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ABSTRACT: In its origins Dialogical logic constituted one part

of a new movement called the Erlangen School or Erlangen Con-

structivism. Its goal was to provide a new start to a general theory

of language and of science. According to the Erlangen-School,

language is not just a fact that we discover, but a human cultural

accomplishment whose construction reason can and should con-

trol. The resulting project of intentionally constructing a scientific

language was called the Orthosprache-project. Unfortunately, the

Orthosprache-project was not further developed and seemed to

fade away. It is possible that one of the reasons for this fading

away is that the link between dialogical logic and Orthosprache

was not sufficiently developed—in particular, the new theory of

meaning to be found in dialogical logic seemed to be cut off from

both the project of establishing the basis for scientific language

and also from a general theory of meaning.

We would like to contribute to clarifying one possible way in

which a general dialogical theory of meaning could be linked to

dialogical logic. The idea behind the proposal is to make use of

constructive type theory in which logical inferences are preceded

by the description of a fully interpreted language. The latter, we

think, provides the means for a new start not only for the project

of Orthosprache, but also for a general dialogical theory of mean-

ing.1

Constructive Type Theory 2

1. INTRODUCTION: KUNO LORENZ AND THE DIALOGICAL TURN

Since the time of ancient Greece—where the agora emerged as the first

public space for discussion and decision-making on diverse and serious

matters—and after the crucial influence of the Sophists, of Plato and

of Aristotle, dialectical reasoning won a place in our understanding of

science and the constitution of society that it has kept ever since.

In a recent paper M. Marion and H. Rückert (forth)—who for

the first time since the early papers by Kuno Lorenz and Jürgen Mit-

tlestrass (1966; 1967)2 take up the historic roots of the theory of

meaning underlying dialogical logic—show how the notion of quan-

tified expressions in Aristotle’s syllogistic was based on some specific

rules for dialectical games presented in the Topics (Θ, 2, 157a 34 and

8,160b).3 However, after Aristotle, the theories of inference and of

dialectical reasoning followed different paths and thus the dynamic as-

pects of logic were lost. Furthermore, during the years immediately

following the failure of the project of logical positivism, the links be-

tween science as a body of knowledge and science as a process by

which knowledge is achieved were cut off. Indeed, it seems as though

a ban on the logical analysis of science as a dynamic process, which in

traditional philosophy was overtaken by ‘gnoseology’, produced a gap

between the sciences and logic (including philosophy of science).4

As happens quite often in philosophy, the motivations for the old

traditions are rediscovered and reveal the mistakes of younger icono-

clastic movements. This is indeed the case concerning the relationship

between logic and knowledge, where the question of whether or not

there is an epistemic moment linked with the concept of a proposition

has provoked a heated debate since the 1960s.5 In 1955 Paul Loren-

zen proposed an operative approach that delved into the conceptual

and technical links between procedure and knowledge.6 The insights of

Lorenzen’s Operative Logik, as pointed out by Schröder-Heister (2008),

had lasting consequences in the literature on proof-theory and still de-

serve attention. Indeed, the notion of harmony formulated by the lo-

gicians who favoured epistemic approaches, and particularly by Dag

Prawitz,7 has been influenced by Lorenzen’s notions of admissibility,

eliminability and inversion.8 The epistemic approaches, coming to be

known as ‘antirealism’—following Michael Dummett—found their for-

mal argument in the mathematics of Brouwer and intuitionistic logic
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while other approaches persisted in relying on the formal background

of the Frege-Tarski tradition, where Cantorian set theory is linked via
model theory to classical logic.

This picture is, however, incomplete. On the one hand, already

in the 1960s Dialogical logic, developed by Paul Lorenzen and Kuno

Lorenz, appeared as a solution to some of the problems that arose in

Lorenzen’s Operative Logik (1955).9 Herewith, the epistemic turn initi-

ated by the proof-theory was tackled using the notion of games, which

reintroduced the dynamic features of traditional dialectical reasoning.

Inspired by Wittgenstein’s meaning as use, the basic idea of the dialog-

ical approach to logic is that the meaning of the logical constants is

given by the norms or rules for their use. The approach provides an

alternative to both model theoretic and proof-theoretic semantics.

On the other hand, by the sixties, Jaakko Hintikka combined the

model-theoretical, the epistemic, and the game-based traditions in his

development of what is now known as explicit epistemic logic, where

epistemic content is introduced into the object language by means of

an operator yielding propositions from propositions rather than in the

form of metalogical constraints on the notion of inference. These kinds

of operators were rapidly generalized to cover several propositional

attitudes, including notably knowledge and belief. Furthermore, Hin-

tikka developed game theoretical semantics: an approach to formal se-

mantics that, as in the dialogical framework, grounds the concepts of

truth or validity on game-theoretic concepts, such as the existence of

a winning strategy for a player. By contrast with the dialogical frame-

work, this approach is built upon the notion of a model.10

Games, as stressed by Johan van Benthem, involve a tight interplay

between what agents know and how they act. The rise of this paradigm

within logic is unmistakeable and represents a major extension of the

classical viewpoint. Games are typically an interactive process involv-

ing several agents, and indeed many issues in logic today are no longer

about zero-agent notions like truth, or single-agent notions like proof,

but rather about processes of verification, argumentation, communica-

tion, or in general interaction. In addition, this new approach, where

epistemic operators are combined with game-theoretical reasoning, ex-

perienced a parallel renewal in the fields of theoretical computer sci-

ence, computational linguistics, artificial intelligence and the formal

www.thebalticyearbook.org
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semantics of programming languages. This was triggered by the work

of Johan van Benthem11 and collaborators in Amsterdam who not only

looked thoroughly at the interface between logic and games but also

provided new and powerful tools to tackle the issue of the expressivity
of a language—in particular the capability of propositional modal logic

to express some decidable fragments of first-order logic.12 New results

in linear logic by J-Y. Girard at the interfaces between mathematical

game theory and proof theory on the one hand and argumentation

theory and logic on the other, resulted in the work of many others, in-

cluding S. Abramsky, J. van Benthem, A. Blass, H. van Ditmarsch, D.

Gabbay, M. Hyland, W. Hodges, R. Jagadessan, G. Japaridze, E. Krabbe,

L. Ong, H. Prakken, G. Sandu D. Walton, and J. Woods who placed

game semantics in the center of a new concept of logic according to

which logic is understood as a dynamic instrument of inference.13

A dynamic turn, as van Benthem puts it, is taking place and Kuno

Lorenz’s work is a landmark in this turn. In fact, Lorenz’s work can

be more accurately described as the dialogical turn that re-established

the link between dialectical reasoning and the study of logical infer-

ence. This link provides the basis for a host of current and ongoing

researches14 in the history and philosophy of logic, spanning the In-

dian, Chinese, Greek, Arabic, and Hebraic traditions, from the Obliga-

tiones of the Middle Ages to the most contemporary developments in

the study of epistemic interaction.

Let us now come to a point that might be seen as a kind of pend-

ing task. In its origins Dialogical logic constituted one part of a new

movement called the Erlangen School or Erlangen Constructivism, which

was intended to provide the new start for a general theory of lan-

guage and of science.15 In relation to the theory of language, accord-

ing to the Erlangen-School, language is not just a fact that we dis-

cover, but a human cultural accomplishment whose construction rea-

son can and should control.16 The constructive development of a scien-

tific language was called the Orthosprache-project.17 Unfortunately, the

Orthosprache-project was not further developed and seemed to fade

away. Perhaps it could be said that one of the reasons for this is that

the link between dialogical logic and the Orthosprache was not suf-

ficiently developed. In particular, the systematic development of dia-

logues based on the norms built by an Orthosprache were not worked
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out. Because of this the new theory of meaning at work in dialogical

logic seemed to be cut off from both the project of determining the

basis for scientific language and also from a general theory of mean-

ing. However, in the last 30 years Lorenz has delved into the roots of

the problem, work initiated in his Habilitationsschrift,18 and has devel-

oped a new theory of predication that appears to be adequate for the

completion of the dialogical project.19

We would like to contribute to determining one possible way in

which a general dialogical theory of meaning could be linked to dia-

logical logic. However, in the present paper we will only set the prelim-

inaries for such work. On our view, the recent work of Lorenz on pred-

ication can be integrated into the project at a precise place. The idea

behind the proposal is to make use of constructive type theory where

logical inferences are preceded by the description of a fully interpreted

language. The latter, we think, provides the means for a new start

not only for the project of Orthosprache but also for a general dialogi-

cal theory of meaning. Indeed, constructive type theoretical grammar

(Ranta 1994; Ginzburg 2012) has now been successfully applied to the

semantics of over 60 natural languages and the research is just start-

ing. Particularly interesting is the fact that Ginzburg deploys CTT in

order to capture the interaction of meaning underlying conversations

in natural language.

We are confident that the dialogical theory of meaning has the po-

tential to be integrated with and contribute to the new research paths

opened by CTT. Spelling this out in detail will bet he task of future

work. Tthe present paper presents rather a research program and thus

we will content ourselves here with the task of developing—in type-

theoretical setting—the link between dialogical logic and the project of

an Orthosprache.

2. ORTHOSPRACHE AND PREDICATOR RULES

2.1. Predicators and Predicator rules

As pointed out by G. Sundholm (1997; 2001) the standard approach

to a formal language for the foundations of science treats the language

as a meta-mathematical object where syntax is linked to semantics by

the assignment of truth values to uninterpreted strings of signs (formu-

www.thebalticyearbook.org
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lae). Many contemporary reconstructions of historical logical systems

follow this metalogical view of formal languages and the foundations

of science, which had developed by the mid-thirties. However this view

does not apply to the father of modern formal logic, namely Frege.20 It

does not apply because in the work before the influence of Hilbert,

Gödel, Bernays and Tarski, expressions of a scientific language express

a content, they constitute a meaningful language. The development of

fully interpreted languages is one of the main features of contempo-

rary constructive type theory, which is based on the idea of making the

meanings of the terms involved explicit at the level of the object lan-

guage. This movement against the mainstream was already present in

the project of an Orthosprache, proposed by Erlangen Constructivism

by 1970, which also challenged the approach of the mainstream ana-

lytic theory of meaning at the time.

The term Orthosprache was dubbed by Paul Lorenzen in 1972,

quoted in a footnote of the second edition of the Logische Propädeu-
tik (1972, p. 73, footnote 1), and discussed in the bible of the Erlangen

School: Konstruktive Logik, Ethik und Wissenschaftstheorie (Lorenzen

& Schwemmer 1973). The idea behind it is that of the explicit and

constructive development, by example (exemplarisch), of a language in

order to build a targeted scientific terminology (Kamlah & Lorenzen

1972, pp. 70-111).

The qualification by example refers to one of the major tenets of the

overall philosophy of language of the Erlangen School, namely the idea

that we grasp an individual as exemplifying something—type theoreti-

cians will say as exemplifying a type (see below):

Yet even science cannot avoid the fact that things do not

proffer themselves everywhere as different of their own ac-

cord, more often in important areas (e.g. in the social or

historical sciences) science must decide for itself what it

wants to regard as of the same kind and what is of differ-

ent kind, and address them accordingly.

[...]

As we have said already, the world does not “consist of ob-

jects” (of “things in themselves”) which are subsequently

named by men....

[...]

Vol. 8: Games, Game Theory
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In the world being disclosed to us all along through lan-

guage we tend to grasp the individual object as individual

at the same time that we grasp it as specimen of ... Fur-

ther, when we say “This is a bassoon” we mean thereby

“this instrument is a bassoon” ... or when we say “This is

a blackbird”, we presuppose that our discussion partner al-

ready knows “what kind of an object is meant”, that we are

talking about birds (Kamlah & Lorenzen 1984, p. 37).21

Accordingly, the predicators22 of the Orthosprache are introduced by

the study of exemplification instances. Now, as already pointed out by

Henri Poincaré in his disputes with the “logicians”, a scientific termi-

nology does not consist only of a set of predicators or even of sentences

expressing propositions: an adequate scientific language constitutes a

system of conceptual interrelations.23 The main logical device of the

Orthosprache project is to establish the corresponding transitions by

Predicator rules that will govern the passage from one predicator to

another. Moreover, these transition rules are formulated within a dia-

logical frame so that, given the predicator rule:

xεA⇒ xεB

(where x is a free variable and “A” are “B” are predicators) we have: if

a player brings forward an object to which predicator A is said to apply

then he is also committed to ascribe the predicator B to the same object.

The idea is that, for example, if someone claims k is a bassoon then he

is committed to the further claim that k is a musical instrument (where

k is a individual constant: in the Logische Propädeutik the application of

these norms proceeds by substituting individual constants for free vari-

ables). The Constructivists of Erlangen called transition rules of this

sort, which structure a (fully interpreted) scientific language by setting

the boundaries of a predicator, material-analytic norms.24 Material an-
alytical propositions (or more literally material analytical truths)25 are

then defined as the universally quantified propositions based on such

material-analytic norms (Lorenzen & Schwemmer 1973, p. 215).

