbols for mutants in bacterial strains that uracil requirement be designated by ura (Demerec 1963 Microbial Genet Bull. 19: 30). In this article it is also recommended that ti-letter abbreviations be used as mutant symbols. In Streptomyces coelicolor uro is used for uracil requirement while ure is used for urease defectiveness (Hopwood 1965 Genet. Ress. 6:24\$). Obviously, this provides a clear distinction when both of these mutant characters occur in the some organism.

Since the first report of urease mutants in Neurospora crassa, mentioned above, it has been established that there ore two separate loci for this character (Kфlmark 1968, this issue of Neurospora News.). These loci ore refermed to or we-I and ure-2. The original isolation numbers are for future use maintained as allelic designations, (9) and (47), respectively. -.- Institute of Physiological Botany, University of Uppsala, Uppsala, Sweden.

TEC HNICAL NOTES

Woodward, v. w. and C. K. Woodward.
The care and feeding of slime. date, of $\underline{\underline{s}!}$ is presented by Emerson (1963 Genetico 34: 162) and in two abstracts, available through the Stock Center.
si can be separated from the mycelial components of the heterocaryons using the "filtration" technique (Woodward et al. 1954 Proc. Natl. Acad. Sci. U.S. 40: 192), after which it can be cultured on agar slants or in liquid medium. ReguTar Vogel's medium supplemented with 2% soluble starch, 0.75% yeast extact and 0.75% nutrient broth, is good for both agar and liquid media; the mutant grows well when supplemented with $\mathbf{2} \%$ sucrose, but during the first $\mathbf{4 8}$ hours of incubation it produces hyphlets which later "shed" their wall-like material before assuming the slime appearance. Preliminary analyses of this wall-like material indicate that it lacks amino sugar and galactose polymers, i.e., it probably is a glucose polymer of $\beta-1,3$ glucan.

When grown on agor sants the mutants grow as blobs resembling bacterial colonies, but with little or no internal compartmentalization. The entire "colony" is surounded by a membrane. When the membrane is broken the cytoplasm flows out onto the agar forming small sphericles from $10-90 \mu$ in diameter, resembling in every way the sphericles seen in growth in liquid shake cultures. We have seen no evidence for the tendency of these sphericles to "divide"; rather, we conclude that the agitation by shaking is responsible for the increase of sphericles. The best way to maintain the cultures for long periods of time is in heterocaryons; however, for shorter durations the mutants can be maintained on agor sants at room temperature if they are transferred every $\mathbf{7 - 1 4}$ days. In liquid culture, the mutants begin logarithmic growth after 12-18 hours, reach stationary phase after $48-72$ hours, and die after 96 hours. However, after 72 hours most of the sphericles have ruptured, leaving either membrane fragments or hollow spheres.

To grow sl in bulk, the trick is to find an optimum liquid volume-agitation ratio. We have been unsuccessful in our attempts to grow sl in large carboys under forced aeration, but we have not exhausted all of the environmental combinations. However, we hove been successful in growing relatively large quandities in liter Elenmeyer flasks on o rotating shaker. Seed cultures are maintained by tronsfer every $\mathbf{4 8}$ hours into 50 ml medium in $\mathbf{2 5 0} \mathbf{~ m l}$ Erenmeyer flasks. These flasks are incubated at $30^{\circ} \mathrm{C}$ on a reciprocal shaker (90 strokes per minutes). From 48-hour-old cultures approximately $\mathrm{I} \times 10^{7}$ cells (0.5 cc medium) ore used to inoculate 200 ml liquid medium in liter Enenmeyer flasks, which in furn are incubated at $30^{\circ} \mathrm{C}$ on a rotary shaker (100 mm). After 48 hours the cells are collected by centrifugation ($500 \times \mathbf{g}$ for 5 minutes). The supernatant is removed by suction after which the cells are taken up in 25 times their volume of Tis-sucrose-DDTA buffer (0.05 M Tis, 0.5 M sucrose, and $4 \times 10^{-3} \mathrm{M}$ EDTA, at pH 8.5) and are then combined with an equal volume of $\mathbf{3 ~ m m}$ diameter glass beads. The mixture is rotated at 40 pm far one hour in a jar mill af $4^{\circ} \mathrm{C}$; most of the cells ore broken by this procedure.

