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GAMES AND LOGIC

ABSTRACT: The idea behind these games is to obtain an alter-
native characterization of logical notions cherished by logicians
such as truth in a model, or provability (in a formal system). We
offer a quick survey of Hintikka’s evaluation games, which offer
an alternative notion of truth in a model for first-order langauges.
These are win-lose, extensive games of perfect information. We
then consider a variation of these games, IF games, which are
win-lose extensive games of imperfect information. Both games
presuppose that the meaning of the basic vocabulary of the lan-
guage is given. To give an account of the linguistic conventions
which settle the meaning of the basic vocabulary, we consider
signaling games, inspired by Lewis’ work. We close with IF prob-
abilistic games, a strategic variant of IF games which combines
semantical games with von Neumann’s minimax theorem.’

1. EVALUATION GAMES: GAME-THEORETICAL SEMANTICS

Evaluation games for first-order logic have arisen from the work of
Henkin in the 50’s and the work of Hintikka in the 70’. For Hintikka
the purpose is to give a game-theoretical characterization of truth and
falsity for first-order sentences. The driving force here are the standard
quantifiers, the universal “for every x”, and the existential “for some
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x”. Their scopal dependencies and independencies in a first-order sen-
tence are recast in terms of the strategic interaction of two players in
a game of perfect information. For instance, the first-order sentence
Vx3yB(x,y) is analyzed in terms of a game between the universal
player (Abelard) and the existential player (Eloise). They choose indi-
viduals from the underlying universe of discourse to be the values of
the variables x and y, respectively. The order of the choices and the
information sets of the players are indicated by the syntax of the sen-
tence. Relative to the universe, the sentence is true if and only if there
is a method (a strategy) for Eloise that produces a choice b for every
choice a by Abelard so that B(a, b) holds. And the sentence is false if
there is a way for Abelard to choose an individual a so that for every
possible choice b by Eloise, B(a, b) does not hold.

When the dependencies and independencies between quantifiers
become more complex, the interaction between the two players be-
comes less trivial. For instance, consider the game associated with the
first-order sentence

Va3yVx'3y'Qlx, x’, v, ¥").

A strategy for Eloise will have to give her, first, a choice b for every in-
dividual a chosen by her opponent, and, second, another choice b’ for
each individual a and a’, chosen by Abelard. But for the second choice,
the strategy may use information encoded in her first choice for b. The
game-theoretical view connects in a nice way the dependencies and
independencies of quantifiers with the choice functions which codify
the strategies of the two players in semantical games. This view of
quantification is at “the heart of how classical logicians in the twenties
viewed the nature of quantification." (Goldfarb 1979).

1.1. Semantical games: extensive games of perfect information

Let us make the above informal notions more precise. A semantical
game is played by two players, 3 (Eloise) and V (Abelard). They con-
sider a first-order formula ¢ in negation normal form, model M, which
interprets the vocabulary of ¢, and an assignment s in M which in-
cludes the free variables of ¢. 3 tries to show that ¢ is true in M
(relative to the assignment s), and V tries to show that ¢ is false in M.
The game starts from the initial position (¢,s), and after each move
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the players reach a position (1, ), where 4 is a subformula of ¢ and r
is an assignment which eventually extends s. Here are the rules of the
game:

(1) (¢,r), where 1 is a literal. The game stops. If M, r |= ) then
3 wins. Otherwise V wins. Notice that the notion M, r |= 1 has
been defined.

(2) (3p v’,r): 3 chooses 6 €{1,3)’} and players move to (0, ).
(3) (3 AY’,1): V chooses 6 €{1p,2)’} and players move to (0,r).
(4) (Ixy,r): 3 chooses a € M and players move to (¢, r(x/a)).
(5) (Vxy,r):V chooses a € M and players move to (¢, r(x/a)).

This game, which we denote by G(M],s, ¢ ), may be easily reformulated
as a finite two-player, win-lose extensive game with perfect informa-
tion, G(M, s, 9) = (N,H, Z, P,(u,)pen), Where

N is the set of players, N = {3,V},

- H is the set of histories of the game, with one initial root, (s, )

Z is the set of maximal histories (plays),

- P:H—Z — N is the player function which tells whose player’s turn
is to move, and finally

- u,: Z — {0, 1} is the payoff function for player p such that for each
he Z :u,(h) =0 oru,(h) =1 (but not both).

The last condition explicitates the win-lose property of the game. When
u,(h) = 1 we say that p wins the play h; and when u,(h) = 0, we say
that p looses h.

When making choices as prescribed by the rules of the game, each
player follows a (deterministic) strategy which gives him or her the
next move to make. A strategy for player p in the game G(M,s, ¢)
is a function o, defined on all (non-maximal) histories h where p is
to move; o,(h) is the next position to be reached in the game. The
strategy o, is winning if p wins every maximal history (play) where he

or she follows Op-
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Game-theoretical truth, M,s |= 5T, is defined as the existence
of a winning strategy for Eloise; and game-theoretical falsity, M, s |=
crs_  is defined as the existence of a winning strategy for Abelard.

The principle of determinacy, known as Zermelo Theorem (1913),
ensures us that the principle of bivalence holds: Every win-lose game
with finite horizon and one initial root is determinate.

1.2. Game-theoretical negation

We relax the assumption that negation occurs only in front of atomic
formulas. We thus need a game-rule for negation. It is given in terms
of the players “switching roles”. We reformulate the rules of the game
to make place for roles, Verifier and Falsifier:

e At the beginning of the game 3 is the Verifier (V) and V is the
Falsifier (F)

The rules of the game G(M,s, ) are now restated as:

o (P(ty,...,t,),1): The game stops. If r satisfies P(t, ..., t,), then
V wins. Otherwise F wins.

e (—,r): Players move to (1, r) with roles inversed.

e (¢p v’ ,r): V chooses 0 €{),3)’} and players move to (0,r).
o (4p A/, 1) : F chooses 0 € {1,v’} and players move to (0,r).
e (dxp,r): V chooses a € M and players move to (¢, r(x/a)).
e (Vx,r): F chooses a € M and players move to (Y, r(x/a)).