The criticism of the formal semantic approach initiated by the con-

structivists of Erlangen was further developed by Lorenz. Indeed, one

of the main insights of Lorenz’ interpretation of the relation between

the so-called early and later Wittgenstein is based on a thorough crit-

www.thebalticyearbook.org
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icism of the metalogical approach to meaning (Lorenz 1970, pp. 74-

79). As pointed out by Lorenz, the heart of Wittgenstein’s philoso-

phy of language is the internal relation between language and world.

The internal relation is what language games display while they con-

stitute meaning. The roots of this perspective are based on the Un-
Hintergehbarkeit der Sprach: there is no way to ground a logical lan-

guage outside language (recall the case of Neurath’s sailor on his raft):

Also propositions of the metalanguage require the under-

standing of propositions, [...] and thus can not in a sensi-

ble way have this same understanding as their proper ob-

ject. The thesis that a property of a propositional sentence

must always be internal, therefore amounts to articulat-

ing the insight that in propositions about a propositional

sentence this same propositional sentence does not express

anymore a meaningful proposition, since in this case it is

not the propositional sentence that is asserted but some-

thing about it.

Thus, if the original assertion (i.e., the proposition of the

ground-level) should not be abrogated, then this same

proposition should not be the object of a metaproposition,

[...].26 (Lorenz 1970, p.75).

While originally the semantics developed by the picture

theory of language aimed at determining unambiguously

the rules of “logical syntax” (i.e. the logical form of linguis-

tic expressions) and thus to justify them [...]—now lan-

guage use itself, without the mediation of theoretic con-

structions, merely via “language games”, should be suf-

ficient to introduce the talk about “meanings” in such a

way that they supplement the syntactic rules for the use of

ordinary language expressions (superficial grammar) with

semantic rules that capture the understanding of these ex-

pressions (deep grammar).27 (Lorenz 1970, p.109).

If we recall Hintikka’s (1996b) extension of van Heijenoort’s distinc-

tion between language as universal medium and language as a calculus,
the point is, as discussed by Tero Tulenheimo (2011, p. 111), that the

dialogical approach shares some tenets of both conceptions. Indeed,

Vol. 8: Games, Game Theory
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on one hand the dialogical approach shares with universalists the view

that we cannot place ourselves outside our language, on the other it

shares with the anti-universalists the view that we can develop a me-

thodical reconstruction of a given complex linguistic practice out of the

interaction of simpler ones. The reconstruction is at the same time nor-

mative and pluralistic. Normative in the sense that the reconstruction

establishes rules for the correct practice. Pluralistic in the sense that

different practices might trigger a change of the norms established by

one reconstruction and thus yield meaning variations.28

So far so good. But we have yet to ensure that the conceptual

structure that results from predicator rules is not left at the metalan-

guage level. Moreover, in order to implement the original project of

an Orthosprache, more has to be said concerning, among other things,

the dialogical introduction of predicators by exemplification (What are

paradigmatic exemplifications? How do we go from one predicator

to the other?), and how the passage from material-analytic norms to

material-analytic truths happens. Kuno Lorenz’s recent work on Predi-

cation, we think, is linked to the first question.29

Moreover, in the context of logic the preceding considerations lead

to a conception according to which meaning is not constituted by an

external relationship between sentences and truth values, but by means

of different interactions that determine the reconstruction (specific to

a given argumentative and/or linguistic practice) that certain kind of

language games, called dialogues, provide. But how does all this com-

bine with predicator rules?

The main aim of the present paper is to tighten up all these ques-

tions together. In fact, the idea is that the task of implementing a the-

ory of meaning that avoids the metalogical trap can be accomplished

if the constitution of meaning itself is placed at the object language

level.30 As already announced we will make use of constructive type

theory. Thus we now briefly introduce the main features of this ap-

proach that are relevant for the purposes of our paper.

2.2. Constructive Type theory and Orthosprache

Within Per Martin-Löf’s constructive type theory (for short CTT) the

logical constants are interpreted through the Curry-Howard correspon-

dence between propositions and sets. A proposition is interpreted as

www.thebalticyearbook.org
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a set whose elements represent the proofs of the proposition. It is

also possible to view a set as a problem description in a way similar

to Kolmogorov’s explanation of the intuitionistic propositional calcu-

lus. In particular, a set can be seen as a specification of a programming

problem, the elements of the set are then the programs that satisfy the

specification (Martin-Löf 1984, p. 7). Furthermore in CTT sets are

understood also as types so that propositions can be seen as data (or

proof-)-types.31

The general philosophical idea is linked to the fully interpreted ap-

proach mentioned above and in particular to avoid—in Martin-Löf’s

own words (1984, p.2)—keeping content and form apart. Instead we
will at the same time display certain forms of judgement and inference
that are used in mathematical proofs and explain them semantically.
Thus, we make explicit what is usually implicitly taken for granted. Do-

ing this involves bringing the features that determine meaning to the

object level instead of formulating them at the meta-level, as is usually

done.

According to the CTT view of logic the premises and conclusion of

a logical inference are not propositions but judgements.

A rule of inference is justified by explaining the conclusion

on the assumption that the premisses are known. Hence,

before a rule of inference can be justified, it must be ex-

plained what it is that we must know in order to have

the right to make a judgement of any one of the various

forms that the premisses and conclusion can have (Martin-

Löf 1984, p.2).

The original work of Martin-Löf had as its main aim to reconstruct (in

the best possible way) informal mathematical reasoning. But, as al-

ready mentioned, Aarne Ranta (1994) applies CTT as a general theory

of meaning and extends its use for the study of natural languages.

2.2.1. Kinds as Types

In order to build up the link between CTT and the project of an Orthos-

prache, let us start by studying two basic tenets of CTT, namely

(1) No entity without type

Vol. 8: Games, Game Theory
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(2) No type without identity

The first tenet is strikingly close to the claim of Erlangen Constructivism

quoted above, according to which we tend to grasp an individual as the
instantiation of a kind. Accordingly, we can take the assertion that an

individual is an element of the set A as the assertion that that individual

instantiates or exemplifies type A. But what is a type A and how do we

differentiate between individuals that are examples of it and those that

are not? Or more fundamentally, what is it that we must know in order

to have the right to judge something to be of a type?

Those objects that are of the type set are defined in CTT by means

of defining their canonical elements, those that “directly” exemplify the

type, and the non-canonical ones, those that can be shown using some

prescribed method of transformation to be equal (in type) to a canoni-

cal one: the precise requirement is that the equality between objects of

a type must be an equivalence relation.32 This is what the second tenet

is about and is the response to Kamlah/Lorenzen’s words quoted above

concerning the need to specify what is the same and what is different

in a kind.33

When we have a type, we know from the semantic explanation of

what it means to be a type what the conditions for being an object of

that type are. So, if A is a type and we have an object b that satisfies

these conditions, then b is an object of type A, which we formally write

b : A.34 Accordingly,

b : A A true

can be read as

b is an element of the set A A has an element
b is a proof of the proposition A A is true
b fulfils the expectation A A is fulfilled
b is a solution to the problem A A has a solution

It is essential to distinguish between the proof-object b, the type A,

(proposition if it is of the type proposition, set if it is of the type un-

derlying a quantification) and the judgement b : A, which establishes

that, in this example, b is a proof-object for the proposition A (if A is a

proposition). In standard logic, that there is a proof for a given propo-

sition is expressed at the metalinguistic level. The fact that there is

www.thebalticyearbook.org
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something (an object) b that grounds the proposition that Primus owes
100 coins to Secundus (yielding the corresponding assertion) is given in

the usual analysis at the metalanguage level.

Let us now switch to the Orthosprache project. What we are hinting

at should be clear: to suggest that the role that plays the exemplarische
introduction of predicators in the Orthosprache is played here (in CTT)

by the explicit definition of types. More precisely, those types that pro-

vide the base for the universally quantified norms are of the type set.

Furthermore, we would like to explore the possibilities of recon-

structing the idea of grasping an object as a kind starting by means of

the CTT prescriptions to build the type set. Set does not instantiate

the type set, since we do not have a general method for generating all

possible ways to build a set. However, given the type set we can build

the objects that instantiate it by the means described above. Accord-

ingly, set(-objects) are not primitive either, since in fact they instantiate

the type set. And each of these instantiations is generated by means of

its canonical elements and of rules. After such a set(-object) is gener-

ated, certain propositional functions can be defined on it—as will be

discussed in the next section.

Moreover, the type set is one of an infinite number of types. There

are other types, such as the type prop. In fact, predicators are de-

fined by the interaction of these two types, the ontological type set

and the type of ‘prop’ which is about what is said. If we follow this

path, the distinction between canonical and non-canonical elements

and the requirement of a method by which a non-canonical element

can be computed so that the result is a canonical element seem an in-

sightful addendum to the project of the constructive development of

an Orthosprache for sciences. According to this suggestion, grasping

an object as exemplifying a kind does not only introduce the difference

between paradigmatic and non-paradigmatic examples: we also need

to describe a computation method that carries from paradigmatic to

non-paradigmatic ones.

The computation method seems to work straight away for math-

ematics but it is less clear-cut for other sciences or for types in natu-

ral language such as the type city. J. G. Granström (2011, pp. 14-15

and 86-91) suggests linking the distinction between canonical and non-

canonical with the difference between mediate concepts, as in the capital
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of France, and immediate concepts such as Paris—in the context of es-

tablishing the reference of the elements of the set City. Moreover, this

involves the use of a computational method by means of which com-

puting the capital of France gives the value Paris, which is a canonical

element of the set City.35 It is still not clear how to work up thoroughly

the details of such a computation device.36 Ranta (1994, pp. 54-55),

while discussing the criticisms against the fruitfulness of applying CTT

to natural language, writes:

The third way to justify everyday objects in type theory,

and the most modest one, is to study delimited models of

language use, ‘language games’. Such a ‘game’ shows, in

an isolated form, some particular aspect of the use of lan-

guage, without any pretension to covering all aspects. It

is a model of language in the sense in which theories are

models of nature. In such a model, the term man is inter-

preted as some set like

{Matthew, Mark, Luke, John},

whose elements are fully presented by the canonical names

Matthew, etc. (The set could of course be considerably

larger, for example, a record of one million names, dates

of birth, professions, hobbies.) The model does not present

fully present men in blood and flesh, with complete stories

of life, but it is enough for the formalization of a fragment

of language that does not appeal to any further structure

of men)

Indeed, it looks sensible to restrict the sets of quantification for em-

pirical objects to some finite sets. Two points of the present paper are

to pick up the idea of language games in a logical framework, namely

the dialogical one, and bring into consideration a net of such language

games.

The first point is linked with the fact that dialogical logic has been

developed at the interface between constructive logic and Wittgen-

stein’s language games and the second point involves the idea that the

relative under-determination of a set of quantification might be mini-

mized by establishing a structure of such sets that results from norms

governing the passage from one of these sets to the other. This takes

us to the notion of predicator rules within the CTT-framework.
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2.2.2. Hypotheticals and Predicator Rules

2.2.2a Hypotheticals:

The judgements we have introduced so far do not depend on any as-

sumptions. They are categorical judgements. The CTT language also

has hypothetical judgements of the form

B type (x : A)

Where A is a type that does not depend on any assumptions and B is a

type when x : A (the hypothesis for B). In the case of sets we have that

b is an element of the set B, under the assumption that x is an element

of the A:

b : B (x : A) (more precisely: b : el (B) (x : el (A)))

The explicit introduction of hypotheticals carries with it the explicit in-

troduction of appropriate substitution rules. Indeed, if in the example

above, a : A, then the substitution of of x by a in b yields an element

of B; and if a = c : A, then the substitutions of x by a and by c in b are

equal elements in B:37

a : A b : B (x : A) a = c: A b : B (x : A)
———————— ——————————

b(a/x) : B b(a/x) = b(c/x) : B

As pointed out by Granström (2011, p. 112) the form of assertion b :
B (x : A) (b : el (B) (x : el (A))) can be generalized in three directions:

(1) Any number of assumptions will be allowed, not just one;

(2) The set over which a variable ranges may depend on previously

introduced variables;

(3) The set B may depend on all introduced variables

Such a list of assumptions will be called a context. Thus we might need

the forms of assertion

b : B (Γ) – where Γ is a context (i.e., a list of assumptions)

Γ : context
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In general, a hypothetical judgment has the form

x1 : A1, x2 : A2, ... xn : An

where we already know that A1 is a type, A2 is a type in the context x1 :
A1, ..., and An is a type in the context x1 : A1, x2 : A2, ... xn−1 : An−1 :

A1 type [depending on no assumption]

A2 type (x1 : A1)
...