Our interest in sl developed following great difficulty in isolating membrane-enzyme complexes, viz., aspartate transcarbamylase, from wild type Neurospora. After demonstrating the existence of such a complex in s, it became obvious that \mathbf{s} i could be used to isolate enzyme aggregates of various sorts, and also to isolate plasma membrane. We have succeeded in isolating plasma membrane and in comparing the "structural" protein with mitochrondrial structural protein and have found them to be identical as judged by amino acid composition and polyacrylamide gel electrophoresis pattems. We are also using si to study membrane formation.

Following the recent Neurospora Information Conference at Asilomar, Califomia, it became evident that ${ }_{\mathrm{s}} 1 \mathrm{might}$ prove useful to many of the investigations discussed there. As a result, we have been asked to present these details for maintaining the mutants and to present in a general way the direction of our own research with sl. (PHS Grant No. GM-15137-01, and Univ. of Minn. Graduate School.) - - - Deportment of Genetics, University of Minnesota, St Paul, Minnesota 55101.

Murray, N. E. Linkage information for eysteine and methionine mutants.
cys-9 (T156). cys ${ }^{2}$ is located between cr (crisp) and thi-1 (thiamine-I) in lininkgaegroup IR (see Table 1).
cys- iv (339816). The tentative location of this locus (Murray 1965 Genetics 52: 801) as the most distal marker in the left arm of linkage group IV is supported by information from other workers.
cys-11 (NM86). A cluster of cysteine mutants is located in the cys-5 region between leu-3 and mating type. The evidence is consistent with the region comprising two loci, cys-5 and cys-11. The mutants NM44 and R83R 1-1-271 gave very low recombination frequencies when crossed to cys-5 (35001). The recombinants from the latter cross were scored for flanking markers and all four flanking marker combinations were represented. When a fourth nutant (NM86) was crossed to cys-5 (35001) the recombination frequency was much higher and there war no or litte "negative interference". Complementation tests showed that NM86 is physiologically different from the heterocaryon compatible cys-5 (NM44) strain, and more specifically Leinweber (personal communication) has shown that while NM86 lacks ATP-sulfurylase, the cys-5 alleles tested (35001 and NM44) lack PAPS-reductase. It is proposed that $N M 86$ is an allele at locus cys-11. The combination of flanking markers found for cysteine independent recombinants from a cross of cys-3 by cys-1r inalicare the order mating type, cys-11, cyr-5, leu-3. Adequate genetic information is lacking far a cross of cys (85518) by cys-5, but cys (85518) gave a very low recombination frequency (1 in 200,000) when crossed to cys-11 (NMB6).
cys-12 (NM268). cys-12 is an additional cysteine locus in linkage group I distal to ad-9 and close to al (0 recombinants among 76 isolates) (see Table 1).
me-6 (35809) and mac (65108). These mutants or closely linked. Methionine independent recombinants hove been isolated from crosses of me-6 by mac and classified with respect to the flanking markers thi-1 ond ad-9 (odenine-9). The order indicated is thi-I, mac, me -6, ad -9 , but it is probable that mge and me-6 is allelic.
me-7 and me-9. Methionine independent recombinants have been isolated from crosses of me-7 (NM73) by me-9 (NM43t) and classified with respect to flanking markers (thiamine-3 and white collar). The methionine loci are very cl-linked in the order thi-3, me-7, me-9, wa.

Table 1. Linkage data on random segregants from crosses involving cys-9 or cys-12.

Zygote genotype and \% recombination	Parental combinations	Recombination			Total and \% germination	Marker isolation numbers	
		Singles region 1	Singles region 2	Doubles regions \\| and 2			
+ thi-1 ad-9	34	7	10	0	93	7156	
cys-9 + +	33	5	4	0	(93\%)	56501	
12.915 .1						Y 154M37	
+ cyr-9 +	26	2	20	0	88	8122	
$\mathrm{Cr}+\mathrm{OS}^{\text {-1 }}$	23	1	16	0	(63\%)	7156	
$3.4 \quad 40.9$						B135	
$+\quad+\quad$ cys-12	48	8	8	0	120	56501	
thi-1 ad-9 +	44	5	6	1	(83\%)	Y 154 M 37	
11.712 .5						NM268	

(The top number in each p-air represents the class that has the + allele of the leftmost marker).

- - Department of Molecular Biology, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh 9, Scotland.

Beske, J. L and R. L Phillips. Preliminary mapping of nineteen new translocations with the alcoy multiple translocation tester strain.