Obviously we are still inside the class of finite, 2-player, win-lose exten-
sive games of perfect information. The notion of strategy for a player
p is defined exactly as before, as are game-theoretical truth and falsity.
Zermelo’s theorem still applies. The switching role interpretation of
negation makes possible the following fact for every first-order formula
¢, model M and assignment s in M whose domain contains Free(y):

M,s = grs g iff M,sEgrs @
M,s Egrs e iff M,s g™ o.
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Using Zermelo’s theorem we can show that our game game-theoretical
negation is contradictory negation: M,s = grstp  iff M,sE o .

It can also be shown that we recover Tarski type satisfaction rela-
tion:

Theorem. (Hodges 1997; Mann et al. 2011) Let ¢ be a first-order for-
mula, M a suitable model for the language of ¢ and s an assign-
ment in M whose domain includes the free variables of ¢. Then
the following holds:

1. M,S '= GTS+_|(10 lffM,S# GTS+(10
M,sE grsT (@ AY)iff M, s E st and M, s F sty
M,sE grs (@ V) iff M,s E grs™p or M,s F grs ™y

M,s E grstaxp iff M,s(x/a) E ¢151 ¢ for some a € M

o » Wb

M,s E grstVxg iff M,s(x/a) E g5t for every a € M.

Although the game-theoretical interpretation of first-order logic cap-
tures the Tarskian interpretation, we prefer it to the latter for it shows
how many equivalences of first-order logic may be interpreted as recipees
for converting one winning strategy in one game into a winning strat-
egy in another game in the underlying model. (For further discussions
on this point we refer the reader to Mann et al. (2011) and van Ben-
them (forth.)). Let us illustrate this for the principle of distributivity.

Example Recall the principle of distributivity for FOL:
eV AO)=(pVYP)A(p V)

Suppose Eloise has a winning strategy o in the game G(M,s, ¢ V (3 A
0)). Suppose the first choice of Eloise according to o is . Define a
winning strategy T for Eloise in G(M,s, (¢ VYY) A (¢ V 0)) as follows.
If Abelard chooses ¢ V1), then let T pick up ¢ and then mimic o for
the rest of the game in . If Abelard chooses ¢ V 0, then let T pick up
¢ and mimic o for the rest of the game in ¢.

Suppose now that the first choice of Eloise according to o is (1) A ).
Then o must be a winning strategy in both ¢) and 6. Define a winning
strategy 7 for Eloise in G(M,s, (¢ Vi) A(p Vv 08)) as follows. If Abelard

www.thebalticyearbook.org
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chooses ¢ V), then let T pick up ¢y and mimic o for the rest of the
game in 1). If Abelard chooses ¢ V 8, then let T pick up 6 and mimic o
for the rest of the game in 6. The converse is shown in a similar way.

2. EVALUATION GAMES: INDEPENDENCE-FRIENDLY LOGIC

Let us return to our earlier game associated with the first-order sen-
tence

Va3yVx'3y'Qlx, x’, v, ¥").

Suppose that instead of having y’ depending on both x and x’, we
want y’ to depend only on x’ (and keep the other dependencies intact).
Game-theoretically this will correspond to the idea that in her strate-
gies, Eloise will not be allowed to use information about the choice for
x but only information about the choice for x” and information about
her own earlier choice for y. To re-establish the correspondence be-
tween syntax and the information sets of the players in the underlying
game, Hintikka & Sandu (1989) introduced a new notation

Vx3dyVx'(3y’ /{x, yDQ(x,x", y,y")

Intuitively: when choosing a value for y’ Eloise does not know the
choice of her opponent for x nor her own earlier choice for y. The
phenomena of the players ignoring some of their own earlier choices
is known in the literature as imperfect recall. It makes the playability
of the games rather hard. An alternative interpretation is given by Bar-
wise (1979) (in the context of branching quantifiers). We think of the
players as forming teams, each occurrence of the universal quantifier or
conjunction being one player in Abelard’s team, and each occurrence
of the existential quantifier or disjunction being a player in Eloise’s
team. The interaction of the players in the same team gives rise to the
phenomenon of signaling. Here is one example (Janssen & Dechesne
2006). We show that the IF sentence

VaxoVxa(xg # x5V (3x;/{xe})xo = x;)

is a logical truth by showing that the team of Eloise, consisting of two
players, has a winning strategy on every model (set) M which has at
least two individuals:

Vol. 8: Games, Game Theory
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e Let Abelard choose a, and a, from M.

e If a, # a,, then the first player in Eloise team chooses Left.
Eloise’s team wins.

e If a) = a,, then the same player chooses Right and the second
player chooses a,. Eloise’s team wins again.

Notice that despite the second player in the team of Eloise not knowing
the choice of the first player in Abelard’s team, the first player knows it,
and signals it to her team mate: choosing Right is a way for her to say
“choose the same as the second player in Abelard’s team” (the second
player in Eloise’s team knows that choice).

2.1. Semantical games: extensive games of imperfect information

The syntax of IF logic is defined as in ordinary first-order logic, except
for the clauses for the quantifiers which have now the form (3x/W)yp
and (Vx/W)p where W is a finite set of variables. When W is the
empty set, we recover the standard quantifiers.

The notions of models, assignments and the satisfaction clauses for
atomic formulas are the same as for ordinary first-order languages.
The game-theoretical interpretation extends to the present case: the
assumption of the players’ information in finite 2-player, win-lose ex-
tensive games is now relaxed to imperfect information. When ¢
is an IF formula, M a model and s an assignment whose domain
includes the free variables of ¢, the rules of the semantical game
G(M,s, @) are identical with the six rules given earlier: in the last
two clauses (Ixp,r) and (Vxap,r) are replaced with ((Ix/W)y,r)
and ((Vx/W),r), respectively. The changes will affect only the in-
formation sets and thereby the strategies of the players. The imperfect
information comes in the form of the players’ restricted access to the
current assignment in the game. The slash “/” introduces an equiva-
lence relation on the set of histories in the extensive game which are
decision points for one and the same player. This equivalence relation
is determined in the following way.