An type (x1 : A1, x2 : A2, ... xn−1 : An−1)
A type (x1 : A1, x2 : A2, ... xn : An)
————————————————–

x : A (x1 : A1, x2 : A2, ... xn : An, x : A)

The rules for substitution and equality are generalized accordingly:

Hypothetical judgements introduce functions from A to B:

f(x) : B (x : A)

It can be read in several ways, for example:

f(x) : B for arbitrary x : A
f(x) : B under the hypothesis x :A
f(x) : B provided x : A
f(x) : B given x :A
f(x) : B if x : A
f(x) : B in the context x : A

It is crucial to notice that the notion of function is intensional rather

than extensional. Indeed, the meaning of a hypothetical function that

introduces a function is that whatever element a is substituted for x
in (f(x), an element f(a) of B results. Moreover, the equality of two

functions defined by establishing that substitutions of equal elements

of A result in equal elements of B as regulated by the rules of substitu-

tion given above—where b(x) is interpreted as a function from A to B.38

In addition to domains of individuals, an interpreted scientific lan-

guage requires propositions. They are introduced in CTT by laying
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down what counts as proof of a proposition. Accordingly, a proposition

is true if there is such a proof. We write

A : prop
to formalize the judgement that A is a proposition. Propositional func-

tions are introduced by hypothetical judgements. The hypothetical

judgement required to introduce propositional functions is of the form:

B(x) : prop (x : A)
that reads, B(x) is of the type proposition, provided it is applied to ele-
ments of the (type-)set A. The rule by which we produce propositions

from propositional functions is the following:

a : A B(x) : prop (x : A)
———————————

ba : prop

And it requires also the formulation of an appropriate rule that defines

the equivalence relation within the type prop:

a=b : A B(x) : prop (x : A)
———————————–

Ba=Bb : prop

The notion of propositional function as hypothetical judgement allows

the (intensional) introduction of subsets by separation:

A : set B(x) : prop (x : A) b : A Bb true
———————————– ———————

{x : A | B(x)} : set b : {x : A | B(x)}

This explanation of subsets also justifies the following rules:

b: {x : A | B(x)} b: {x : A | B(x)}
———————- ———————

b : A Bb true

Since this method is based on pre-existent sets that have been con-

structed by description of their canonical elements, the standard para-

doxes of set theory do not arise (such paradoxes do appear in some

early formulations of Lorenzen’s method for the construction of sets).39
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What is given in a context, the given contextually-dependent knowledge,

is whatever can be derived from the hypotheses constituting the con-

text. Actually, a distinction is usually made between what is actually
given in the context (actual knowledge), namely the variables them-

selves and the judgements involving these variables, and what is po-

tentially given (potential knowledge), namely what can be derived by

the rules of type theory from what is actually given. Further, actual and

potential knowledge can be increased by extending a given context in

ways to be described below.

2.2.2b Hypotheticals and Extensions of Contexts

Let us consider once more the hypothetical

B(x) : prop (x : A)

Then, we can produce an extension of the context by interpretation by

means of definitional equalities such as a=x : A yielding

B(a) : prop (a =x : A)

Ranta (1994, pp. 135-137) applies it to the study of a literary text

where the text is seen as defining a context. That is, as a series of hy-

pothetical judgements that can be interpreted by equating the variables

with actual objects:

An interpretation of Hemingway’s short story ‘The Battler’

might start with the definition

Nick Adams = Ernest Hemingway : man

and go on assigning events from the young Hemingway’s

life to the variable proofs of even propositions asserted in

the story. (Ranta, 1994, p. 136).

More generally, one could extend a context by another context that

interprets the variables of the original context in terms of the new

ones.40 Extension can in principle induce the growing of knowledge.41 In

fact, a context can be enlarged by:

a) Addition of hypotheses. For instance the context
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Γ = (x1 : A1, ... xn : An) is extended to the context

∆ = (x1 : A1, ... xn : An, xn+1 : An+1). It is clear that everything

that is given in Γ is given in the new context as well and thus in

the new context we know what we knew in the original one. It may

also happen that in the new context proofs are now available that

were not at all available in Γ – not even potentially. In this case an

increasing growth of knowledge occurs.

b) Addition of definitions that interpret one of its variables. This is

the case already mentioned at the start of the paragraph. A more

general formulation is the following: the context

Γ = (x1 : A1, ... xn : An) is extended to the context

∆ = (Γ, xk = a : Ak)
So that in the new context every occurrence of xk is substituted by

a. The new context is obtained from Γ by removing the hypothesis

xk : Ak by a(x1 ... xn). Thus the new context is shorter than the orig-

inal. Still, this operation furnishes not only the knowledge of the

original context but also the value assigned to the variable reduces

the uncertainty within the context.42

c) Addition of a sequence of definitions of all variables in terms of the

variables of the new context (the new context need not look the

same as the original one). The context

Γ = x1 : A1, ... xn : An(x1... xn−1) is extended to the context

∆ = y1 : B1, ... ym : Bm(y1... ym−1) by a mapping f from ∆ to Γ

constituted by a sequence of functions such that

x1 = f(y1) ...(ym) : A1 (∆)
...

xn = f(y1) ...(ym) : An(f(y1) ...(ym)... fn−1(y1) ...(ym)) (∆)

The third operation of extension can be seen as a generalization of the

other two (if the new context results by addition of hypotheses we have

the first case; if the new context results from the introduction of only

one definition, then we have the second case) by translating the old

context into the new. Thus, the existence of a mapping f : ∆ → Γ is

usually taken to be the definition of what it is for a context to be an

extension of another context.

It might even be argued, as Primiero (2008, p. 187) does, that this
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extension amounts to knowledge enlargement in the sense that the

new context can show that some properties hold in the old context in

such a way that new concepts might elucidate the older ones.

2.2.2c Predicator-rules, Hypotheticals and Material-Analytic Norms

Let us switch now once more to the Orthosprache project. On our

view, the rule that produces a proposition from a propositional func-

tion and a set (as type) reconstructs the predicate rule in the context of

CTT and renders the form of a basic predicator rule. The main idea here

is that a predicator is defined over an object that instantiates the type

set. Predicators, according to the Erlangen School, introduce a classifi-

cation method in a domain. This is what hypothetical judgements such

as B(x) : prop (x : A) express. According to this reconstruction, we pro-

duce a proposition from a predicator B(x) that is introduced with the

help of A that is of the type set and that set A is defined by rendering

its paradigmatic examples and generation method.

Let us focus our attention on the substitution rule that yields Ba
from categorical a : A and the hypothetical B(x) : prop (x : A).
A crucial point is the distinction drawn between two forms of judge-

ment involving a is B, namely:

a : B
and

Ba
The first concerns the relation between an element and a set and the

second asserts a proposition—in our example we have a is A and a is
B. But we are not yet at the level of assertion of propositions. The rule

above only lays down the condition to produce a proposition from a

propositional function: in the conclusion of the rule we have the judge-

ment that Ba is a proposition, not that it is true. The original predicator

rule that regulates the transition from one propositional form to the

other can be seen as a more complex embedded prescription. Indeed,

one more general way to see predicator rules is as a case of contex-

tual dependency in the sense that one predicator is dependent on an-

other. Moreover, contextual dependency amounts to the dependency

of judgements and this, as mentioned above, characterizes hypotheti-

cal judgements. Indeed, one way to see complex forms of predicator
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rules is to see them as context-extensions as described in 2.2.2b above.

In other words, predicator rules from one prop to the other can be ren-

dered as, for instance,

B(x) : prop (x(y) : A(y) (y : C) (and this assumes that

A(y) : prop (y : C))

such that this hypothetical is an extension of (the basic predicator-rule)

B(x) : prop (x : A(x))

Extensions can, as discussed above, trigger an extension of both actual

and potential knowledge. This is what, according to the present ap-

proach, material-analytic norms amount to. Perhaps the original sense

of the Lorenz and Mittelstrass involved potential knowledge.43

According to us, the present reconstruction is even closer to Lorenz and

Mittelstrass’ (1967) beautiful analysis of Plato’s Cratylus. Particularly

so, since such an analysis launches the Erlangen project of a structure

of predicator rules. Indeed, in the paper mentioned above the authors

identify two basic acts of predication, namely naming (ìnom�ze�n) and

stating (lège�n). The first one amounts to the act of subsuming one

individual under a concept and the second establishes a true proposi-

tion. Naming is about correctness: one individual reveals the concept it

instantiates if the naming is correct (names reveal objects for what they
are):

Names, i.e. predicates, are tools with which we distinguish

objects from each other. To name objects or to let an in-

dividual fall under some concept is on the other hand the

means to state something about objects, i.e. to teach and

to learn about objects, as Plato prefers to say.

[...] whereas only ‘correct’ names reveal objects for what

they are (Crat. 422d), i.e. place individuals under an ap-

propriate concept. (Lorenz & Mittelstrass 1967, p. 7).

Stating is about the truth of the proposition that results from this kind

of predication act. If an individual is indeed an element of the adequate

type subset separated by the predicate at stake, the associated sentence

is true. We believe this is a fair reconstruction of the following lines of
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Lorenz& Mittelstrass (1967, p.8):

Therefore, in Plato’s terminology, a name is correct or re-

veals an object, if the associated elementary sentence is

true, and incorrect if the associated elementary sentence is

false.

In the context of our own reconstruction naming (ìnom�ze�n) corre-

sponds to the assertions that an individual is an element of a given set.

That is, it involves judgements of the form

a : A,

and stating (lège�n) corresponds to building a proposition given the

adequate elements of a set, that is

Ba (where a is an element of those A separated by Bx).

Thus, there is a relation between correctness and truth. But on our

view correctness corresponds to the fact that an object can be shown

to be an element of the set and this leads to the judgement a : A.

Then such a judgement provides the basis on which an associated

proposition—here Ba—is said to be true.

The adequacy of the distinction between these forms of judgement is

clear even in simple examples of quantification: if one asserts

There are small elephants
the naïve first-order interpretation, there are x that at are small and
elephants is simply wrong because it involves a confusion between two

different types. Elephant is the domain over which the propositional

function small is defined, thus it is of the type of a set of quantification

whereas small is a function that yields a proposition provided the func-

tion is applied to the domain. That is, instead of

∃x (Lx∧Sx)
we should have

(∃x : L) Sx (provided Sx : prop under the proviso that x : L)

As we will see further on, these forms of judgement are in fact present

in the particle rules for quantifiers of dialogical logic where a distinc-

tion is drawn between the act of choosing a singular term and the act of
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substituting the variable by the chosen term. The Orthosprache frame-

work considered the study of passage from predicator rules to quanti-

fied sentences, though a precise system of rules regulating this passage

was not explicitly developed. The point is that the CTT-approach fur-

nishes such rules, called formation rules. In fact, the rules that describe

how to build propositions out of hypotheticals are a special case of for-

mation rules.

2.2.2d Formation Rules and Predicator Rules

Formation rules simultaneously embody both the syntax and the ex-

planation of the basic types that provide the meaning of the language

(involving logical and non-logical constants). Another way of looking

at the rules is to say that the formation rules explain the types of the

language and that the introduction and elimination rules explain the

typing rules for expressions. There is also a last kind of rule in CTT,

called computation rules, which explain the dynamics of the typing.

One of the most distinctive features of CTT is that before the logical

process starts the formation rules should be applied: this is the way

that CTT implements the idea of a fully interpreted language. In fact,

the process of the application of the formation rule proceeds bottom

up: from the expression to be proved to the meaning elements of it.

To give a flavour of the use of the formation rules:

Let us assume that the task is to prove that the following holds

(0) Ba→∃xBx

or to write it down in the explicit language of CTT

(1) Ba→(∃x : A)Bx true

It if it is to be true it must be a proposition.

So we must have before

(2) Ba→(∃x : A)Bx : prop
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The left part is a prop if the head and tail of the conditional are

also propositions:

(3) Ba : prop (4) (∃x : A)Bx : prop

If the first is a prop then there must be some set such that a is an

element of that set and a propositional function B(x) such that it

is a prop (i.e., is of the type proposition) provided that x ranges

over that set, let us assume that the set is A:

(5) a : A (6) B(x) : prop (x :A)

Similarly the formation of 4 requires A to be a set of that set and

a propositional function B(x) such that it is a prop provided that x

ranges over A. One can now proceed by checking the constitution

rules of A. Let us assume that we know how A has been defined

and that a is indeed of type A and continue with the existential

sentence. Now that we know what we are talking about we can

proceed with the proof.

As already mentioned, in the example above one could continue until

the formation of each set is defined by exhibiting the adequate proof

objects. In the context of a legal trial, it corresponds to studying the

pieces of evidence that constitute the relevant propositions. In the di-

alogical setting, as discussed in 3, every play of a thesis starts with a

play where the challenger asks for the formation rules underlying the

thesis at stake. In such formation-plays predicator-rules will then re-

sult as a response to the challenge enquiring about the presuppositions

underlying a given thesis.

2.3. Predicator Rules and Formation Plays: The Idea Behind

Let us start with a presentation of the underlying intuitions. As already

mentioned, given a transition rule such as

x ε A⇒ x ε B

we have: if a player brings forward an object to which predicator A is

said to apply then he must also be committed to ascribing the predica-

tor B to the same object.
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In the context of Basic Predicator Rules and of the distinction be-

tween the two forms of predication discussed in the preceding para-

graphs, we could distinguish between the basic predicator formation
plays and the basic predicator rules. The former concern the formation

plays that yield the latter. In other words, we should distinguish be-

tween:

Ax : prop (x : B)
(Ax constitutes a proposition provided that x is an element of B)

and

p : Ax (x : B)
(p constitutes a play for Ax, provided x is an element of the set B)

The following provides a first intuitive illustration on the way these

expressions are handled in a dialogical setting (see a more detailed

explanation in the next Section):

1. X ! p : Ak
2. Y ?t y pe (Y asks for the type)
3. X ! Ak : prop (X answers that it is of the type proposition)
4. Y ?F (Y, asks for the formation rule)
5. X ! Ak/x : prop (x : B)

If we take a simplified version of the example of the bassoon men-

tioned above, the point of these rules is that if player X posited that

the individual k is a bassoon and if this presupposes that Bassoon(x) is
a proposition when x is an element of the set of instruments, then this

commits X to posit that Bassoon(k) is a proposition if k is an element of
the set of instruments.