The nineteen translocation strains listed in Table 1 were generously given to us by D. D. Perkins and are presently available from the Fungal Genetics Stock Center (see Revised Stock List, Neurospora Newsl ., this issue). These strains were crossed with the alcoy triple translocation tester strain ($T(1 ; I I)$ al-l; $T(I V ; V)$ 2355, cot; $\mathrm{T}(\mathrm{III} ; \mathrm{VI}) 1$, ylo-1) to obtain information on the linkage groups involved. Crosses were made on a 1.7% Difeo com meal agar medium by simultaneously inoculating both parent strains. All crosses were maintained at $25^{\circ} \mathrm{C}$. Random ascospores were isolated to a solid Fries minimal or complete medium. For certain crosses, 100 ascospores were isolated on two occasions approximately two weeks apart The same pattem of re-

Tahle 1. tinkage data from 19 new translocation strains crosed with the alcny multiple transiongtion tester strain [T(TiI) a1-1; T(IV;V) 2355, cot; T(III;VI) 1, ylo-1).

* These data were tested for goodness of fit to a ratio of 2 al:lylo:l wild-type in the cot and cot class. A satisfactory fit was obtained in each case.
** The \% recombinants for group B translocations was calculated by doubling the frequency of al ylo recombinants.
*** cot is now known as cot -1 and ylo is now known as ylo-1.
sults was obtained from the two isolations in every cose,
The mechanics of utilizing the olcoy strain have been described in detail by Perkins (1964 \mathbf{N} eurospora Newsl, 6: 22) for mapping new mutants to linkage groups. Perkins (1966 Neurospora News!. 9: 11) stated that tmnslocotions phenotypically indistinguishable from wild type also may be mapped using the alcoy tester stmin. Nomally independent alcoy markers will show linkage to each other if the new tmnslocation has breaks close to the breakpoints of two of the marked alcoy tmnslocotions. Therefore, a linkage between $\mathfrak{g l}$ and ylo would indicate that the new tmnslocotion involved linkage groups 1 or 11 ond 111 or VI. Similarly, a linkage between of and co+would indicate the involvement of linkage groups I or 11 ond IV or V, while a linkage between cat ond ylo would indicate involvement of IV or \mathbf{V} and III or VI. If the olcoy markers remain independent, one of the fallowing situctions exists: (1) Linkage group VII is involved in the new tmnslocation; (2) The new tmnslocation involves linkage groups I and $I I$, 111 and $V I$, or IV and V; or (3) One of the two linkage groups involved in the new tmnslocation is common to one alcoy franslocation and the other linkage group is common ta another alcoy tmnslocotion, but with the two breoks widely separated in a+ least one of the common linkage gmups. Independence is indicated by a mio of 2 al: 1 ylo: 1 wild type in the cot ${ }^{+}$and cot class, since al is epistatic to yla.

The linkage results (Table 1) are grouped into four categories; (A) Independence, (B) Linkage of al and yilp; (C) Linkage of al and cat and (D) Complex results not expected of simple reciprocal tmnslocations (note the al: non-al ratios). The recombination values calculated from the data in categories Bond C give a measure af the total genetic length of the two differential (between breaks) segments separating the linked alcoy markers and are not extremely valuable in mapping the actual breakpoints of the new translocations.

Fewer cot than cot ${ }^{+}$germinants were obtained from crosses involving all but two of the translocation stains (AR17 and NM109). NM150 and NM161 were "morphs" and NM141 and NM170 were "peach", but progeny with these phenotypes ore considered as wild types for the purposes of Table 1. An interaction of "peach" with some of the alcoy markers is suspected.

The results from NM180 crosses ore particularly intriguing since they indicate independence between the alcoy markers in the cot $^{+}$class but an al-cot linkage in the cot class. This unusual genetic behavior might be expected if NM180 were the result of fwo translocations involving three linkage groups (IV, \mathbf{V}, and I or II) with breaks located such that an association of six chromosomes plus a "pair" canying only the cot ${ }^{+}$allele would result from a cross with the alcoy stmin instead of an association of eight This strain will be investigated farther.

In summary, tmnslocations NM107, 111, 112, 114, 121, and 131 are independent of the alcoy translocations, NM141, 161, 163, and P2648 involve linkage groups I or II and III or VI, and NM170 involves linkage groups I or II and IV or V. Translocations ALS6, AR9, 12, 17, NM109, 127, 150 and 180 appear to be more complicated than simple reciprocal tmnslocotions. (Undergraduate Research Problem by the first author under the direction of the second author conducted as part of Special Problems Course No. 25. - . - Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, Minnesota 55101.

Newmeyer, D., C. S. Taylor and D. C. Bennett
Gene sequences in linkage group 1.