Let W be a set of finite variables, s and s’ be two assignments in a
model M with the same domain which includes W. We say that that s

www.thebalticyearbook.org
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and s’ are W-equivalent, s & ', if for every variable x € dom(s) — W
we have s(x) = s'(x).

Every history h in G(M, s, ¢) induces an assignment s, in the model
M, which extends or modifies the initial assignment s. One can then
define two indistinguishable relations ~ 5 and ~ y on the set of non-
maximal histories of the game. For ~ 5 there are two cases:

e Itis Eloise’s turn to move corresponding to a disjunction v V)’ .
In the context of the extensive game, let h and h’ be two histories
in the game where such a move is supposed to happen. Then we
stipulate that

h~ ah/ ~ S h = Sp’-

e It is Eloise’s turn to move corresponding to (3x/W )ip. Then for
any two histories h, h’ where such a move is about to happen, we
stipulate:

h'\‘ah/ = Sy R Sy -

The relation ~ y is specified completely analogously.

The relations ~ 3 and ~ y specify exactly how much information
the players have at their disposal at a given decision point.

A strategy o, for player p in the semantical game G(M,s, ¢) is
defined exactly as in the games of perfect information, except for the
requirement of uniformity:

o for every h,h’
h~,h" = o,(h)=0o,{).
Truth and falsity of an IF formula in a model are defined exactly as
before, keeping in mind, of course, that strategies are now uniform.

2.2. Indeterminacy

Imperfect information introduces indeterminacy into the logic, as the
next example shows.

Example (MatchingPennies) This is a well known game played by two
players, who turn secretely a coin to Heads or Tails. The coins
are revealed simultaneously. The first player wins if the outcomes

Vol. 8: Games, Game Theory
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match; the second player wins if they differ. We can model this
game in IF logic by the sentence ¢, = Vx(Jy/{x}) x = y and
a two element model M = {a, b}. In the extensive game the
histories

ha = (((*pMP’ @), (X, (1))
hb = (((*pMP’ @), (X, b))

which represent the two possible choices for Abelard, are equiv-
alent for Floise, i.e., h, ~ 3h,. (Note that the corresponding as-
signments (x,a)}and (x, b) are trivially {x} —equivalent). Let o
be a strategy for Eloise. Given the uniformity requirement, Eloise
must choose the same value ¢ € {a, b} for y in both cases:

oth) = o) = (¥,0)

For this strategy to be winning, we must have a = b = ¢ which is
impossible. Let T be a strategy for Abelard such that 7 (¢ yp, &) =
(x,c). Then 7 is a winning strategy iff Abelard wins against any
possible move by Eloise, that is, Abelard must win both plays

(((‘pMPJ @)’ (X: C): (y; a))
(((PMPJ @)’ (X: C): (y; b))

For this to happen we must have: a # ¢ and b # ¢ which is im-
possible. Thus neither Eloise nor Abelard has a winning strategy
in the game.

e One can show in the same way that the Inverted Matching Pen-
nies sentence

omp =Vx@y/{xDx #y
is also indeterminate (neither true nor false on all models with
at least two elements).

2.3. Expressive power and playability of games

The fact that the patterns of dependencies and independencies be-
tween quantifiers in IF logic is greater than in ordinary first-order logic

www.thebalticyearbook.org
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allows us to define in the former concepts which are not definable in
the latter. Here are two examples.

A function f is an involution if f(f(x)) = x for all x in its domain.
We say that x is a fixed point for the function f if f(x) = x. A finite
structure has an even number of elements if and only if there is a way of
pairing its elements without leaving any element out, that is, if there
exists an involution without a fixed point. The property of a finite
structure to be even is expressed by the IF sentence ¢,,,,

VxVx' By /{x'D3y /{x, ¥}
[(x=x">y=y)IAN(y=x"—=y =x)Ay #x]

(For the details see Mann et al. (2011), example 4.15). It turns out
that the sentence ¢,,,, is true in a finite model (set) M if and only if
there is an involution without a fixed point.

For a second example we consider infinity. A set M is (Dedekind)
infinite if there is a function f which is an injection whose range is not
the entire universe. This property is expressed by the IF sentences ¢,

IwVx@y /{wh @/ {w, xPD(x =z Aw # y)

whose truth conditions on a model M amount to the existence of
two functions f and g and an individual ¢ such that for all x we have
g(f(x)) =xand f(x) #c.

Now we observe that if Eloise and Abelard are single players (and
not teams), in both examples Eloise lacks action recall, i.e., she does
not rememeber her own moves. She also lacks knowledge memory:
she forgets information she once knew (for instance, in the first game
she knows the value of x at her first move but she forgets it at her
second move.) The conjuction of action recall with knowledge mem-
ory is known in the literature as perfect recall. Thus in both examples
greater expressive power is achieved through imperfect recall. A nice
result by Sevenster (2006) (reproved in Mann et al. (2011), theorem
6.23) shows that if we want the games to be playable, that is, if we
require the players to have perfect recall, then the expressive power of
the relevant IF sentence does not exceed that of an ordinary first-order
sentence.

Vol. 8: Games, Game Theory
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3. SIGNALING GAMES

Van Benthem (2008) observes that evaluation games presuppose that
the denotations of the basic lexical items such as predicates and ob-
ject names have been settled. But there is still the legitimate question
of how to account for the linguistic conventions that settle the mean-
ings of these basic items. To this purpose signaling games have been
developed from the 60’s onward, stimulated by David Lewis’ work on
conventions. Lewis’ work led to deeper connections between logic and
game-theory explored by Parikh, Dekker & van Rooij, van Rooij, Jaeger
& van Rooij. (See e.g., Pietarinen (2007)).

Lewis (1969) defines a signaling problem as a situation which in-
volves a communicator (C) and an audience (A). C observes one of
several states m which he tries to communicate or “signal” to A, who
does not see m. After receiving the signal, A performs one of several
alternative actions, called responses. Every situation m has a corre-
sponding response b(m) that C and A agree is the best response to take
when m holds. Lewis argues that a word acquires its meaning in virtue
of its role in the solution of various signaling problems.