Now the (material) dialogue might continue by asking for the forma-

tion rule of the set B. The defender must then provide:

i) the canonical elements

ii) an algorithm that shows how to compute non canonical from canon-

ical ones (in non-mathematical contexts an exhaustive enumera-

tion might be sufficient)

iii) rules that determine the equivalence class corresponding to the set
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In addition to the formation rules, we need to have basic predicator

rules that should provide the concessions from which a play for the

corresponding elementary sentence can be produced (if the elementary

sentence happens to be true).

X ! p : Ax (x : B)
Y ! τ : B (Y chooses a term τ and posits that it is an element of the

set B)

X ! p’ : Aτ (X substitutes x with the term τ)

If we develop material-analytic dialogues, elementary sentences can be

challenged: by the formation rules and the applications of adequate

conceded predicator rules (if there are any such concessions). The idea

behind the material-analytic dialogues is that, as in formal dialogues,

O’s elementary sentences can not be challenged whereas O can chal-

lenge an elementary sentence (posited by P) iff himself (the Opponent)

did not posit it before.

3. DIALOGICAL LOGIC AND THE INTERFACE BETWEEN SYNTAX,

SEMANTICS AND PRAGMATICS

The dialogical approach to logic is not a specific logical system but

rather a rule-based semantic framework in which different logics can

be developed, combined and compared. An important point is that

the rules that fix meaning are of more than one kind. This feature

of its underlying semantics has often lead to the dialogical approach

being understood as a pragmatist semantics. More precisely, in a di-

alogue two parties argue about a thesis respecting certain fixed rules.

The player that states the thesis is called Proponent (P), his rival, who

contests the thesis is called Opponent (O). In its original form, dia-

logues were designed in such a way that each of the plays end after a

finite number of moves with one player winning, while the other loses.

Actions or moves in a dialogue are often understood as speech-acts in-

volving declarative utterances or posits and interrogative utterances or
requests. The point is that the rules of the dialogue do not operate on

expressions or sentences isolated from the act of uttering them. The

rules are divided into particle rules or rules for logical constants (Par-
tikelregeln) and structural rules (Rahmenregeln). The structural rules
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determine the general course of a dialogue game, whereas the parti-

cle rules regulate those moves (or utterances) that are requests (to the

moves of a rival) and those moves that are answers (to the requests)—

for an explicit presentation of the rules for standard dialogical logic see

appendix.

Crucial for the dialogical approach are the following points:44

1. The distinction between local (rules for logical constants) and global
meaning (included in the structural rules that determine how to

play)

2. The player independence of local meaning

3. The disinction between the play level (local winning or winning of

a play) and the strategic level (existence of a winning strategy).

4. A notion f validity that amounts to winning strategy independently
of any model instead of winning strategy for every model.

5. The distintion between non formal and formal plays—the latter no-

tion concerns plays that are played independently of knowing the

meaning of the elementary sentences involved in the main thesis.

In the framework of constructive type theory propositions are sets whose

elements are called proof-objects. When such a set is not empty, it can

be concluded that the proposition has a proof and that it is true. In

his 1988 paper, Ranta proposed a way to make use of this approach in

relation to game-theoretical approaches. Ranta took Hintikka’s Game

Theoretical Semantics as a case study, but the point does not depend

on this particular framework. Ranta’s idea was that in the context of

game-based approaches, a proposition is a set of winning strategies for

the player positing the proposition.45 Now, in game-based approaches,

the notion of truth is to be found at the level of such winning strate-

gies. This idea of Ranta’s should thus enable us to apply methods taken

from constructive type theory to cases of game-based approaches.

But from the perspective of game theoretical approaches, reducing

a game to a set of winning strategies is quite unsatisfactory, all the more

when it comes to a theory of meaning. This is particularly clear in the

dialogical approach in which different levels of meaning are carefully

distinguished. There is thus the level of strategies, which is a level of

Vol. 8: Games, Game Theory
and Game Semantics

http://www.thebalticyearbook.org/


27 Shahid Rahman & Nicolas Clerbout

meaning analysis, but there is also a level prior to it, which is usually

called the level of plays. The role of the latter level for developing an

analysis is, according to the dialogical approach, crucial, as pointed out

by Kuno Lorenz in his 2001 paper:

“[...] for an entity [A] to be a proposition there must exist a

dialogue game associated with this entity [...] such that an

individual play where A occupies the initial position [...]

reaches a final position with either win or loss after a finite

number of moves [...]”

For this reason we would rather have propositions interpreted as sets

of what we shall call play-objects, reading an expression

p : ϕ

as “p is a play-object for ϕ”.

Thus, Ranta’s work on proof objects and strategies constitutes the end

not the start of the dialogical project.

3.1. The Formation of Propositions

Before delving into the details about play-objects, let us first discuss the

issue of the formation of expressions and, in particular, of propositions

in the context of dialogical logic.

In standard dialogical systems, there is a presupposition that the

players use well-formed formulas. One can check the well-formedness

at will, but only with the usual meta reasoning by which one checks

that the formula indeed observe the definition of wff. The first en-

richment we want to make is to allow players to question the status

of expressions, in particular to question the status of something as ac-

tually standing for a proposition. Thus, we start with rules giving a

dialogical explanation of the formation of propositions. These are local

rules added to the particle rules that give the local meaning of logical

constants (see next section).

Let us make a remark before displaying the formation rules. Be-

cause the dialogical theory of meaning is based on argumentative inter-

action, dialogues feature expressions that are not posits of sentences.
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They also feature requests used for challenges, as illustrated by the for-

mation rules below and the particle rules in the next section. Now, by

the no entity without type principle, the type of these actions, which we

may write “formation-request”, should be specified during a dialogue.

Nevertheless we shall assume that the force symbol ?F already makes

the type explicit. Indeed a request in a dialogue should not be con-

fused with a move by means of which it is posited that some entity is

of the type request.46 Hence the way requests are written in rules and

dialogues in this work.47
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By definition the falsum symbol ⊥ is of type prop. A posit ⊥ cannot

therefore be challenged.

The next rule is not formation rules per se but rather a substitution

rule.48 When ψ is an elementary sentence, the substitution rule helps

explain the formation of such sentences.

Posit-substitution

There are two cases in which Y can ask X to make a substitution in

the context xi : Ai . The first one is when, in a standard play, a variable

or list of variables occurs in a posit with a proviso. Then the challenger

posits an instantiation of the proviso.

The second case is in a formation-play. In such a play the challenger

simply posits the whole assumption as in move 7 of the example below:

Remarks on the formation dialogues
(a) Conditional formation posits:
One crucial feature of the formation rules is that they allow display-

ing the syntactic and semantic presuppositions of a given thesis and

thus can be examined by the Opponent before the actual dialogue on

the thesis is run. Thus, if the thesis amounts to positing, say, ψ, then

before an attack is launched, the opponent can be asked for its forma-

tion. The defence of the formation of ψ, might induce the Proponent

to posit that ψ is a proposition, under the condition that it is conceded

that, say A is a set. In such a situation the Opponent might accept to

concede A is a set, but only after P has displayed the constitution of A.
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(b) Elementary sentences, definitional consistency and material-analytic
dialogues:
If we follow thoroughly the idea of formation rules, then we should

allow elementary sentences to be challenged by the formation rules.

Defence against such a challenge will make use of applications of rel-

evant already-conceded predicator rules (if there are any such conces-

sions). Thus, the challenge of an elementary sentence is based on the

definitional consistency in use of the conceded predicator rules. This is

what we think material-dialogues are about: they are definitional con-

sistency dialogues. This leads to the following material analytic rule

for formation dialogues:

O’s elementary sentences can not be challenged, however

O can challenge an elementary sentence (posited by P) iff

herself (the opponent) did not posit it before.

Remark: Once the proponent forced the Opponent to concede the ele-

mentary sentence in the formation dialogue, the dialogue will proceed

making use of the copy-cat strategy.

(c) Indoor- versus outdoor-games: Hintikka (1973, pp. 77-82), who ac-

knowledges the close links between dialogical logic and GTS, launched

an attack against the philosophical foundations of dialogic because of

their indoor- or purely formal approach to meaning as use. He argues

that formal proof games are not of very much help in accomplishing

the task of linking the linguistic rules of meaning with the real world.

In contrast to our games of seeking and finding, the games

of Lorenzen and Stegmüller are ‘dialogical games’ which

are played ‘indoors’ by means of verbal ‘challenges’ and

‘responses’. [...].

[...]. If one is merely interested in suitable technical prob-

lems in logic, there may not be much to choose between

the two types of games. However, from a philosophical

point of view, the difference seems to be absolutely crucial.

Only considerations which pertain to ‘games of exploring

the world’ can be hoped to throw any light on the role

of our logical concepts in the meaningful use of language.

(Hintikka 1973, p. 81).
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Rahman & Keiff (2004, p. 379) pointed out that formal proof, that is

validity, does not in the dialogical frame provide meaning either: it is

rather the other way round, i.e. formal plays furnish the basis for the

notion of dialogical validity (that amounts to the notion of a winning P-
strategy). The formation rules add a crucial edge to this discussion: If

the rules that establish meaning are introduced at the object language

level, the middle position of the dialogical approach between univer-

salists and anti-universalists mentioned above (2.1) can be successfully

maintained.49 The latter might also thus suggest that the characteriza-

tion of dialogical games as indoor-games does not apply any more.

By way of illustration, we present a dialogue where the Proponent

posits the thesis (∀x : A)B(x)→C(x) : prop given that A : set, B(x) :

prop (x : A) and C(x) : prop (x : A), where the three provisos appear

as initial concessions by the Opponent.50 Good form demands that we

first present the structural rules that define the conditions under which

a play can start, proceed, and end. But we leave them for the next

section. They are not necessary to understand the following:

Explanations:

• I to III: O concedes that A is a set and that B(x) and C(x) are

propositions provided x is an element of A,

• Move 0: P posits that the main sentence, universally quantified,

is a proposition (under the concessions made by O),
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• Moves 1 and 2: the players choose their repetition ranks,

• Move 3: O challenges the thesis a first time by asking the left-

hand part as specified by the formation rule for universal quan-

tification,

• Move 4: P responds by positing that A is a set. This has already

been granted with premise I so P can make this move while re-

specting the Formal rule,

• Move 5: O challenges the thesis again, this time asking for the

right-hand part,51

• Move 6: P responds, positing that B(x)→C(x) is a proposition

provided x : A,

• Move 7: O uses the substitution rule to challenge move 6 by

granting the proviso,

• Move 8: P responds by positing that B(x)→C(x) is a proposition,

• Move 9: O then challenges move 8 a first time by asking the

left-hand part as specified by the formation rule for material im-

plication.

In order to defend P needs to make an elementary move. But since O

has not played it yet, P cannot defend at this point. Thus:

• Move 10: P launches a counterattack against assumption II by

applying the first case of the substitution rule,

• Move 11: O answers move 10 and posits that B(x) is a proposi-

tion,

• Move 12: P can now defend in reaction to move 9,

• Move 13: O challenges move 8 a second time, this time requiring

the right-hand part of the conditional,

• Move 14: P launches a counterattack and challenges assumption

III by applying again the first case of the substitution rule,

• Move 15: O defends by positing that C(x) is a proposition,
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• Move 16: P can now answer to the request of move 13 and win

the dialogue (O has no further move).

From the viewpoint of building a winning strategy, the Proponent’s

victory only shows that the thesis is justified in this particular play. To

build a winning strategy we must run all the relevant plays for this

thesis under these concessions.

Now that the dialogical account of formation rules has been clari-

fied, we may develop further our analysis of plays by introducing play-

objects.

3.2. Play objects

The idea is now to design dialogical games in which the players’ posits

are of the form “p : ϕ” and acquire their meaning in the way they are

used in the game—i.e., how they are challenged and defended. This

requires, among other things, analyzing the form of a given play-object

p, which depends on φ, and how a play-object can be obtained from

other, simpler, play-objects. The standard dialogical semantics52 for

logical constants gives us the needed information for this purpose. The

main logical constant of the expression at stake provides the basic in-

formation as to what a play-object for that expression consists of:

A play for X ! ϕ ∨ψ is obtained from two plays p1 and p2,

where p1 is a play for X ! ϕ and p2 is a play for X ! ψ. Ac-

cording to the particle rule for disjunction, it is the player

X who can switch from p1 to p2 and vice-versa. To show

this, we write that the play is of the form (p1+p2).

A play for X ! ϕ ∧ ψ is obtained similarly, except that it

is the player Y who can switch from p1 to p2. To show this,

we write that the play is of the form (p1⊗p2).

A play for X ! ϕ ∧ ψ is obtained from two plays p1 and

p2, where p1 is a play for Y ! ϕ and p2 is a play for X ! ψ.

