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ABSTRACT: To date most research in image processing has

been based on quantitative representations of image features us-

ing pixel values, however, humans often use abstract and semantic

knowledge to describe and analyze images. To enhance cognitive

adequacy and tractability, we here present a multilayer framework

based on qualitative spatial models. The layout features of seg-

mented images are defined by qualitative spatial models which

we introduce, and represented as a set of qualitative spatial con-

straints. Assigned different semantic and context knowledge, the

image segments and the qualitative spatial constraints are inter-

preted from different perspectives. Finally, the knowledge layer

of the framework enables us to describe the image in a natural

way by integrating the domain-specified semantic constraints and

the spatial constraints.

1. MOTIVATION

As a basic carrier of visual information, images have been widely used

and studied. Digital images are technically considered pixel matrices
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with different precisions and color spaces, and there is lots of work

dedicated to extracting and describing quantitative image features us-

ing pixel values. Many global and local descriptors have been devel-

oped, such as LBP (Wang & He 1990), SIFT (Lowe 1999), HOG (Dalal

& Triggs 2005), SURF (Bay et al. 2008). However, the understand-

ing achieved as a result of human vision normally goes beyond what

can be extracted from pixels insofar as human vision extracts differ-

ent information or features from different perspectives and based on

background considerations or knowledge.

Take the image below as an example. If people are asked to describe

images like the scene shown in Fig. 1(a), possible answers could be,

(1) a woman in red is riding a brown horse, (2) a person is on the back

of a horse, or (3) there is something in red on something in brown,

depending on their personal background knowledge and the situational

context.

(a) (b) (c)

Figure 1: (a) a scene, (b) an OIM relation, and (c) a qualitative layout

representation.
This example shows that humans often use semantic and background

knowledge in image analysis, instead of relying only on quantitative

data of the sort extracted by most of the current feature-extraction al-

gorithms. Nowadays most image analysis research uses quantitative de-

scriptions of image features based on pixel values. There is thus a need

for the introduction of qualitative and semantic approaches to image

representation in order to bridge the gap between the ways of process-

ing images used by humans and those employed by existing algorithms.

Zhang et al. (2012) is a good review of automatic image annotation

techniques, a field where issues of image segmentation have drawn a

great deal of attention, along with issues such as color features (e.g.,

color histogram), texture features (e.g., model-based), shape features

(e.g.,contour/region-based) and spatial relationships (e.g., 2D string).
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Some researches focus on describing images with high level seman-

tic knowledge. Although background knowledge is extremely impor-

tant in human image analysis, its formal modeling is still a big chal-

lenge. Techniques such as single word vector spaces are widely used,

and many researchers are also trying to identify compositional mean-

ing representations for longer phrases, or even to generate sentences.

R. Socher et.al. introduced the dependency-tree recursive neural net-

works model in order to retrieve images described by sentences and to

generate sentence descriptions for those images Socher et al. (2014).

While this approach has yielded very encouraging results, it still pro-

duces some unsatisfactory results as well. As shown in Fig.1, some il-

logical results have been generated by the current fully learning-based

method as a result of the fact that the domain knowledge and spatial

restrictions are not carefully considered.

Figure 2: Failure examples from Socher et al. (2014), the generated

sentences in red are rather illogical to humans.

On the other hand, some work explores comprehensive text-to-

graphics systems as well. Based on Frame Semantics that represents

conceptual and graphical relations, B.Coyne et. al. proposed Vignette

Semantics, which is aimed at relating language to a grounded (e.g.,

graphical representation) semantics Coyne et al. (2011). Though Vi-

gNet takes internal structures and lexical spatial relations between ob-

jects in a scene into account, it does not make use of formally defined

spatial models, which means that logical conflicts and faulty represen-

tations are still difficult to avoid. These failings further point out the

necessity of introducing well-defined spatial models. There are sev-

eral well studied qualitative spatial models (cf. Allen (1983); Goyal &

www.thebalticyearbook.org
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Egenhofer (2000)), which provide plausible foundations for describing

spatial relations of image segments, such that answers like the third one

in the first example could become possible. Hence, we are concerned in

this paper with the representation of segmented images using qualita-

tive spatial models. Furthermore, while integrated with online learning

techniques and domain specified training sets as in Socher et al. (2014),

on our approach higher level descriptions are also going to be reliable.

2. A MULTILAYER FRAMEWORK FOR IMAGE DESCRIPTION

In this section we present a multilayer framework for image descrip-

tion intended to overcome the drawbacks that result when the domain

knowledge and spatial restrictions are not taken into account. Gener-

ally, the framework introduces qualitative spatial models to formalize

the spatial layout of the images, and creates a uniform architecture for

computational and cognitive systems by adapting the basic ideas of con-

cepts as heterogeneous proxytypes proposed by Lieto (2014).