To model a Lewisian coordination problem we fix the following el-
ements:

e A set S of situations or states of affairs, a set X of signals, and a
set R of responses.

e A function b : S — R which maps each situation to its best re-
sponse.

e An encoding function f : S — X employed by C to choose a
signal for every situation

e A decoding function g : ¥ — R employed by A to decide which
action to perform in response to the signal it receives.

A signaling system is a pair (f, g) of encoding and decoding functions
such that go f =b.

The standard example of a signaling problem is that of a driver who
is trying to back into a parking space. She has an assistant who gets
out of the car and stands in a location where she can simultaneously
see how much space there is behind the car and be seen by the driver.

www.thebalticyearbook.org
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There are two states of affairs the assistant wishes to communicate,
i.e., whether or not there is enough space behind the car for the driver
to continue to back up. The assistant has two signals at her disposal:
she can stand palms facing in or palms facing out. The driver has two
possible responses: she can back up or she can stop.

There are two solutions to this signaling problem. The assistant can
stand palms facing in when there is space, and palms facing out when
there is no space, and vice versa. In the first case, the driver should
continue backing up when she sees the assistant stand palms facing in,
and stop backing up when the assistant stands palms facing out. In the
second case, the driver should stop when he sees the assistant stands
palms facing in, and back up when the assistant stands palms facing
out. Both systems work equally well in the sense that the composition
of the two communicating and responding strategies realize the best
response: the driver backs up when there is space, and he stops when
there is not.

We can model a Lewisian signaling system in IF logic by the sen-
tence ¢,

VaIz(3y /{xPDIS(x) = (Z(@)AR(Y) Ay = x}

and the model
M= (M,SM, =M RM)
where
M ={S1,.e0,Sps t1 ey b}
SM=RM = {s,,...,5,}
M ={t;, .., t,}

The symbolism is self-explanatory: S stands for the set of states, X for
the set of signals, and R for the set of responses. We prefered this sim-
pler version where the task of the Audience is to identify the message
(“y = x”) to the original version where the task of the Audience is to
perform the best action (“y = b(x)”). The modelization makes clear
the “cooperative” nature of the signaling game. In the state x that he
observes, the Communicator (C) represented by 3z sends a signal z to
the Audience represented by Jz. The latter tries to identify the state
x from which z was sent. Although the semantical game G(M, ¢ ;,)
is strictly speaking a win-lose game of imperfect information, the log-
ical form of the quantifier-free subformula of ¢, makes it clear that
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that existential team {3z,3y} wins if the two players manage to “co-
ordinate” in such a way that for every state x the respone y identifies
x. In the case considered by Lewis in which the number m of signals
equals the number n of states, there is a simple way for the two exis-
tential players to achieve successful coordination: The first existential
player uses the signal ¢; to signal the state s;; and the second existential
player decodes the signal t; back into the state s;. The pair of functions
h(s;) = t; and k(t;) = s; (the other values do not matter) constitue
a signaling system and encode the winning strategy of the existential
team {3z,3y}. We notice how the property of IF logic to model the
phenomenon of signaling, mentioned earlier, renders it adequate to
express Lewisian signaling systems.

4. MODEL CONSTRUCTION GAMES

This is the famous tableau method cast in the form of a game between
Builder and Critic. Unlike the case of evaluation games, we are not
trying to evaluate a sentence in a model which interprets its logical
vocabulary. Builder tries to build up a model where a given sentence
would be true. Critic on the other side tries to show that such a model
does not exist, and thereby the given sentence is a contradiction. These
games are interesting, for they connect the notion of satisfiability and
the notion of proof.

We fix a language L to which we add a countable set of C of con-
stants to form the extended language L’. The tableaux we have in mind
are the so-called block tableaux (Smullyan 1968, chapter XI) which are
essentially the tableaux of Hintikka (1955). The points in the tableaux
tree are finite sets of formulas and they become positions in the model
construction games. There are two such sets that are finite: the Yes set
(the set of true sentences) and the No set (the set of false sentences).
At each stage of play of the game a position is reached. Critic selects
a formula to be handled (either from the Yes or No set), after which
Builder responds according to the rules listed below. In presenting the
rules, I follow van Benthem (2008). However, my presentation of the
winning and losing conditions differs from his.

We take some of the rules to be automatic:

a) If -y is in some box, then it changes to ¢ in the other.

www.thebalticyearbook.org
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b) If ¢ A is in Yes, then it is replaced there by ¢ and .
c) If ¢ V4 is in No, then it is replaced there by ¢ and 1.

d) If 3x is in Yes, then it is replaced there by ¢(c), where c is a new
constant which has not appeared earlier (in any box)

e) If Vxy is in No, then it is replaced there withy(c), where c is a new
constant which has not appeared earlier (in any box)

Here are the rules that govern the choices of the players:
f) Disjunction in Yes and conjunction in No prompt a move by Builder

g) If dx ¢ occurs in No, then Critic chooses a constant c in the list of
constants, and replaces x¢ with p(c).

h) If Vx¢ occurs in Yes, then Critic chooses a constant c in the list of
constants, and replaces Vx ¢ with ¢(c).

In the block tableaux systems, what we can do at every stage depends
only on the end points of the tree. The same holds in the corresponding
games: what the players can do depends only on the plast position they
have reached. We add one further constraint:

e Critic cannot select the same formula twice and he cannot select
an atomic formula.

After a finite number of steps a play ends with a set of atomic formulas
in the Yes box and a set of atomic formula in the No box. Here are the
winning and loosing conventions for the play:

e The play is a win for Critic if an atomic formula occurs both in
the Yes and the No box. Otherwise it is a win for Builder.

Clearly the games described here are extensive, win-lose games of per-
fect information. The notion of strategy for either one of the players
and the notion of following a strategy remain standard.