The following sequences hove been determined since publication of the map in Table 2 of Newmeyer and Taylor (1967 Genetics 56: 771). All sequences are based on 3 -point crosses. An asterisk indicates that the order depends an less than three critical crossovers. The dafc will be published elsewhere.

1) cyt-1 (C115), cys-5 (35001) ${ }^{\star}$, and leu-4 (D133)* are all between leu-3 (R156) and ser-3 (47903). (The relative order of cyt-1, cys-5, and leu-4 has no+ been determined directly, but cys-5 and leu-4 are very close to wr-3, while cyt-1 appears to be considerably further from wr-3.)
2) ser-3 is left of un (55701t).
3) sor (DS)* is between suc (66702) andarg-1-1 (8369). (sor (DS) is a sarbaw-resistant mutant derived from David Stadler's patch. Our limited evidence suggests that sor (DS)and patch may not be due to the same gene. sor (DS) has not been tested for allelism with Klingmiller's sor (15).)
4) me-10 is right of eth-1 . (me-10_ (PD it) was isolated by Peter Dodd (Univ. of Washington); probably UN, 74A.)
5) un (46006t $)^{*}$ is left of hist-2 (Y $152 \mathrm{M14}$).
6) dot* (P789) is right of thi-1 (56501).

- - Deportment of Biological Sciences, Stanford University, Stanford, Califomia 94305.

E-Eryani, A. A. Linkage data on phen and tyr mutants.

The phenylalanine requining mutants phen- \angle (E5212) andpreen-3 (Y 16329) are bath alleles at the same dosys and are in the rifiaht arin of linkage group III at 2.2 map units to the left of tyr-1 (Y6994).

The tyrosine-requiring strain tyr'(iNFriouspons also to tryptophon and leucine just as phen-1 does.

- - - Department of Biology, Yoale University, New Haven, Connecticut 06520.

Ahmad, M. and S. H. Mirdha. Linkage data for four linkage group III markers in Neurospora crassa.

Barratt et al. (1954 Adv. Genet. 6: 1) hod shown the position of adenine-2 (ad-2) between leucine-1 (leu-1) and tryptophan-1 (tryp-1). Perkins and Ishitani (1959 Genetics 44: 1212) mopped ad-2 proximad to both lev-1 and tryp-1. Ropy-2 ($\mathrm{m}-2$) was not mapped by Barratt et al. but Perkins ond Ishitani showed it to be located proximal to both trryp-1 and ad-2, it was therefore decided to mop the relative positions of leu-1, tryo-1, ad-2 ond m-2. Media ond methods of Ahmed et a., (1966 Proc. Pakistan Acad. Sci. 3: 1) were employed during this investigation.

Two double mutants, leu-1 (33757). ad-2 (70004t) and tryp-1 (10575), non-2 (B20) were prepared and then crossed as shown below:

$$
\text { leu-1, ad- } 2 \times \text { tryp-1, ro-2. }
$$

Fmm this four-point cross, 4441 single spore cultures were classified. Ropy could be distinguished from the non-ropy progeny by its significantly restricted growth on Vogel's medium plates as well as by its characteristic mycelial growth in tubes. The progeny which fell under the sixteen different classes ore shown in Table 1. The distances and the order of the four loci were then determined as shown in Table 2.

Table 1. Progeny from cross of leu-1, ad-2 \times tryp-1, ro-2.

Genotype				Number
$\underline{\text { leu- } 1 /+ \text { ad }-\mathrm{z} /+ \text { tryp-1/+ ro-2/+ }}$				
leu-1	ad-2	$+$	+	1417
+	+	tryp-1	m-2	2014
leu-1	ad-2	+	ro-2	742
$+$	+	tryp-1	+	232
leu-1	+	tryp-1	m-2	163
+	od-2	+	+	109
leu-1	ad-2	tryp-1	m-2	20
+	+	+	+	81
leu-1	+	+	+	67
+	ad-2	tryp-1	m-2	37
leu-1	ad-2	tryp-1	+	22
+	+	+	m-2	74
leu-1	+	tryp-1	+	19
+	od-2	+	m-2	19
leu-1	+	+	m-2	19
+	ad-2	tryp-1	$+$	6

Table 2. Distances of the four loci from one another.

Loci	Distance in centimorgans
leu-1 and ad-2	$439 / 4441 \times 100=9.9$
leu-1 and tryp-1	$507 / 4441 \times 100=11.4$
leu-1 and ro-2	$772 / 4441 \times 100=17.4$
ad-2 and tryp-1	$326 / 4441 \times 100=7.3$
od-2 and m-2	$617 / 4441 \times 100=13.9$
tryp-1 and m-2	$533 / 4441 \times 100=12.0$

Figure 1. Chromosome mop of a section of linkage group III showing the relative positions of leu-1, ad-2, tryp-1 and ro-2.