The framework consists of three layers. The first layer is the vi-

sual layer at which the image is decomposed into segments, and the

spatial relations between each of them are abstracted according to the

qualitative spatial models that we introduce. Also at this level, visual

and property features will be extracted depending on their importance

in the later processing steps. In the second layer, named the concept

layer, the segments are recognized and/or classified by the pre-trained

system based on the visual features that have been extracted at the first

layer, this results in the corresponding concept annotations being as-

signed to the segments. Meanwhile, the formalized spatial constraints

are interpreted based on the primitive or reasoning-based semantic in-

terpretations defined by the adopted spatial models. The domain spec-

ified description would be generated in the knowledge layer, i.e. the

third layer, by taking both the domain specified (or situational) seman-

tic constraints and the spatial constraints into consideration. Fig.3 gives

an overview of the framework.

Vol. 10: Perspectives on Spatial Cognition

http://www.thebalticyearbook.org/


5 Tao Wang & Hui Shi

Figure 3: A multilayer framework for image description.

2.1. Layer I. the Visual Layer

Though our physical world is three-dimensional, setting aside time for

the moment, images are basically a two-dimensional projection profile

of it. Consequently, it is impractical to model a single image with accu-

rate 3D perspective. In this paper, we treat images as the orthographic

projection of the visual physical scene only, ignoring the 3D transfor-

mations resulting from the subject’s point of view.

Images can be decomposed into sets of regions. Much current re-

search is working on these issues, including segmentation, salient re-

gion extraction, and so on. Qualitative models can be used to bridge

the semantic gap between the low-level features of images and human

cognition. Well-defined qualitative spatial models have been proposed

and investigated. These models are normally more cognitivly adaptive,

www.thebalticyearbook.org
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and could develop or already have their respective semantic primitive

and/or reasoning-based interpretations, forming different and interdis-

ciplinary research communities. Some also include consistency check-

ing features and reasoning algorithms that can be used for later exten-

sion or model transformation.

Image segmentation techniques usually decompose an image into

a set of non-empty, bounded and connected segments, i.e. simple re-

gions, so qualitative spatial models for two dimensional regions could

be adopted to represent their spatial layouts. We employ the objects

interaction matrix model OIM proposed by Schneider et.al. Schneider

et al. (2012), a further development of the direction relation matrix

model Goyal & Egenhofer (2000) for representing direction relations

in spatial regions, for example, in geographic information systems.

Suppose S = {si}i=1
k is the set of the segments of image I . Taking si

and sj from S, their minimal bounding boxes divide the space into a n×

m (n, m ∈ {1,2,3}) matrix, depending on their relative positions (see

Schneider et al. (2012)). The interaction relation of si with respect to sj

is defined as a n×m (n, m ∈ {1,2,3}) matrix, denoted as OIM(si, sj) =

M ij, where a field in M ij is 1(2) if only si(sj) occurs in the corresponding

field of the space matrix, 3 if the space matrix field is occupied by both si

and sj, and otherwise it is 0. For instance, the relation of the bounding

boxes of the horse with respect to the rider (woman) is given in Fig.

1(b).

The layout of segment si in image I is then the set of region inter-

action relations of si with respect to all other segments, i.e., L (si) =

{M ij| j 6= i, sj ∈ S}. Moreover, the layout of image I is the union of the

layouts of its segments, written as R =
⋃

i=1
kL (si). Thus, according

to the spatial layout formalization process, the given segmented image

could be abstracted into a pair I =< S,R>. Fig.4 shows an example.

Vol. 10: Perspectives on Spatial Cognition
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Figure 4: An example of the visual layer.

2.2. Layer II. the Concept Layer

The aforementioned visual layer establishes an organized picture of the

input image, i.e. I =< S,R >, that provides the formal data for the

concept layer that follows. There are two focuses at the concept layer:

entity conceptualization of the segments and constraint interpretation

on the basis of the qualitative spatial models.

According to the Heterogeneous Hypothesis of Concepts proposed by

A. Lieto in Lieto (2014), the proxytype theories of concepts create an

uniform interface which could be shared by the three different types of

concepts that are assumed to exists: prototypical concepts, exemplar

based concepts, and theory-theory concepts. In our framework, we ba-

sically adopt this taxonomy about the heterogeneous concepts. Refer-

ring to the same concept entity, there can be different types of concepts

constituting different bodies of knowledge, and it can be represented by

applying different ontologies and models that are already available or

to be developed. In particular, regarding the visual layer of our frame-

work, the entity conceptualization process would begin with feature-

driven prototype-detection, and generate corresponding (semantic) ex-

www.thebalticyearbook.org
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emplars by taking instantiated prototypes (e.g., recognized labels) and

additional property features (e.g., color) both into consideration. A typ-

ical prototype network is built by supervised training algorithms based

on the visual features extracted from a manually labeled set, while the

exemplars usually depend on the assigned labels and employed ontolo-

gies. For example, for the segment S2 shown in Fig.4, suppose there

are two kinds of ontologies, sports and common, according to which

the segment S2 could be labeled with ‘rider’ or ‘person’, respectively;

meanwhile, referring to different locations in the taxonomy provided

by an ontology, S1 could be labeled with ‘animal’ or ‘horse’. Moreover,

the combination of the ontological and attributive interpretations could

furnish more particular descriptions, like ‘brown horse’.