Example Here is an example which illustrates the correlation between
a winning strategy for Builder and the existence of a model (val-
uation) for the initial formula. The initial position is

{[vr)algvp)] A=(gV(-pVvr)};@.
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Here is a winning strategy for Builder. After the automatic moves,
the players reach the position

{p,(svr),(qvp)};{gr}.

If Critic schedules (s V r), the players go to

{p,svr),(qvp)};{qr}

(the asterix indicates the formula scheduled by Critic) and if he
schedules (q V p)*, the players reach the position

{p.(svr),(qvp)}ifer}.

In the first case, let Builder choose s, and after Critic scheduling
(q Vv p), let her choose p. The play ends up with the position
{p,s};{q,r} which is a win for Builder. In the second case, let
Builder choose p, and after Critic scheduling (sVr), let her choose
s. The play ends up with the same position as in the previous case
which is a win for Builder. From this position we get a valuation
for the initial sentence, by assigning True to the symbols in Yes
and False to the symbols in No.

Example This game illustrates the correlation between a winning strat-
egy for Critic in the model construction game with ¢ in the
No box, and the logical validity of ¢. Let ¢ be 3x(AV B) —
(3xA vV IxB) that we rewrite as ~3dx(AV B) V (3xAvV IxB). We
now take the root of the game-tree to be &; {¢}. The idea is
that from the assumption that ¢ is false, a contradiction follows,
hence a winning strategy for Critic. An automatic move leads to

{A(c;) vV B(c;)};{3xA, 3xB}.

Let Critic schedule the formula in the Yes box. Now, if Builder

chooses A(c;), then let Critic schedule 3xA and then choose the

constant ¢;. Analogously, if Builder selects B(c;), then let Critic

schedule 3xB and then choose the constant c;. Notice Critic would
not have a winning strategy if instead of scheduling (A(c;) V

B(c;)) in the Yes box he would have schedulled any of the formu-

las 3xA, 3xB in the No box. It is only the first strategy of Critic

which compels Builder to reveal her winning strategy.
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These two examples show nicely the difference in the strategies of the
two players. Builder tries to maintain the consistency of the initial
formulas whereas Critic’s aim is to catch Builder in a contradiction.
Hence Critic will force his opponent to reveal her strategy and then
show it does not work.

4.1. Properties of model construction games

One can show (following methods analogous to the tableau methods)
that the following are equivalent for first-order logic:

1. The set of formulas {¢;, ..., P, "Y1, ..., Y, } is satisfiable.

2. Builder has a winning strategy in the construction game with which
starts with {¢ ¢, .., 0 } 5 {01, 0 P }-

Alternatively, the following two claims are equivalent for forst-order
logic:

3. The sentence (¢; A...A@,) — (P; V...V, ) is a logical truth (i.e.
it is provable).

4. Critic has a winning strategy in the construction game which starts
Wlth {SOI: eeey (pn} a {1/’1, ceey wm}

The direction from (1) to (2) gives an explicit correspondence
between models and winning strategies for Builder. In fact if
{@1ses @n, 1, ..., ™, } is satisfiable, starting from the root, in every
immediate extension there is an open branch. That is, the moves for
the conjunction and the universal quantifier do not close the branch.
As for the disjunction and the existential quantifier, they preserve the
satisfiability, so Builder is guaranteed to have a winning strategy.

The direction from (2) to (1) gives an explicit correspondence be-
tween winning strategy of Builder and models. Namely, if Builder has a
winning strategy, then in all the histories in which Builder follows it, no
contradiction appears. From the atomic formulas which appear in the
Yes and No boxes (not all of them need to be taken into account), a Hin-
tikka set is formed, from which a model for {¢;, ..., ¢, "Y1, ..., 7Y, }
can be built by well known methods.

The equivalence between (3) and (4) is also straightforward. A
winning strategy for the Critic allows him, for every possible move by

Vol. 8: Games, Game Theory
and Game Semantics


http://www.thebalticyearbook.org/

17 Gabriel Sandu

Builder, to reach a position which is a win for Critic. Notice, how-
ever, and this is one of the main differences with tableaus, that not all
branches of the game tree are closed, but only those where the Critic’s
winning strategy is followed. Critic’s winning strategies are explicitly
correlated with proofs. To keep things simple, suppose n = 0 and
m = 1. In the classical tableaus method one argues first that if 1; is
a first-order valid sentence, then there is a closed tableau starting with
@;{1;}. The tableau closes afer finitely many steps. An explanation
of this is given using Koning’s Lemma (each finitely branching infinite
tree has an infinite branch): a closed infinite tableau is impossible be-
cause if the tableau is closed then every branch of it must be finite,
hence the tableau must be finite. (See e.g. Smullyan 1968, p. 61.)
In the present case Koning’s Lemma is not needed: tableaux are finite,
hence a winning strategy for Critic is a finite objects. The connection
with proof comes quite naturally, and in the game-theoretical setting it
goes back to the work in dialogical logic of Lorenzen & Lorenz (1978)
(see also Rahman & Tulenheimo (2009)).

Now thinking about model construction games in extensive form,
one has to keep in mind that from a winning strategy for Builder a Hin-
tikka set (actually there may be more than one), and the corresponding
model are formed from the set of histories in which the strategy is fol-
lowed. And this set may be infinite, as in the following example.