It is the player X who can switch from p1 to p2. We write

that the play is of the form (p1–op2).

The standard dialogical particle rule for negation rests on
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the interpretation of ¬ϕ as an abbreviation for ϕ→⊥, al-

though it is usually left implicit. It follows that a play for X

! ¬ϕ is also of the form (p1–op2), where p1 is a play for Y !

⊥ and p2 is a play for X !⊥ and where X can switch from p1

to p2. Notice that this approach covers the standard game-

theoretical interpretation of negation as role-switch: p1 is

a play for a Y move.

As for quantifiers, we give a detailed discussion after the particle rules

(see next page). For now, we would like to point out that, just like what

is done in constructive type theory, we are dealing with quantifiers for

which the type of the bound variable is always specified. We thus con-

sider expressions of the form (Qx : A)ϕ, where Q is a quantifier symbol.

It may seem unfortunate that we use symbols that are usually used

to denote linear connectives (⊗, –o). We use these because their game-

theoretical interpretations53 completely match the descriptions we have

just given of how play-objects can be obtained from simpler ones.
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Notice that we have added for each logical constant a challenge

of the form ‘Y ?prop ’ by which the challenger questions the fact that

the expression at the right-hand side of the semi-colon is a proposition.

This establishes the connection with the formation rules given in 3.1 via
X’s defence. More details are given in the discussion after the structural

rules.

It may happen, as we shall see in our example in Section 2, that the

form of play-objects is not explicit at first. In such cases we deal with

expressions of the form, e.g., “p : ϕ∧ψ”. We may then use expressions

of the form L∧(p) and R∧(p)—which we call instructions—in the rele-

vant defences. Their respective interpretations are “take the left part

of p” and “take the right part of p”. In instructions we indicate the log-

ical constant at stake. First it keeps the formulations explicit enough,

in particular in the case of embedded instructions. More importantly

we must keep in mind that there are important differences between

play-objects depending on the logical constant. Remember, for exam-

ple, that in the case of conjunction the play-object is a pair, but it is

not in the case of disjunction. Thus L∧(p) and L∨(p), say, are actually

different things and the notation takes that into account.

Let us focus on the rules for quantifiers. Dialogical semantics high-

lights the fact that there are two distinct moments when considering

the meaning of quantifiers: the choice of a value given to the bound

variable, and the instantiation of the formula after replacing the bound

variable with the chosen value. But at the same time in the standard di-

alogical approach there is some sort of presupposition that every quan-

tifier symbol ranges over a unique kind of object. Now, things are

different in the context of the explicit language we borrow from CTT.

Quantification is always relative to a set, and there are sets of many dif-

ferent kinds of objects (for example: sets of individuals, sets of pairs,

sets of functions, etc). Thanks to the instructions we can give a general

form for the particle rules. It is in a third, later, moment that the kind

of object is specified, when instructions are “resolved” by means of the

structural rule SR4.1 below.

Constructive type theory makes it clear that as soon as propositions

are thought of as sets, there is a basic similarity between conjunction

and the existential quantifier on the one hand and material implication

and the universal quantifier on the other hand. Briefly, the point is that
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they are formed in similar ways and their elements are generated by

the same kind of operations.54 In our approach, this similarity mani-

fests itself in the fact that a play-object for an existentially quantified

expression is of the same form as a play-object for a conjunction. Simi-

larly, a play-object for a universally quantified expression is of the same

form as one for a material implication.55

The particle rule just before the one for universal quantification is

a novelty in the dialogical approach. It involves expressions commonly

used in constructive type theory to deal with separated subsets. The

idea is to understand those elements of A such that ϕ as expressing

that at least one element L{...}(p) of A witnesses ϕ(L{...}(p)). The same

correspondence that linked conjunction and existential quantification

now appears.56 This is not surprising since such posits actually have

an existential aspect: in {x : A | ϕ} the left part “x : A” signals the

existence of a play-object.57 Let us point out that since the expression

stands for a set there is no presupposition that it is a proposition when

X makes the posit. This is why it cannot be challenged with the request

“?prop”.

3.3. From play-objects to strategies

In this Section we illustrate our enriched dialogical framework by giv-

ing a dialogue for the famous donkey sentence. We also take the op-

portunity to make preliminary remarks on matters related to the level

of strategies, which we will need to consider to give a precise ac-

count of the relation between the dialogical and the type theoretical

approaches.

Before doing this, let us say a few words about the other kind of di-

alogical rules called structural rules. These rules govern the way plays

globally proceed and are therefore an important aspect of a dialogical

semantics. We work with the following structural rules:

SR0 (Starting rule) Any dialogue starts with the Proponent positing

the thesis. After that the players each choose a positive integer called

a repetition rank.

SR1i (Intuitionistic Development rule) Players move alternately. Af-
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ter the repetition ranks have been chosen, each move is a challenge or a

defence in reaction to a previous move, in accordance with the particle

rules. The repetition rank of a player bounds the number of challenges

he can play in reaction to the same type of move. Players can answer

only against the last non-answered challenge by the adversary.

[SR1c (Classical Development rule) Players move alternately. After

the repetition ranks have been chosen, each move is a challenge or a

defence in reaction to a previous move, in accordance with the particle

rules. The repetition rank of a player bounds the number of challenges

and defences he can play in reaction to a same move.]

SR2 (Formation first) O starts by challenging the thesis with the re-

quest ‘?prop ’. The game then proceeds by applying the formation rules

first in order to check that the thesis is indeed a proposition. After that

the Opponent is free to use the other local rules insofar as the other

structural rules allow it.

SR3 (Modified Formal rule) O’s elementary sentences can not be chal-

lenged, however O can challenge an elementary sentence (posited by

P) iff herself (the opponent) did not posit it before.

SR4.1 (Resolution of instructions) Whenever a player posits a move

where instructions I1, ..., In occur, the other player can ask him to re-

place these instructions (or some of them) by suitable play-objects.

If the instruction (or list of instructions) occurs at the right of the colon

and the posit is the tail of a universally quantified sentence or of an

implication (so that these instructions occur at the left of the colon in

the posit of the head of the implication), then it is the challenger who

can choose the play-object – in these cases the player who challenges

the instruction is also the challenger of the universal quantifier and/or

of the implication.

Otherwise it is the defender of the instructions who chooses the

suitable play-object. That is:
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Important remark. In the case of embedded instructions I1(...(Ik)...),
the substitutions are thought of as being carried out from Ik to I1: first

substitute Ik with some play-object bk, then Ik−1(bk) with bk−1 ... until

I1(b2). If such a progressive substitution has actually been carried out

once, a player can then replace I1(...(Ik)...) directly.

SR4.2 (Substitution of instructions) When during the play the play-

object b has been chosen by either player for an instruction I, and

player X posits ! πI), then the antagonist can ask to substitute I with b
in any posit X ! π(I):

The idea is that the resolution of an instruction in a move yields a

certain play-object for some substitution term, and therefore the same

play-object can be assumed to result for any other occurrence of the

same substitution term: instructions are functions after all and as such

they must yield the same play-object for the same substitution term.

In order to quantify into instructions I∨—that is, either L(x) or R(x)—
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the following substitution rule is added:

The same applies to I∨ and I∃:

SR5 (Winning rule for dialogues) For any p, a player who posits “p

: ⊥” looses the current dialogue. Otherwise the player who makes the

last move in a dialogue wins it.

A detailed explanation of the standard rules can be found in Ap-

pendix 1. In the rules we just gave there are some additions, namely

those numbered SR2 and SR4 here, and also the first part of the win-

ning rule. Since we made explicit the use of ⊥ in our games, we need

to add a rule for it: the point is that positing falsum leads to immediate

loss; we could say that it amounts to a withdrawal.58

We need the rules SR4.1 and SR4.2 because of some features of

CTT’s explicit language. In CTT it is possible to account for questions

of dependency, scope, etc directly at the level of the language. In this

way various puzzles, such as anaphora, get a convincing and success-

ful treatment. The typical example, which we consider below, is the

so-called donkey sentence “Every man who owns a donkey beats it”.

The two rules provide a means of accounting for the way play-objects

can be ascribed to what we have called instructions. See the dialogue

below for an application.

The rule SR2 is consistent with the common practice in CTT to

start derivations by checking or establishing aspects related to the for-

mation of propositions before proving their truth. Notice that this

step also covers the formation of sets—membership, generation of ele-

ments, etc.—which occur in hypothetical posits and in quantifiers. This
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is achieved in dialogues by means of rule SR2, which requires that in a

dialogue the players first deal with aspects related to formation rules.

With this we introduce some resemblance between our games and the

CTT approach that makes the task of investigating their connections

easier. However, it looks like we could do with a liberalized version

of this rule. Because of the number of rules we have introduced, a

careful verification of this is a delicate task that we will not carry out

in this paper. For now let us simply mention that it looks sensible in

the context of dialogues to let the process related to formation rules be

more freely combined with the development of a play on the thesis. In

fact it does seem perfectly consistent with actual practices of interac-

tion to question the status of expressions once they are introduced in

the course of the game. Suppose for example player X has posited ‘p :

ϕ ∨ψ’. As soon as he has posited the disjunction to be a proposition—

i.e., as soon as he has posited ‘ϕ ∨ψ : prop’—the other player knows

how to challenge the disjunction and should be free to keep on explor-

ing the formation of the expression or to challenge the first posit. The

point is that in a way it seems to make more sense to check whether

ϕ is a proposition or not after (if) X posits it in order to defend the

disjunction. Doing so in a ‘monological’ framework such as CTT would

probably give rise to various confusions, but the dialogical approach to

meaning should allow this additional dynamic aspect quite naturally.

Notice that there is a principle from CTT that we did not entirely ap-

ply in this first paper, namely that “no entity comes without a type”.

Indeed SR0 introduces repetition ranks (to ensure finiteness of plays)

and we have not said anything about their type. This is still a job to be

done.

Let us take as an example the development of a dialogue related to

the notorious donkey sentence. In his 1986 paper, G. Sundholm thor-

oughly discussed this famous puzzle. As he pointed out, the problem is

to give a way to capture the back-reference of the pronoun “it” in the

sentence “Every man who owns a donkey beats it”. For that we first

notice that “a man who owns a donkey” is an element of the set

{x : M | (∃y : D)Oxy},

making use of subset separation. From there it is easy to use projections
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to get the following formula for the donkey sentence:

(∀z : {x : M | (∃y : D)Oxy})Beats(L(z), L(R(z)))

where M is the set of men, D is the set of donkeys, Oxy stands for “x

owns y” and Bxy stands for “x beats y”. In this way we account for the

fact that the pronoun “it” refers to the donkey mentioned in the first

part of the sentence.

In the following dialogue, the donkey sentence is conceded to-

gether with other posits by the Opponent. Given these concessions,

the Proponent posits “Beats(m,d)” as the thesis.

Explanations. We leave the repetition ranks unspecified (moves 1 and

2) and simply assume that they are big enough for O to play all her

challenges and for P to answer. We also ignored redundant repetitions

and focused on the steps that are relevant for the outcome of the play.

Now, because of the modified formal rule SR3 the Proponent must de-

lay his answer to move 3. He thus counter-attacks by challenging O’s
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first concession (the donkey sentence). Then the Opponent has various

choices:59 in this dialogue she starts with a counterattack, asking P to

choose a play-object for L∀(p). The dialogue goes on with O playing in

accordance with the particle rules and asking for resolutions of instruc-

tions during the process. Notice that when answering to challenge 13,

the Proponent gives a description of R{...}(z): it is a pair consisting of a

left part and a right part. This allows him to introduce the instruction

Lε(R{...}(z)) for the continuation of the play. With move 16 P chooses

the play-objects d and p’ as parts of the pair in order to use concessions

III and IV at moves 20 and 24.

After move 24 the Opponent has no other choice but to answer

move 4. Then it is easy for P to use rules SR4.2 and SR4.1 (with moves

26 and 28) in order to get exactly what he needs to play move 30 and

win this dialogue.

Notice that as the dialogue unfurls, a more precise formulation of

the initial play-object for the donkey sentence is revealed. In particular

we obtained, with moves 8, 12 and 14, important specifications on the

form of L∀(p). Using the notation we have introduced in Section 1, we

get the following description for the play-object p:

(L{...}(z)⊗(Lε(R{...}(z))⊗Rε(R{...}(z)))) –o Beats(L{...}(z),Lε(R{...}(z))) (A)

We can even keep track of which moves are played by O and by P. For

this purpose we place the players’ identities in the following way:

(L{...}(z)⊗P(Lε(R{...}(z))⊗PRε(R{...}(z)))) –oO Beats(L{...}(z),Lε(R{...}(z))) (B)

We could borrow some terminology from constructive type theory and

call expression (B) a trace or blue-print of the play for O’s concession

I. Our interest in such expressions lies in the fact that we can see di-

alogues such as the one above as resulting from P following a certain

strategy S. More precisely, the dialogue is one of those which can re-

sult when P plays according to S. An expression such as (B) can thus

be considered as giving a partial description of the strategy S. Here, it

is the part related to O’s first concession in this dialogue. It is not really

clear yet how such a description of a strategy can be obtained from

blue-prints of plays, and a detailed analysis of this matter is manda-

tory. Actually everything remains to be done on this topic. In this work
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we can only point out what we believe is a promising starting point

in order to give precise descriptions of strategies in terms of lists of

instructions.