Constraint interpretation is twofold, involving both the primitive

interpretation and the reasoning-based interpretation. Usually the spa-

tial models have their interpretations, which can be used for descrip-

tion directly, while reasoning based interpretation could be introduced

as well. The representation of image layouts using the qualitative spa-

tial model OIM makes several qualitative analyses of segmented images

possible. The most relevant one is to describe the relative spatial loca-

tions between image segments in a natural way, using their qualitative

layout representations. Further, a qualitative image reconstruction algo-

rithm, based on the theoretical work of Liu et al. (2010) and Li (2013),

has been developed, which generates a grid model from the qualita-

tive layout definition of an image in OIM, and the reconstructed spatial

layouts enable interpretations involving more than two segments. Fig.

1(c) shows the qualitative layout representation of the scene in Fig.

1(a) generated by the reconstruction algorithm. With different con-

straints based on interpretation and perspective, the qualitative layouts

can be naturally described from different points of view, including car-

dinal directions (e.g., north and northwest), egocentric directions (e.g.,

left and in front), and connections (e.g., overlap and away from). Con-

sidering the layout representation in Fig. 1(c), possible descriptions

are, for example, “segment S1 (horse) is at the center of segment S3

(grassland)”; “segment S2 (woman/rider) is at the center and the top of

segment S3 (horse) ”. If the reasoning-based interpretations are con-

sidered, we then have “segment S2 (woman/rider) is on segment S1

(horse)”. Furthermore, a spatial layout comparison test with 140 man-

Vol. 10: Perspectives on Spatial Cognition
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ually segmented images from the IAPR TC-12 dataset Escalante et al.

(2010) has been carried out. The experiment results show that the

qualitative layouts reconstructed by the algorithm are consistent with

those that have been manually created.

2.3. Layer III. the Knowledge Layer

The knowledge layer mainly aims to contribute the high level interpre-

tations that are clear and natural for human understanding. Toward

this goal, a domain knowledge network based on existing high level

semantic techniques would be established, with which the framework

could supervise the selection of an ontology or decide the suitable level

of generality within an ontology.

On one hand, a common way to build such a domain knowledge

network is to train an artificial neural network on a manually collected

and labeled dataset which consists of a mass of images with their cor-

responding descriptions, such as keywords, phrases, or even sentences.

These kinds of learning-based methods have been studied deeply, nev-

ertheless, as mentioned in the motivation section, knowledge networks

generated in this way lack semantic logic and strict domain limits in

some cases. Thus, the learned knowledge network also needs to be in-

tegrated with domains and ontologies in order to restrict the learned-

knowledge network to using annotations from an existing ontology. On

the other hand, activity modeling based on qualitative spatial models

and the situational context data (e.g., domains) have been explored,

and the modeled activities are connected to the corresponding nodes

of the knowledge network, and could be used to filter and verify the

domain specified descriptions.

www.thebalticyearbook.org
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Figure 5: An example of the multilayer framework for image descrip-

tion.

3. DISCUSSION

Fig. 5 shows an example of the working flow of the multilayer frame-

work for image description. The framework basically shares the com-

mon methods with traditional quantitative algorithms in image seg-

mentation, feature extraction and entity conceptualization procedures.

However, the framework also abstracts the spatial layout of the image

segments formally according the qualitative spatial models that have

been introduced; in this work, we adopt the objects interactions model.

The qualitative spatial models not only provide the formal basis for fea-

Vol. 10: Perspectives on Spatial Cognition
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tures such as consistency checking to ensure the validity of the spa-

tial layouts, but also offer the the necessary primitive interpretations

and could be used to construct reasoning-based interpretations and to

model activities. By taking both domain restrictions and spatial con-

straints into account, the knowledge layer could describe the given im-

age in a more reasonable manner. Taking the input image of Fig.5 as

an example, the traditional quantitative algorithms might obtain two

descriptions, for example “a person is feeding a horse” and “a person

is riding a horse”; while our framework would filter out the first one

because of its unmatched spatial layout.

4. CONCLUSION

In this paper we proposed a multilayer framework for image description

aiming to bridge the gap between the ways of processing images used

by humans and those found in existing quantitative algorithms. Though

the traditional quantitative image description algorithms achieve very

encouraging performances, they also generate illogical results because

the domain knowledge and spatial restrictions are not carefully con-

sidered. The framework proposed here introduces qualitative spatial

models to formalize the spatial layout of the images, thus recording

the spatial restrictions, and adopts the taxonomy of heterogeneous hy-

pothesis of concepts, thus creating a uniform interface which could be

shared by different types of concepts to keep the domain restrictions

and semantic logic structures. Finally, the framework establishes a

domain knowledge network integrating the domain-specified semantic

constraints and the spatial constraints, in order to describe the images

in a natural way.
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