Example We show that the sentence ¢; = IxVy—-R(x,y) is not a
logical consequence of the sentences p; = VxVyVz(R(x,y) A
R(y,2) — R(x,2)) and ¢, = Vx—R(x, x). The model construction
game starts with {¢, ¢,};{¢s}. Here is a sketch of a winning
strategy for Builder. If Critic schedules ¢ then he has to choose
a constant ¢; € C for x after which the play moves automatically
to {¢1,¢2,R(c;i,ci41)};@. Critic has now to schedule either ¢,
or ¢,. If the latter, Critic has to choose a constant c¢,, € C and
the play moves to {¢;,R(c;,¢iy1)}; {R(cpm, cn)}. Let us simplify
things, and suppose Critic chooses three constants, c,,c, and c,
in C as values for x, y and z. This takes the play to

{ﬁ(R(Cmy Cp) A R(Cp7 Cr)) V R(Cm5 Cr))iR(Ciﬁ Ci+1 )} 5 {R(Cmf Cm)}

We show that this is a winning position for Builder. There are
several cases. Case 1. m = p. Let Builder choose the left disjunct,
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which will take the game to
{R(Cb Ci+1 )} 5 {R(Cnv Cm): (R(Cn'u Cp) A R(Cp7 Cr))}

and then let her choose left, ending the play with

{R(Ci’ Cit1 )} 5 {R(Cm7 Cm)}

The play is a win for Builder. Case 2. m # p. We have two
subcases. Subcase 21. m = i. Let Builder choose left, ending in
the same position as in the previous case, and then choose right.
The play ends with

{R(Ci’ Cit1 )} 5 {R(cm’ cm)aR(cp: Cr)}

The play is a win for Builder, because i # p. Subcase 22. m # i.
We have two subcases. Subcase 221. i = p. Let Builder choose
left, and then left again, ending the play with

{R(cicir)}s {R(cm, ¢mn)> R(Cps cp)} .

The branch is open, so it is a win for Builder. Subcase 222. i # p.
Let Builder choose left and then right. The play ends with

{R(Ci’ Cit1 )} 5 {R(cm’ cm)aR(cp: Cr)}

This branch is also open. The other cases (when Critic schedules
the other formulas) are dealt with in a similar way. We now
form a Hintikka set H from the set of histories where the above
strategy is used. Notice that this strategy is followed in all the
branches labelled by

{(1019R(Ci’ Cit1 )} 5 {R(Cmf Cm)}

Let R(c;, ¢iy1) € H for every natural number i, and —R(c,,, ) €
H, for every natural number m. It remains to show that R(c;, ¢;;5)
appears in the branches where the strategy is used, for every i.
The winning strategy has to win against any scheduling choices
of Critic, also against him scheduling ¢, before ¢ (and ¢;). In
that case Critic will choose a constant c;, ; and the play will reach

{1, R(cirr>cir)} s {03}
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An automatic move will take the play to

{@1}s{psR(ci1,Ci1)} -

Now let Critic schedule ¢3. Then he will have to choose a con-
stant ¢; € C which will take the play to

{1} {¥y=R(ci, ), R(cit1, i)}

and then, after an automatic move to

{‘101,R(Ci: Ci+2)} 5 {R(Ci+17 Civ1 )}

Given that Builder did not make any move, his winning strategy
is also trivially followed in all these branches. Thus R(c;,c;;2) €
H.

We can relax the game and give the players more freedom on some of
the automatic moves. For instance, let us replace (d) and (e) with (d*)
and (e*) respectively:

d*) If dx¢ is in Yes, then let Builder choose a constant ¢ € C and
replace dx¢ by ¢(c).

e*) If Vx¢ is in No, then let Builder choose a constant ¢ € C and
replace Vx¢ by ¢p(c).

The relaxation makes the interaction of the players more dynamic.
Consider the following example (used by Coquand in a different con-
text) where a game is played with the logically valid formula ¢ :

AxVyR(x,y)V Vzaw-R(z,w).

Here is a winning strategy for Critic in the model construction game
which starts with &; {¢ } . After the automatic move which leads to

@; {3xVyR(x,y), Vz3w-R(z, w)}

let Critic schedule Yz3w—R(z,w), after which Builder has to choose a
constant ¢ € D:

@; {IxVyR(x,y),Iw—R(c,w)}.
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Let Critic schedule 3xVyR(x, y) and then choose the same constant ¢
for x. This will take the play to

@; {VyR(c,y),Iw-R(c,w)}.

Let Critic now schedule YyR(c,y). By (e*) Builder has to choose a
constant d € C (d # c) after which the players move to

@;{R(c,d),Iw—R(c,w)}.

Finally let Critic choose d for w. This strategy is winning. Notice once
again, how, by an appropriate scheduling of the formulas, Critic forced
his opponent to reveal her strategy.

5. PLAYABILITY OF GAMES: RECURSIVE STRATEGIES

There is a major difference between the two kinds of games analyzed
so far: in evaluation games the strategies of Eloiser correlate with the
(material) truth of a given sentence ¢, whereas in the model construc-
tion games the strategies of Critic correlate with proofs of ¢. Both are
grounds for asserting ¢ but the difference lies in their “epistemic ac-
cessibility”. A proof in a first-order formal system is an effective notion,
whereas truth is not. Hintikka (1996) makes a proposal to overcome
the difference: to make semantical games playable by restricting the
strategies of the two players to effective (recursive) ones:

The demand of playability might seem to imply that the
set of the initial verifier’s strategies must be restricted. For
it does not seem to make any sense to think of any ac-
tual player as following a nonconstructive (nonrecursive)
strategy. How can I possibly follow in practice such a strat-
egy when there is no effective way for me to find out (or
perhaps even know) in general what my next move will
be? [ ... JFor the basis of my argument was the require-
ment that the semantical games that are the foundations of
our semantics and logic must be playable by actual human
beings, at least in principle. This playability of our “lan-
guage games” is one of the most characteristic features of
the thought of both Wittgenstein and Dummett. (Hintikka
1996, pp. 214-215)
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In Boyer & Sandu (2012) this proposal was amended in two ways. The
requirement of the recursivity of strategy functions is well defined only
on the universe of natural numbers. But even then, this requirement
would be better served if we supplemented this restriction with another
one: that the atomic formulas which mark the end of semantical games
be decidable. All in all we propose to restrict semantical games to be
played only on recursive structures, i.e. structures where the relations
and function symbols of the arithmetical language are interpreted by
recursive relations and functions. Indeed, if our model is not recursive,
speaking of playability does not make much sense, since in that case,
even the truth of simple atomic formulas cannot be computed. (In fact,
the decidability of the atomic formulas was also an essential ingredient
in Dummett’s notion of truth.) So let us amend Hintikka’s initial pro-
posal and reduce truth to what we shall call “CGTS-truth” (computable
game-theoretical semantics truth):

o A first-order sentence ¢ is CGTS-true on a recursive model M,
M = cgrsp, exactly when there is a computable winning strategy
for Eloise in the semantical game played with ¢ on M. (When
@ is a formula, this definition is appropriately relativized to an
assignment.)