Arguably, a drawback of the approach we suggest is that descrip-

tions such as (B) are heavy and difficult to handle. In spite of its length

and the notation, the dialogue above is rather simple, so it is likely

that for more complicated dialogues we will get very abstruse descrip-

tions. What is more, the situation is likely to worsen when we combine

such traces in order to give descriptions of strategies. An obvious way

to make things better in this respect is to replace instructions by their

associated play-objects. We could even consider this to be mandatory

since resolution of instructions is part of the dialogues. Hence, we

could think of replacing (B) with the following:

(m⊗O (m⊗O (m,d))) –oP Beats(m,d) (B’)

Before discussing this possibility further, let us notice the following

about the step from (B) to (B’). Notice that this step is reminiscent of

the computational rules of constructive type theory. In CTT, elimina-

tion rules can be thought of as giving information on how to obtain

a proof-object for a subformula given the proof-object of the starting

formula. Computational rules then provide the means to compute the

information in order to get the actual value of the proof-object for the

subformula. For example, one of the elimination rules for conjunction

is

(p1,p2) : ϕ ∧ψ

——————– (E1∧)

fst(p1,p2) : ϕ

The fact that fst(p1,p2) computes to p1 is accounted for by the com-

putational rule60

fst(p1,p2)⇒ p1

A possible way to deal with these rules from the dialogical perspec-

tive, which we leave open for further explorations, is the following.

We can see such rules as special cases of the rule for functions. Just

like propositions, we can give a particle rule for functions:
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The idea is that if we see computational rules as special cases of such

functions, then we can implement them directly within dialogues as

applied by the players. In this way we would obtain games where the

players themselves can describe plays or strategies, because such de-

scriptions are done by means of computational rules. This opens a new

direction where we would have dialogues about plays and strategies,

i.e., where we could develop a dialogical approach to the strategical

level.

Besides simplifying the notation, there are various convincing rea-

sons that make the use of CTT’s computational rules (or something

very similar) desirable. Applying such a device could be a way to stress

what different plays (or strategies) have in common. Again, the com-

parison with CTT is helpful in explaining our point. The point is that in

constructive type theory different proof processes (i.e., different deriva-

tions) can lead to identical proof-objects once the computational rules

are applied.61 From the dialogical point of view, a device of this kind is

particularly relevant when we consider strategies. To take a very sim-

ple example, this could be the way to accurately formulate the basic

similarity between different orders of moves and consider as basically

similar the following two sequences of actions: “asking for the left

conjunct then asking for the right conjunct” and “asking for the right

conjunct then asking for the left conjunct”.

Provided we define dialogical counterparts for the computational

rules, the question remains whether we should systematically apply

them and forget about non-simplified traces such as (B). In our view

we should not consider that their only purpose is to apply simplifica-

tion in order to get synthesized descriptions of strategies. Even though

being able to account for similarities between plays or strategies is in-

teresting, it is worth noticing that this would be achieved at the ex-

pense of a notation which keeps track of the players’ actions. The point

is the following: once we have replaced instructions by their associated

play-objects, as we do from (B) to (B’), we lose the chance to explic-

itly formulate strategies as lists of instructions. That is to say, there is

something which is lost when we replace the instructions, namely the
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way the play-object is obtained. Such differences are precisely the ones

that hide what different dialogues or strategies may have in common.

Thus, it is only when we are interested in such common aspects that it

is better to apply simplifications and forget about instructions.

4. CONCLUDING REMARKS: STRATEGIES AND PROOF-OBJECTS

We have explained that the view of propositions as sets of winning

strategies overlooks the level of plays and that an account more faithful

to the dialogical approach to meaning is that of propositions as sets of

play-objects. But play-objects are not the dialogical counterparts of

CTT proof-objects, and thus are not enough to establish the connection

between the dialogical and the CTT approaches.

The local rules of our games—that is, the formation rules together

with the particle rules—present some resemblances with the CTT rules,

especially if we read the dialogical rules backwards. But in spite of the

resemblances, play-objects are in fact very different from CTT proof-

objects. The case where the difference is obvious is implication—and

thus universal quantification, which is similar. In the CTT approach, a

proof-object for an implication is a lambda-abstract, and a proof-object

of the tail of the implication is obtained by applying the function to the

proof-object of the head. But in our account with play-objects, nothing

requires that the play-object for the right-hand part be obtained by an

application of some function.

From this simple observation it is clear that the connection between

our games and CTT is not to be found at the level of plays. In fact, it is

well known that the connection between dialogues and proofs is to be

found at the level of strategies: see for example Rahman et al. (2009)

for a discussion in relation to natural deduction. Even without the

question of the relation with CTT, the task of describing and explaining

the level of strategies is necessary since it is a proper and important

level of meaning analysis in the dialogical framework. This work is

still in progress so we end this paper with preliminary observations on

this topic.

A strategy for a player is often defined as a function from the set of

non-terminal plays where it is this player’s turn to move to the set of

possible moves for this player. Equivalently, a strategy can be defined
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as the set of plays that result when the player follows the strategy.

From this we propose to consider strategies as certain sets of play-

objects. On the one hand they are different from propositions insofar

as a proposition is the set of all possible play-objects for it, whereas any

play-object cannot be a member of a given strategy. But on the other

hand it is clear that every play-object in a strategy for a proposition A

is also in A itself. Thus, a strategy for A is a certain subset of A. This

view seems to comply with the dialogical approach according to which

the level of strategies is part of the meaning of expressions but does

not cover it entirely.

Summing up, we have play-objects that carry the interactive aspects

of the meaning-explanations. A proposition is the set of all possible

play-objects for it, and a strategy in a game about this proposition is

some subset of play-objects for it.

Three important questions must then be addressed. First of all, any

subset of A should not count as a strategy for A. So our first question

is: what are the conditions that a set of play-objects must observe in

order to be called a strategy? Also, the connection between dialogical

games and proofs relates to winning strategies for the Proponent. So

the second question is: what additional constraints do we need for a

strategy to be a winning one? Answering these questions should lead

us to a good understanding of what counts as a canonical (winning)

strategy. On this topic, an important remark is that the move from

uninterpreted to interpreted languages results in a loss of generality.

The clearest illustration is the case of existential quantification. By the

particle rule a player making a posit of the form “! p : (∃x : A)ϕ” must

be ready to provide an element of the set A. If the Proponent is the one

making the posit, he needs some previous concession by the Opponent

in order to be able to provide an element of A. This means that there

cannot be a winning P-strategy for posits of this form in the absence of

preliminary concessions about the quantification set(s). In other words

the dialogue games we have introduced in this paper are in any case

not yet suitable enough to get general validity. To move to validity, an

abstraction process must still be worked out such as the one described

by Sundholm (2013, pp. 33-35). The dialogical perspective of the

abstraction process will presumably involve a more general approach

to the copy-cat strategy triggered by the formal rule.
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The third question to tackle when moving to the level of strate-

gies is: what are the generation rules for strategies? In other words:

what are the operations that can be used to obtain new strategies from

already available strategies. In relation to this last question, Ranta

(1988) proposed using the same operations that are used in CTT for

proof-objects. For example, a winning strategy for A∧B is a pair made

of a winning strategy for A and of a winning strategy for B. This cer-

tainly makes the connection between winning strategies and proof-

objects straightforward. However at first sight it seems a little too sim-

plistic. While it is obvious that (winning) strategies for A∧B must be

obtained from (wining) strategies for A and for B, it seems unsatisfac-

tory to conclude that a strategy for A∧B is a set of pairs of strategies.

We would rather keep the idea of the strategy as a set of play-objects.

The point would then be that, in the case of A∧B, the play-objects that

are members of the set are obtained from play-objects for A and for B.

Let us finish with a partial answer to the first two questions. We

present a procedure by which one can search for (the description of) a

winning P-strategy in a game.62 However, as will be clear below, the

object(s) that can be obtained by this procedure do not exactly meet

the requirements we have listed above. The procedure goes through

the construction of expressions similar to the full explicit description of

play-objects, but with an important difference: the sequences of moves

they represent are not rigorously observing the rules. The reason for

this is that on the one hand—for reasons we explain below—we start

with the assumption that the Opponent’s rank is set to be 1 while on

the other hand we allow expansions of the starting expression that O

should actually not be able to trigger with rank 1. Let us now give

some explanations.

First of all, one might wonder why we consider the Opponent’s rank

to be set beforehand since, strictly speaking, every possible choice of

rank for O should be considered in a P-strategy. Here we rely on the

fact that in order to know whether there is a winning P-strategy in a

given game it is enough to check the case where O chooses rank 1.

See Clerbout (2013a). Actually, other aspects of the procedure, such

as the particular choices of individual constants taken for expansions

in Steps 2.4 and 2.5, are motivated by considerations taken from the

demonstration63 in Clerbout (2013a), Chapter 2.
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Now, in relation to the second point, it would have been more faith-

ful to the considerations above to explain how alternative ways for the

Opponent to play can be built and taken into account, instead of al-

lowing illegal expansions of the starting play. But this is precisely what

remains to be done to answer accurately to the three questions we have

raised above. The point is that it is a very delicate task to give a proce-

dure that would produce alternatives to the starting play: for this first

version we give a flavour of the result we aim at. One of the difficulties

we will have to overcome is to keep track of which play-objects have

already been counted as belonging to a given set. The procedure below

avoids the difficulty by ‘merging’, so to speak, the various play-objects

that would be selected as members of the strategy.

Let us now move to the procedure. As we have explained, the

Opponent’s rank is 1. As for the Proponent’s rank, we assume for now

that it is big enough to let P keep on playing after an expansion is made:

the actual value of his rank can be determined once the procedure

ends, when it is possible to count the total number of challenges and

defences he made.

Suppose then that we have a play won by P in a given game, and

that its fully explicit description is given by the play-object ρ.

Preliminaries. We say that O makes a decision in ρ in the following

cases:

(i) She challenges a conjunction: she chooses which conjunct to ask

for.

(ii) She defends a disjunction: she chooses which disjunct to give.

(iii) She counter-attacks (or: defends) after a P-challenge on a ma-

terial implication without defending (or: counter-attacking) after-
wards.

(iv) She challenges a universal quantifier: she chooses an individual

in the set.

(v) She defends an existential quantifier: she chooses an individual

in the set.

N.B.: because it is an expression such as the one labelled (B’) in the

previous Section, ρ actually carries all the information needed to know

whether there are such O-decisions and where they occur.
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Moreover, we say that a move M depends on move M’ if there is a

chain of applications of game (particle) rules from M’ to M.

Procedure

1. If there is no (remaining) non-used decision made by O in ρ then

go to Step 6. Otherwise go to the next step.

2. Take the latest non-used decision d made by O in ρ and, depending

on the case, apply one of the following and afterwards go to Step 3:

2.1. If d is a challenge against a conjunction, then expand ρ with

the other challenge. That is, take64 ρ’=ρ⌢O?L (resp. ?R) given

that O?R (resp. ?L) occurs in ρ. The game then proceeds as if

the first challenge had not taken place: moves depending on

the first challenge are forbidden to both players.

2.2. If f is a defence for a disjunction, then expand ρ with the other

disjunct. That is, take ρ’=ρ⌢O!L∨(p) : ϕ (resp. R∨(p) : ψ)

given that O!∨(p) : ψ (resp. L∨(p) : ϕ) already occurs in ρ.

The game then proceeds as if the first defence had not taken

place: moves depending on the first defence are forbidden to

both players.

2.3. If d is a counter-attack (resp. a defence) in reaction to

a P-challenge on a material implication, then expand ρ

with the defence (resp. the counter-attack). That is, take

ρ’=ρ⌢O!R→(p) : ψ (resp. O?...). The game then proceeds as

if the counter-attack (resp. the defence) had not taken place:

moves depending on it are forbidden to both players.

2.4. If d is a challenge against a universal quantifier, then we dis-

tinguish cases:

2.4.1. The individual from the set, say a : A, chosen at d is

new. Then for each other individual ai in A—if any—

occurring previously in ρ, expand ρ with the choice of

this individual. That is, take ρi ’=ρ
⌢O!ai : A for each

ai .

For each such expansion, the game then proceeds as if

the first challenge had not taken place: moves depend-

ing on it are forbidden to both players.
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2.4.2. The individual chosen at d is not new. Then:

a. Expand ρ with a challenge where O chooses a new

individual. That is, take ρa ’=ρ⌢O!a : A where a is new.

b. Also, for each other individual ai of A—if any—

occurring previously in ρ, take ρi ’=ρ
⌢O!ai : A.

For each such expansion, the game then proceeds as if

the first challenge had not taken place: moves depend-

ing on it are forbidden to both players.

2.5. If d is a defence of an existential quantifier, then we distinguish

cases:

2.5.1. The individual of the set, say a : A, chosen at d is

new. Then for each other individual ai in A—if any—

occurring previously in ρ, expand ρ with the choice of

this individual. That is, take ρi ’=ρ
⌢O!R∃(p) : ϕ(ai) for

each ai .