These calculations gave the sequence of the four loci or leu-1, ad-2, tryp-1 and ro-2. Next, corrections for double and triple point crossovers were made and the order and corrected distances of the four oci ifrom one another were determined (Figure 1).

With regard to the relative positions of ad-2 and tryp-1, these findings differ from the findings of Perkins and Ishitani (1959) but support the observations of Barratt et a. (1954) and Perkins et al. (1962 con. J. Genet. Cytol. 4: 187). Positions of leu-l and ro-2 hove been found to be The same as reported by Perkins and Ishitani (1959) and Perkins et al. (1962). . . Department of Botany, University of Dacea, Docca-2, East Pakistan.

Kølmark, H. G. Linkage data for two "reose loci in linkoge group V of Neurospora crosso,

The isolation of "reose defective mutants was reported previousty (K ϕ lmark 1965 Neurospora Newsl. 8: 6). The results presented here summarize linkage data, mostly of random spore isolations from 2 -, 3 -, and 4 -point crosses with linked morken. As genetic symbol for "reose defective mutants, ure is "red here. The two mutants described ore desigmted as "re-1 (9) and ure-2 (47), where the hyphenated figures are locus numbers and the figures in parenthesis ore the original isolation numbers, now used as allelic designations (see note by Kølmark, this issue of Neurospora News.).
The linkage group was first established as VR for bath of the ure mutants in crosses to bis (C-1810-1). The positions were then more precisely determined in crosses with sp (8i32), inos (37401), am (32213, 47305, and 52949) and hist-1 (C91). Both of the "reose mutants are closely linked to the am and hist-1 Toci, and through 3-boint analysis it was found that they ore located at

Table 1. Summary of linkage data from 29 crosses involving markers in the region of linkoge group VR where we-1 and ure- 2 ore situated.

Recombinant lo	loci $\quad \mathrm{N}$	Number of crosses	Recombinants		Total		
			Total	\%;map "nits	Tested	\%	Germination
Centr.	ure-2	5	134	27.9	480		72.0
Centr.	ure-1	1	68	29.8	228		80.0
sp	ure-1	1	13	9.2	141		94.0
ure-2	am (32213)	3) 3	16	1.5	1055		67.5
ure-2	ure-1	3	28	3.1	891		79.0
ure-2	hist-1	4	60	4.1	1471		71.4
ure-2	inos	2	14	12.1	116		58.0
ure-2	bis	2	59	14.2	416		68.3
am (32213)	ure-1	3	7	1.1	629		61.2
am (47305)	ure-1	1	3	4.1	72		72.0
am (52949)	"re-I	1	6	1.2	489		98.0
am (322 13)	hist-1	8	91	3.9	2346		68.0
am (32213)	inos	1	5	7.2	69		69.0
am (47305)	inos	1	7	7.2	98		98.0
am (52949)	inos	1	8	8.8	91		91.0
ure-1	hist-1	3	11	4.1	780		61.5
ure-1	inos	1	13	5.6	231		92.5
ure-1	bis	3	72	9.0	803		89.3

All isolations were random, except those from which centromere distances were obtoined. The crosses include seventeen 2 -point, nine 3 -point ond three 4 -point Individual pairwise mop distances were obtained by summation of recombinants and number tested fiom crosses where the respective two markers were segregating.

Figure 1. Map distances $\delta \mathbf{f}$ group VR morken in relation to "re-I and "re-2. Top line: Data from crosser with ure-1. All distances meosured from the "re-1 position. Lower line: Data from crosses with "re-2. All distances measured from the ure-2 position. Middle line: Relative positions of "re-1 ond ure-2, and graphical mean positions of the various markers as detemined frim crosses with both ure- 1 and ure-2.

- - - Institute of Physiological Botany, University of Uppscla, Uppsala, Sweden.

Lomb, B. C. Centromere distance on asco (37402). The following linkage data relate to asco (37402) in linkage group VI. This mutant, after being backcrossed once to a Lindegren strain, was crossed to Abbot 4 a . At $25^{\circ} \mathrm{C}$, segregation counts of 4,383 asci gave 13.94% second division segregation, o centromere distance of 6.97 map units. . - Department of Genetics, University of Leicenter, Leicerter, England.