We shall consider also formal systems for arithmetic, like Peano Arith-
metic, PA. Since the standard model N of arithmetic is the only recur-
sive structure of PA (up to isomorphism), we consider only effective
winning strategies for Eloise in semantical games played on N.

We now hope to obtain a match, at least a partial one, between
two effective notions: CGTS-truth on one side and proof in formal
systems for arithmetic, say Peano Arithmetic (PA), on the other. In
other words, following Bonnay (2004) and Boyer & Sandu (2012), we
ask the following questions:

(1) Do proofs in PA yield CGTS-truth? That is, for an arbitrary for-
mula ¢ in elementary arithmetic, do we have

PA|_ (p = PA |: CGTS()O?
where T |= ¢ is defined by: for all recursive models , if for all

Y €T, M corsy, then M = 6150
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(2) Can the CGTS— truth of an arithmetical senntence be always
interpreted as given by a proof? That is, is there a sound and
effective proof procedure F ;¢ that is complete for arithmetical
CGTS— truth

PA= corsp < PAF cersp?

It is well known that the answers to both questions are negative. This
shows that Hintikka’s ameliorated proposal to to restrict the winning
strategies to computable ones on recursive models will not help to ob-
tain a positive result to any of the two questions. In Boyer & Sandu
(2012) we looked to new games in order to obtain a positive result to
(1). Let us say few words about this.

5.1. Games with backward moves

Coquand (1995); Krivine (2003); Bonnay (2004) define new games
in order to obtain a positive result to (1). Such a result cannot be
obtained as long as strategies in semantical games are formulated as
we did in the first section. The reason for this is simply that there
are not enough of them to correspond to proofs. To enlarge the set
of of verifying winning strategies, standard semantical games need to
be modified. One way to do so is to allow for backward moves. An-
other way is to enrich the set of classical connectives, as in Japaridze’s
Computational logic (see, e.g. Japaridze (2003)). We focus here on
the former. The main differences between standard semantical games
and games with backward moves is that in the latter, whenever it is her
turn to move, Eloise can return to any one of her ealier decision points
and remake her choice, or whenever the players reach a false atomic
formula, Eloise can prolong the game by returning to any of her ealier
decision points, and remake her choice (in both cases the play contin-
ues as in the stadard game.) The winning and loosing conditions are
now:

(c) Eloise wins a play if it is finite and it ends up with a true atomic
formula; otherwise Abelard wins.

Overlooking some important details, we give an example.
Example We consider the game played with

AmVx(x <m) Vv VmIx(x > m)
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on the universe of natural numbers N with their standard order-
ing. Here is a winning strategy for Eloise:

(1) Eloise chooses the right disjunct
(2) Abelard chooses m, € N as a value for m

(3) Eloise changes her mind and goes back to an earlier decision
point: she now chooses the left disjunct.

(4) Eloise chooses m, as a value for m
(5) Abelard chooses a value x, as a value for x
(6) If x, < m, then Eloise wins.

(7) If my < x,, then Eloise goes back to her initial position and where
she chose the left disjunct and decides now to continue the game
in the right disjunct choosing the value x, as a value for x.

In model construction games we mentioned the connection between
Critic’s winning strategies with proofs. By the appropriate scheduling
of tasks, Critic forces Builder to reveal her strategy and then catches
her in a contradiction. In the present case the same idea reappears
in connection with Eloise’s strategy: she forces Abelard to disclose his
strategy, and then, as the example shows, she wins independently of
whether the atomic formula x < m is true or false in the underly-
ing model. In both cases the winning strategies of Critic and Eloise
are independent of the underlying model. This is not the case with
Hintikka style evaluation games (GTS), where the winning strategy of
Eloise always depends on the underlying model, even in games like
G(M, ¢ V —¢) where ¢ V —p is a logical truth. We have here a distinc-
tion between “for every model M there is a winning strategy...” and
“there is a winning strategy such that for every model...” (Japaridze
2003).

Bonnay (2004) gives the following result:

If M is a recursive model, 7 is a proof of I I ¢ and recursively
winning strategies {f;} », for Eloise are given for each game G(M, ;)
with backwards moves, ¢; € T, then 7 recursively yields a recursively
winning strategy for Eloise in the game with backwards move G(M, ¢).
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This result establishes the connection between proofs and seman-
tical games we have been looking for. In the particular case in which
' = PA, a proof 7t of the sentence ¢ yields an effective winning strat-
egy for Eloise in the game G(M, ¢). In the particular case in which
I' = @, a proof of ¢ yields an effective strategy for Eloise in the game
with backward moves G(M, ¢).

And now few historical notes. Coquand (1995) has introduced
games with backward moves and reformulated Gentzen’s and Novikoff’s
“finitist” sense of an arithmetical proposition as a winning strategy for
the game associated with it. He also proved that classical proofs are ad-
missible in the sense that starting with winning strategies for premisses
a proof would effectively yield a winning strategy for the conclusion.
There is a similar link between classical proofs and winning strategies
in games with backwards moves in Hayashi (2007) and in Tait (2005).
Bonnay (2004) used Coquand’s games with backward moves to give
a “constructibly acceptable” version of Hintikka’s GTS. In this context
Krivine (2003 pp. 272-274) proved another important result, men-
tioned also in Bonnay (2004) and hinted at in Tait (2005): in the set-
ting of games with backward moves, Eloise has a winning strategy (on
the universe of natural numbers) if and only if she has a computable
winning strategy. Thus we see how allowing for more strategies in the
games, we get, as a bonus, also computable strategies which are more
in line with “playability of games”. The playability of games here is im-
plemented at the level of strategies, and not at the level of information
sets as in our earlier discussion of perfect recall.