For each such expansion, the game then proceeds as if

the first defence had not taken place: moves depending

on it are forbidden to both players.

2.5.2. The individual chosen at d is not new. Then:

a. Expand ρ with a challenge where O chooses a new

individual. That is, take ρa ’=ρ⌢O!R∃(p) : ϕ(a) where

a is new.

b. Also, for each other individual ai of A—if any—

occurring previously in ρ, take ρi ’=ρ
⌢O!R∃(p) : ϕ(ai).

For each such expansion, the game then proceeds as if

the first defence had not taken place: moves depending

on it are forbidden to both players.

3. Name the resulting sequence(s) ρ∗ (or ρ∗ i if relevant). Mark d as

used and go to the next step.

4. If ρ∗ (or one of the ρ∗ i) is O-terminal then stop. Take another play

won by P and go back to Step 1. Otherwise go to the next step.

5. Take the next non-used O-decision in ρ and repeat Step 2 but by
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expanding ρ∗ (or each of the ρ∗ i) instead of ρ.

When there are no non-used O-decision left, go to Step 6.

6. Call the sequences obtained ρσ i . For each of these take its O-

permutations, namely the sequences which are the same up to the

order of O-moves and still observe the game rules.

The set of all the ρσ i and their O-permutations provides a description

of a P-strategy. If all of these are P-terminal then the strategic-object is

P-winning and there is a winning P-strategy in the game at stake.

Important remark. Step 4 makes the procedure a method to search

for descriptions of winning P-strategies. If one of the expanded play-

objects is not won by him, the procedure stops and must be started

again with another starting play(-object). Notice that the procedure

will keep on searching until a winning P-strategy is described. A con-

sequence is that if there is no such strategy in the game the procedure

will not accurately determine it and will keep on searching indefinitely.

This is consistent with the semi-decidability of first-order dialogical

games—and of predicate logic. See Clerbout (2013a), Chapter 3.

We reach here the limits of this paper. For sure, there is a large

project still ahead, but it is a fascinating one. Lorenz’s work on dia-

logical logic is a landmark in the field and has shown to be fruitful in

many fields. The time is ripe to explore the possibilities of linking the

approach of dialogical logic to a general theory of meaning. We are

sure that in exploring this path we have still very much to learn from

Kuno Lorenz’s inspiring work.
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A. APPENDIX 1: STANDARD DIALOGICAL LOGIC

Let L be a first-order language built as usual upon the propositional

connectives, the quantifiers, a denumerable set of individual variables,

a denumerable set of individual constants and a denumerable set of

predicate symbols (each with a fixed arity).

We extend the language L with two labels O and P, standing for

the players of the game, and the question mark ‘?’. When the identity

of the player does not matter, we use variables X or Y (with X 6=Y). A

move is an expression of the form ‘X-e’, where e is either a formula ϕ

of L or the form ‘?[ϕ1, ...,ϕn]’.

We now present the rules of dialogical games. There are two dis-

tinct kinds of rules named particle (or local) rules and structural rules.

We start with the particle rules.

In this table, the ais are individual constants and ϕ(ai/x) denotes the

formula obtained by replacing every occurrence of x in ϕ by ai . When a

move consists in a question of the form ‘?[ϕ1, ...,ϕn]’, the other player

chooses one formula among ϕ1, ...,ϕn and plays it. We can thus dis-

tinguish between conjunction and disjunction on the one hand, and

universal and existential quantification on the other hand, in terms of

which player has a choice. In the cases of conjunction and universal

quantification, the challenger chooses which formula he asks for. Con-

versely, in the cases of disjunction and existential quantification, the

defender is the one who can choose between various formulas. Notice

that there is no defence in the particle rule for negation.

Vol. 8: Games, Game Theory
and Game Semantics

http://www.thebalticyearbook.org/


55 Shahid Rahman & Nicolas Clerbout

Particle rules provide an abstract description of how the game can

proceed locally: they specify the way a formula can be challenged and

defended according to its main logical constant. In this way we say that

these rules govern the local level of meaning. Strictly speaking, the ex-

pressions occurring in the table above are not actual moves because

they feature formula schemata and the players are not specified. More-

over, these rules are indifferent to any particular situations that might

occur during the game. For these reasons we say that the description

provided by the particle rules is abstract.

Since the players’ identities are not specified in these rules, we say

that particle rules are symmetric: that is, the rules are the same for

the two players. The fact that the local meaning is symmetric (in

this sense) is one of the biggest strengths of the dialogical approach

to meaning. In particular it is the reason why the dialogical approach

is immune to a wide range of trivializing connectives such as Prior’s

tonk.65

The expressions occurring in particle rules are all move schematas.

The words “challenge” and “defence” are convenient to name certain

moves according to their relationship with other moves. Such relation-

ships can be precisely defined in the following way. Let Σ be a sequence

of moves. The function pΣ assigns a position to each move in Σ, start-

ing with 0. The function FΣ assigns a pair [m, Z] to certain moves N
in Σ, where m denotes a position smaller than pΣ(N) and Z is either

C or D, standing respectively for “challenge” and “defence”. That is,

the function FΣ keeps track of the relations of challenge and defence as

they are given by the particle rules. Consider for example the following

sequence Σ:

P-ϕ ∧ψ, P-χ ∨ψ, O-?[ϕ], P-ϕ

In this sequence we have for example pΣ(P-χ ∨ψ)=1.

A play (or dialogue) is a legal sequence of moves, i.e., a sequence of

moves that observes the game rules. The rules of the second kind that

we mentioned, the structural rules, give the precise conditions under

which a given sentence is a play. The dialogical game for ϕ, written

D(ϕ), is the set of all plays with ϕ as the thesis (see the Starting rule

below). The structural rules are the following:

SR0 (Starting rule) Let ϕ be a complex formula of L. For every π ∈D(ϕ)
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we have:

• pπ(P-ϕ)=0,

• pπ(O-n:=i)=1,

• pπ(P-m:=j)=2

In other words, any play π in D(ϕ) starts with P-ϕ. We call ϕ the

thesis of the play and of the dialogical game. After that, the Opponent

and the Proponent successively choose a positive integer called repeti-
tion rank. The role of these integers is to ensure that every play ends

after finitely many moves, in a way specified by the next structural rule.

SR1 (Classical game-playing rule)

• Let π ∈D(ϕ). For every M in πwith pπ(M)> 2 we have Fπ(M) =
[m′, Z] with m′ < pπ(M) and Z ∈ {C , D}

• Let r be the repetition rank of player X and π ∈D(ϕ) such that

– the last member of π is a Y move,

– M0 is a Y move of position m0 in π,

– M1,...,Mn are X moves inπ such that Fπ(M1)= ... = Fπ(Mn)=

[m0,Z].

Consider the sequence66 π′ = π ∗ N where N is an X move such

that Fπ′(N)= [m0, Z]. We have π′ ∈D(ϕ) only if n<r.

The first part of the rule states that every move after the choice of repe-

tition ranks is either a challenge or a defence. The second part ensures

finiteness of plays by setting the player’s repetition rank as the maxi-

mum number of times he can challenge or defend against a given move

of the other player.

SR2 (Formal rule) Let ψ be an elementary sentence, N be the move

P- ψ and M be the move O-ψ. A sequence π of moves is a play only if

we have: if N ∈ π then M ∈ π and pπ(M)< pπ(N).
That is, the Proponent can play an elementary sentence only if the Op-

ponent played it previously. The formal rule is one of the characteristic
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features of the dialogical approach: other game-based approaches do

not have it (see comments below).

One way to understand the formal rule is that it establishes a kind

of game where one of the players must play without knowing meaning

of the elementary sentences involved. Now, if the ultimate grounds of a

dialogical thesis are elementary sentences and if this is implemented by

the use of a formal rule, then the dialogues are in this sense necessarily

asymmetric. Indeed, if both contenders were restricted by the formal

rule no elementary sentence can ever be posited. Thus, we implement

the formal rule by designing one player, called the proponent, whose

declarative utterances of elementary sentences are at least, at the start

of the dialogue, restricted by this rule. Moreover the formal rule trig-

gers a novel notion of validity. Validity is not being understood as being

true in every model, but as having a winning strategy independently of
any model or more generally independently of any material grounding

claim (such as truth or justification). The copy-cat strategy implicit in

the formal rule is not copy-cat of groundings but copy-cat of declarative

utterances involving elementary sentences.67 The copy-cat of ground-

ings or contents corresponds rather to the modified formal rule for ma-

terial analytic dialogues discussed in Section 3.2 of the present paper.68

A play is called terminal when it cannot be extended by further moves

in compliance with the rules. We say it is X terminal when the last

move in the play is an X move.

SR3 (Winning rule) Player X wins the play π only if it is X termi-

nal.

Consider for example the following sequences of moves:

P-Qa∧Qb, O-n:=1, P-m:=6, O-?[Qa], P-Qa

P-Qa→Qa, O-n:=1, P-m:=12, O-Qa, P-Qa

The first one is not a play because it contravenes the Formal rule: with

his last move, the Proponent plays an atomic sentence although the

Opponent did not play it beforehand. By contrast, the second sequence

is a play in D(P-Qa→Qa). We often use a convenient table notation for

plays. For example, we can write this play as follows:
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The numbers in the external columns are the positions of

the moves in the play. When a move is a challenge, the

position of the challenged move is indicated in the internal

columns, as with move 3 in this example. Notice that such

tables carry the information given by the functions p and F

in addition to representing the play itself.

However, when we want to consider several plays together—for exam-

ple when building a strategy—such tables are not that perspicuous. So

we do not use them to deal with dialogical games for which we prefer

another perspective. The extensive form of the dialogical game D(ϕ)

is simply the tree representation of it, also often called the game-tree.

More precisely, the extensive form Eϕ of D(ϕ) is the tree (T,l,S) such

that:

i) Every node t in T is labelled with a move occurring in D(ϕ)

ii) l: T→N

iii) S⊆T2 with:

- There is a unique t0 (the root) in T such that l(t0)=0, and t0 is

labelled with the thesis of the game.

- For every t 6=t0 there is a unique t′ such that t ′St.

- For every t and t ′ in T, if tS t ′ then l(t ′)=l(t)+1

- Given a play π in D(ϕ) such that pπ(M ′)=pπ(M)+1 and t, t ′

respectively labelled with M and M ′, then tS t ′.

Many metalogical results concerning dialogical games are obtained by

considering them by leaving the level of rules and plays and moving to

the level of strategies. Among these results, significant ones are given

in terms of the existence of winning strategies for a player. We now

define these notions and give examples of results.
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A strategy for Player X in D(ϕ) is a function which assigns an X move

M to every non terminal play π with a Y move as last member such

that extending π with M results in a play. An X strategy is winning if

playing according to it leads to X’s victory no matter how Y plays.

A strategy can be considered from the viewpoint of extensive forms:

the extensive form of an X strategy σ in D(ϕ) is the tree-fragment

Eϕ,σ,=(Tσ, lσ, Sσ) of Eϕ such that:

i) The root of Eϕ,σ is the root of Eϕ.

ii) Given a node t in Eϕ labelled with an X move, we have that tSσ t ′

whenever tS t ′.

iii) Given a node t in Eϕ labelled with a Y move and with at least one

t ′ such that tS t ′, then there is a unique σ(t) in Tσ where tSσσ(t)
and σ(t) is labelled with the X move prescribed by σ.

Here are some examples of results which pertain to the level of strate-

gies.69

• Winning P strategies and leaves. Let w be a winning P strategy in

D(ϕ). Then every leaf in Eϕ,w is labelled with a P signed atomic
sentence.

• Determinacy. There is a winning X strategy in D(ϕ) if and only if
there is no winning Y strategy in D(ϕ).

• Soundness and Completeness of Tableaux. Consider first-order
tableau and first-order dialogical games. There is a tableau proof
for ϕ if and only if there is a winning P strategy in D(ϕ).

By soundness and completeness of the tableau method with re-

spect to model-theoretical semantics, it follows that existence of

a winning P strategy coincides with validity: There is a winning P

strategy in D(ϕ) if and only if ϕ is valid.

Examples of extensive forms.

Extensive forms of dialogical games and of strategies are infinitely gen-

erated trees (trees with infinitely many branches). Thus it is not pos-

sible to actually write them down. But an illustration remains helpful,
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so we add Figures 1 and 2 below.

Figure 1 partially represents the extensive form of the dialogical game

for the formula ∀x(Qx→Qx). Every play in this game is represented

as a branch in the extensive form: we have given an example with

the leftmost branch which represents one of the simplest and shortest

plays in the game. The root of the extensive form is labelled with the

thesis. After that, the Opponent has infinitely many possible choices

for her repetition rank: this is represented by the root having infinitely

many immediate successors in the extensive form. The same goes for

the Proponent’s repetition rank, and every time a player is to choose

an individual constant.