6. RANDOMIZING STRATEGIES: STRATEGIC IF GAMES

The procedure of combining mixed strategies with IF games has been
suggested (in the context of the branching quantifiers) by Blass & Gure-
vich (1986) following a suggestion given by Ajtai. This procedure has
been studied in details for the first time in Sevenster (2006) and devel-
oped in Sevenster & Sandu (2010). What is distinctive about this pro-
cedure by comparison with semantical games and model construction
games is that the starting points are no longer logical notions charac-
terized in game-theoretical terms, but rather game-theoretical concepts
like Nash equilibrium that we try to capture in some logical language.
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We return to IF logic.

For ¢ and IF sentence and M a finite model, we convert a semanti-
cal IF game G(M, ¢) into a strategic IF game I'(M, ¢ ) = (S5, Sy, ug, uy)
where

e S5 is the set of all possible strategies of Eloise in G(M, ¢)
e Sy is the set of all possible strategies of Abelard in G(M, ¢)

e u5(o,T), the payoff of Eloise when she playes the strategy o
and Abelard plays the strategy 7, is computed in the following
way. The strategies o and T generate a maximal history h in the
extensive game G(M, ¢). If that history is a win for Eloise in
G(M, ), let uz(o, 7) be 1; otherwise let it be 0.

e uy(o,t) is defined analogously.

Obviously I'(M, ¢) is a finite, win-lose strategic game.

Let us fix a strategic I[F game I'(M, ¢) = (S3,Sy, ug, uy). A mixed
strategy v for player p € {3, V} is a probability distribution over S, that
is, a function v : S, — [0, 1] such that Zfeslv(’r) = 1. v is uniform
over S/ C S; if it assigns equal probability to all strategies in S;” and
zero probability to all the strategies in S; — S;. Given a mixed strategy
u for player 3 and a mixed strategy v for player V, the expected utility
for player p is given by:

Up(Uv) = Y oes, D res, MW (Dup(0, 7).

We can simulate a pure strategy o with a mixed strategy which
assigns to o probability 1. That is, when o € S; and v is a mixed
strategy for player V, we let

Up(0,v) = D ees,v(Dup(0,7)

Similarly if T € Sy and u is a mixed strategy for player 3, we let

Up(‘U,,T) = ZUESgM(O)up(G: T)'

Example Let us look at the strategic IF games I'(M, ¢,,5) and T'(M, ¢ p),
where M = {1,2,3,4}, @yp = Vx(Ty/{x})x = y and ppp =
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Vx@y/IxPx #y -
1 2 3 4 1 2 3 4

(1,0) | (0,1) | (0,1) | (0,1) (0,1) | (1,0) | (1,0) | (1,0)

(0,1) | (1,0) | (0,1) | (0,1) (1,0) | (0,1) | (1,0) | (1,0)

(0,1) | (1,0) | (1,0) | (0,1) (1,0) | (1,0) | (0,1) | (1,0)

Nl W| N+~
Nl N =

(0,1) | (0,1) | (0,1) | (1,0) (1,0) | (1,0) | (1,0) | (0,1)

6.1. Nash equilibrium semantics: some properties

Let (M, ) = (S5, Sy, u3, uy) be a strategic IF game. The pair Let (u, v)
is an equilibrium if the following two conditions hold:

- for every mixed strategy u’, of Eloise, Us(u,v) > Us(u’,v)
- for every mixed strategy v’, of Abelard, Uy (u,v) > Uy(u,v’).

A well known result in classical game theory, von Neumann’s Minimax
Theorem (Neumann 1928) tells us that

- every finite, constant sum, two-player game has an equilibrium in
mixed strategies

- every two such equilibria have the same expected utility.

These two results garantee that we can talk about the value of a strategic
IF game: it is the expected utility returned to player 3 by any equilib-
rium in the relevant strategic game. We can now define the value of the
IF sentence ¢ in the finite model M: it is the value of the strategic game
(M, ¢).

Mann et al. (2011) shows that this interpretation is a conservative
extension of the old game-theoretical semantics, in the following sense:

(i) M [= ¢ps " @ iff the value of ¢ on M is 1
(i) M |= gr5~ Y iff the value of ¢ on M is 0.

Let us return to our earlier examples I'(M, ¢,,p) and T'(M, ¢,p), where
M= {1,2,3,4}, pyp = Vx(Jy/{xPx = y and ppp = Vx(Iy/ {x}Px #
y. Let u and v be uniform probability distributions over {1,...,4}. We
may check that the pair (u,v) is an equilibrium in both games and that
the value of ¢, on M is 1/4 and that of ¢ is 3/4.
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We extend the object language to include identities of the form
NE(yp) =r. The corresponding semantic clause is:

e M E NE(p)=r if and only if the value of ¢ in M is r.

It follows from results in Mann et al. (2011), Chapter 7, that the
Nash equilibrium semantics satisfies the following principles of Weak
Lukasiewicz logic:

P1 NE(p V) =max(NE(p),NE(2)))
p2 NE(p AyY) =min(NE(y),NE(y))
P3 NE(~¢)=1—NE(y).

From these principle we can weakly derive Kolmogorov axioms of prob-
abilities:

Ax1 NE(p)=0

Ax2 NE(p)+NE(-p)=1

Ax3 NE(¢)+NE(y)=NE(p V)

Ax4 NE(p Ap)=0— NE(p)+NE(p)=NE(p V).

It is well known that there are some other conceptions of proba-
bility that verify Kolmogorov’s axioms: probabilities as statistical fre-
quencies, and probabilities as degrees of belief. The game-theoretical
approach seems to offer a new interpretation of Kolmogorov’s axioms:
as probabilities arising from the Nash equilibrium semantics. It intro-
duces new structure on the class of semantically indeterminate sen-
tences for a given model. The question of the extent to which this is
really a genuinely new interpretation of the axioms and the question of
its relationships to the other two interpretations are matters for future
research.

Notes
T am grateful to the Department of Logic of the Institute of Philosophy of the Academy

of Sciences of the Czech Republic which has provided excellent facilities for the comple-
tion of this article during the spring term 2013.
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