Figure 2 partially represents the extensive form of a strategy for the

Proponent in this game. It is a fragment of the tree of Figure 1 where

each node labelled with an O move has at most one successor. We do

not keep track of all the possible choices for P any more: every time the

Proponent has a choice in the game, the strategy selects exactly one of

the possible moves. But since all the possible ways for the Opponent to

play must be taken into account by a strategy, the other ramifications

are kept. In our example, the strategy prescribes to choose the same

repetition rank as the Opponent. Of course there are infinitely many

other strategies available for P.
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B. APPENDIX 2: DEFINITIONAL EQUALITY AND THE

EQUALITY-PREDICATE

B.1. Definitional Equality
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B.2. The Equality-Predicate
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supported by the Maison Européenne des Sciences de l’ Homme et de la Société - USR

3185. It is based on the paper the “Dialogical Turn”, to appear in Dialogische Logik in

Mittelstrass, J. (ed.), Dialogische Logik, Münster: Mentis, 2014. We thank herewith J.

Mittelstrass for allowing us to make use of content of that paper for the present one.
2Reprinted in Lorenz (2010a).
3According to the paper, such rules of the Topics established how to challenge a uni-

versal quantifier by “building a counterexample” and how to defend it. Moreover, these

rules for the quantified expressions were formulated into a frame that delivered what we

call nowadays the play level, while the syllogistic should link the play level with the level
of strategies, by means of which validity is defined. Moreover, it seems that the frame in-

cluded two main rules that have a crucial role in contemporary dialogical logic, namely:

the so-called formal rule, that makes the winning of a play independent of the mean-

ing of its constitutive elementary sentences, and the non-delaying rule, that takes into

consideration the real-life constraints, by imposing a fixed length on dialectical games.
4In gnoseology the main notion was the one of judgement rather than that of proposi-

tion. This represented the basis of the Kantian approach to logic, which seemed to be in

conflict with the post-Fregean approach where only relations between propositions are

at stake and where the epistemic aspect is seen as outside of or independent from logic.

Cf. Sundholm (1998, 2009).
5Cf. Rahman et. al (2012, pp. vii-ix).
6Lorenzen (1955).
7Prawitz (1979). For recent discussions related to the topic of harmony, see Read

(2008, 2010).
8Cf. Schröder-Heister (2008).
9The main original papers are collected in Lorenzen & Lorenz (1978). For an histori-

cal overview of the transition from operative logic to dialogical logic see Lorenz (2001).

For a presentation about the initial role of the framework as a foundation for intuitionis-

tic logic, see Felscher (1986). Other papers have been collected more recently in Lorenz

(2010a,b).
10Hintikka (1962, 1973, 1996a); Hintikka & Sandu (1997). See also Hintikka (1999)

and in particular Hintikka et al. (1999). Shahid Rahman and Tero Tulenheimo (2009)

studied the relation between dialogical logic and GTS.
11van Benthem (1996, 2001b, 2011).
12van Benthem (2001a).
13See also: Blass (1992); Abramsky & Mellies (1999); Girard (1999); Lecomte & Qua-

trini (2010, 2011); Lecomte (2011); Lecomte & Tronçon (2011).
14A detailed account of recent developments since, say, Rahman (1993), can be found

in Rahman & Keiff (2004) and Keiff (2009). For the underlying metalogic see Cler-

bout (2013a). For a textbook presentation: Redmond & Fontaine (2011) and Rückert

(2011a). For the key role of dialogic in regaining the link between dialectics and logic,

see Rahman et al. (2010). Keiff (2004a,b) and Rahman (2009) study Modal Dialogical

Logic. Fiutek et al. (2010) study the dialogical approach to belief revision. Clerbout et al.

(2011) studied Jain Logic in the dialogical framework. Popek (2011) develops a dialog-

www.thebalticyearbook.org

Constructive Type Theory 66

ical reconstruction of medieval obligationes. For other books see Redmond (2010)—on

fiction and dialogic; Fontaine (2013)—on intentionality, fiction and dialogues; and Mag-

nier (2013)—on dynamic epistemic logic (van Ditmarsch et al. 2007) and legal reasoning

in a dialogical framework.
15Cf. Kamlah & Lorenzen (1972, 1984) and Lorenzen & Schwemmer (1973).
16Cf. Robinson’s preface to his translation of Logische Propädeutik (1984).
17Lorenzen (1973) Lorenzen & Schwemmer (1973, p.24).
18Lorenz (1970).
19Lorenz (2008).
20See for example Sundholm (2009).
21Doch auch sie [die Wissenschaft] kann nicht vermeiden, dass ihr die Dinge nicht

überall von sich her als verschieden anbieten, dass sie vielmehr auf wichtigen Gebieten

(z.B. in der Sozial- oder in der Geschichtswissenschaft) ihrerseits entscheiden muss, was

sie als gleichartig und sie als verschiedenartig ansehen und demgemäß ansprechen will.

[...]

Die Welt besteht, wie schon gesagt, nicht aus Gegenständen (aus “Dingen an sich”) die

erst nachträglich durch den Menschen benannt würden...

[...]

In unserer sprachlich schon immer erschlossenen Welt erfassen wir das Einzelding auch

als ein solches in der Regel zugleich schon als Exemplar von .... Ferner, wenn wir sagen

“dies ist ein Fagott”, so meinen wir “dieses Instrument ist ein Fagott” ... oder wenn wir

sagen “dies ist eine Amsel”, so setzen wir voraus, dass der Gesprächspartner schon weiß,

“was für ein Gegenstand” gemeint ist, dass von “Vögeln” die Rede ist.
22The use of the terminology predicator, introduced by Carnap (1947, p.6), instead of

predicate should avoid the confusion with the grammatical notion.
23Cf. Poincaré (1902, 1906a,b) and Detlefsen (1992).
24It is interesting that the Erlangen School already mentioned cases of vagueness as

arising because of the difficulty of setting fixed boundaries (Kamlah & Lorenzen 1972,

pp. 46-49).
25The point of the material-analytic truths is that they establish the link between a

conceptual structure and the logical reasoning based on it.
26The quote is a translation by S. Rahman of the following original difficult text:

Auch Metaaussagen, so können wir zusammenfassen sind auf das Verständnis von Aussagen,
[...] angewiesen, und können dieses Verständnis nicht sinnvoll zu ihrem Gegenstand machen.
Die These, dass eine Eigenschaft eines Aussagesatzes stets intern sein muss, besagts daher
nichts anderes, als die Artikulation der Einsicht, dass in Aussagen über einen Aussagesatz
selbst nicht mehr der Ausdruck einer sinnvollen Aussage ist, nicht er wird behauptet, sondern
etwas über ihn.
Wenn also die originale Behauptung, die Aussage der Grundstufe nicht ausser Kraft gesetzt
werden soll, darf sie nicht zum Gegenstand einer Metaaussage gemacht werden, [...].

27The quote is a translation by S. Rahman of the following original difficult text:

Diente ursprünglich die mit der Abbildtheorie entworfene Semantik dazu, die Regeln der
‘logischen Syntax’, also die logische Form sprachlicher Ausdrücke, eindeutug zu bestimmen
und damit zu rechtfertigen [...]–, so soll jetzt der Sprachgebrauch selbst, ohne Vermittlung
theoretischer Konstruktionen, allein auf dem Wege über die ‘Sprachspiele’, zur Einführung
der Rede von ‘Bedeutungen’ hinreichen und die syntaktischen Regeln zur Verwendung ge-
brauchsprachlicher Ausdrücke (Oberflächengrammatik) mit semantischen, das Verständnis
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dieser Ausdrücke darstellenden Regeln (Tiefengrammatik), ergänzen.
28The latter is notably exemplified by the difference between classical and intuitionistic

dialogue rules—in this case the particle rules remain the same and certain structural

rules are varied (see appendix).
29For a discussion on analyticity in the context of constructive type theory see Primiero

(2008).
30This is also linked with the middle position between universalists and anti-universal-

ists mentioned above. A position that might contest the opposition between indoor- and

outdoor-games defended by Hintikka (1973) (see Section 3.1 below).
31Cf. Nordström et al. (1990); Granström (2011).
32For a thorough discussion see Granström (2011, pp. 54-76).
33Cf. Kamlah & Lorenzen (1984, p. 37).
34Martin-Löf used the sign “/∈” in order to indicate that something, say a, is of type, say,

B. He even suggests understanding it as the copula ‘is’, also Nordström et al. (1990) make

use of this notation while other authors such as Ranta (1994) use the colon. Granström

(2011) distinguishes the colon from the epsilon, where the first applies to non-canonical

elements and the latter to canonical ones. We will use the colon.
35This in fact has been suggested to the authors in a personal email by Granström.
36One other strategy would be to differentiate between what Martin-Löf (19841984,

p. 11-13) calls categories and sets, the former do not require exhaustive definitions of

their objects and can be thought of as capturing the idea behind properties of individuals.

Accordingly, we could either reconstruct a kind as an exhaustive formulation of a type

(involving the distinction between paradigmatic and non paradigmatic examples)—that

corresponds to the constructive definition of a set—or we could reconstruct a kind as

a non-exhaustive formulation of a type – corresponding to a category. However, under-

standing properties of individuals as categories seems to give up the constructivist project

of an Orthosprache. Note that, as pointed out by Martin-Löf (1984, p.12), one can quan-

tify over sets but not over categories. Martin-Löf also remarks that one of the problems

of Russell’s type-theory is confusing both. In fact Russell’s ramified types correspond to

sets while simple types correspond to categories.
37Cf. Granström (2011, pp. 111-112).
38Cf. Ranta (1994, p. 21), Nordström et. al (1990, chapter 3.3), Primiero (2008, pp.

47-55) and Granström (2011, pp. 77-102).
39Cf. Siegwart (1993).
40Cf. Ranta (1994, pp. 145-47).
41Cf. Primiero (2008, pp. 155-163).
42Ranta (1994, p. 146) points out that in a series of lectures Per Martin-Löf showed

how the growth of knowledge in experiments can be understood in this way: an un-

known quantity is assigned a value, which may depend on other unknown quantities.
43For a through discussion of the analytic-synthetic distinction in the frame of CTT see

Primiero (2008).
44Cf. Rahman (2012).
45That player can be called Player 1, Myself or Proponent.
46Such a move could be written as ?F∨1 : formation-request.
47See a presentation of equality rules in Appendix 2.
48It is an application of the original rule from CTT given in Ranta (1994, p. 30).
49Tulenheimo (2011, p. 111) calls this position the anti-realist anti-universalist posi-
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tion.
50The example comes from Ranta (1994, p. 31).
51This can be done because O has chosen 2 for her repetition rank.
52See Appendix 1.
53See for example Blass (1992).
54More precisely, conjunction and the existential quantifier are two particular cases

of the Σ operator (disjoint union of sets), whereas material implication and universal

quantifier are two particular cases of the Π operator (indexed product on sets). See for

example Ranta (1994), Chapter 2.
55Still, if we are playing with classical structural rules, there is a slight difference be-

tween material implication and universal quantification that we take from Ranta (1994,

Table 2.3), namely that in the second case p2 always depends on p1.
56As pointed out in Martin-Löf (1984), subset separation is another case of the Σ

operator. See in particular p. 53:

“Let A be a set and B(x) a proposition for x ε A. We want to define the set of all a ε A

such that B(a) holds (which is usually written { x ε A : B(x)}). To have an element a ε

A such that B(a) holds means to have an element a ε A together with a proof of B(a),

namely an element b ε B(a). So the elements of the set of all elements of A satisfying

B(x) are pairs (a; b) with b ε B(a), i.e. elements of (Σx ε A)B(x). Then the Σ-rules play

the role of the comprehension axiom (or the separation principle in ZF).”
57The link between subset-separation and existentials provides an insight in the much

discussed understanding of the comprehension principle of the Erlanger Constructivists,

who proposed to develop a constructivist abstraction process from predicator rules to

universal quantification — see Lorenzen (1962), Lorenzen & Schwemmer (1973, pp.

194-202) and Siegwart (1993). Martin-Löf’s approach delivers the right keys: a) Instead

of predicator transitions, the conjugation between a propositional function and the cor-

responding set is necessary b) the resulting principle has an existential not a universal

form.
58See Keiff (2007).
59The reader may check that P has a way to win no matter how the Opponent chooses

to react to move 4. The hardest one is probably when O chooses to answer directly the

challenge. In this case the trick for P is to choose the correct order in his moves and to

use carefully the substitution rules given in rule SR4.2.
60See Thompson (1991), Chapter 4.
61See Thompson (1991), Section 4.5.4 for an example and Section 11 for a discussion.

62The procedure is inspired by the presentation of strategic games in Rahman & Keiff

(2004), Section 2.4.
63Of soundness and completeness of the tableau method with respect to dialogical

games.
64As should be obvious form the context, ‘⌢’ is a concatenation operator.
65See Rahman et al. (2009); Rahman (2012).
66We use π∗N to denote the sequence obtained by adding move N to the play π.
67This has been pointed out by Helge Rückert (2011b) at the workshop Proofs and

Dialogues, Tübingen, Wilehm-Schickard Institut für Informatik. See also Rückert (2001)

for more discussion on the formal rule.
68Although Marion & Rückert (forth) suggest that the use of the dialogical formal rule
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is already present in Aristotle—and perhaps even in Plato—, it seems to us that it is in

fact the modified one we formulated in Section 3.2 for the material-analytic dialogues.
69These results are proven, together with others, in Clerbout (2013).
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