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MICHAEL BEANEY

University of York, United Kingdom

THE EARLY LIFE OF RUSSELL’S NOTION OF A
PROPOSITIONAL FUNCTION

ABSTRACT: In this paper I describe the birth of Russell’s notion

of a propositional function on 3 May 1902 (precise time of day

unknown) and its immediate context and implications. In particu-

lar, I consider its significance in relation to the development of his

views on analysis.

1. INTRODUCTION

One of the key texts in the development of analytic philosophy is the

book Russell published in 1903, The Principles of Mathematics. The no-

tion of a propositional function makes its first appearance in this book

and is central to Russell’s philosophy thereafter. In chapter 2 of Part

I, in which Russell explains the new symbolic logic that he had learnt

from Peano and extended, it is introduced as one of the three funda-

mental notions that Russell takes to characterize the class-calculus (cf.

1903, p. 19). A more detailed account is provided in chapter 7 of Part

I, which bears the title ‘Propositional Functions’. The index to the book

shows that there is talk of propositional functions elsewhere in the text,

and a reader may easily gain the impression that the notion is not only

fundamental to the book but also well integrated into the argument.

In fact, however, the notion of a propositional function is only in-

troduced at a very late stage in the composition of the Principles, just
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weeks before the whole manuscript was submitted to Cambridge Uni-

versity Press in late May 1902. The stage may have been set for its in-

troduction, but given the importance of the notion, the precise nature of

its appearance deserves elucidation. I offer an account of its emergence

in section 2. My interest in this is not merely antiquarian, however.

The evolution of Russell’s conception of a propositional function plays a

central role in the development of his thinking about analysis, and ex-

plaining this thinking is important not only in understanding Russell’s

philosophy in all its changes but also in appreciating the complex na-

ture of the practices of analysis in analytic philosophy today. I indicate

the significance of Russell’s notion of a propositional function in the de-

velopment of his views on analysis in section 3. First, though, in setting

the scene, I say a few words about the different forms of analysis to be

found in Russell’s work.

2. FORMS OF ANALYSIS IN RUSSELL’S WORK

From the time of his rebellion against British idealism, Russell saw anal-

ysis as central to his methodology. In the opening chapter of My Philo-

sophical Development, for example, he wrote:

Ever since I abandoned the philosophy of Kant and Hegel, I

have sought solutions of philosophical problems by means

of analysis, and I remain firmly persuaded, in spite of some

modern tendencies to the contrary, that only by analysing is

progress possible. (1959, p. 11)

It is far from clear from this, though, what Russell meant by ‘analy-

sis’, and different conceptions are reflected in both his practice and his

methodological remarks. In the secondary literature, it is all too read-

ily assumed that Russell had one particular method in mind, or that

there is one particular method that is exemplified in his practice. This

assumption is often made in arguing that there is unity and continu-

ity in Russell’s philosophy.1 In my view, however, we should see the

changes in Russell’s philosophy as reflecting corresponding changes in

his conception and practice of analysis. This is not to deny that there

is continuity, but I think it is important to appreciate the complexity of

Russell’s methodology.
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If a general characterization of analysis is possible, then it might

best be described as “a process of isolating or working back to what

is more fundamental by means of which something, initially taken as

given, can be explained or reconstructed”.2 But this is too general to

be of much use in exploring the variety and richness of the methods

and practices of nalysis to be found in the history of philosophy. A bet-

ter conceptual framework is provided by distinguishing three primary

modes of analysis, as I call them – the regressive, the decompositional,

and the interpretive (or transformative). Briefly stated, the regressive

mode involves working back to the principles, premises, causes, etc., by

means of which something can be derived or explained, the decompo-

sitional mode involves identifying the elements and structure of some-

thing, and the interpretive mode involves ‘translating’ something into

a particular framework. These modes may be realized and combined

in a variety of ways, in constituting specific conceptions or practices of

analysis. Where one mode is dominant in a given conception, we may

talk, for example, of the decompositional conception; but it should be

stressed that in actual practices of analysis, all three modes are typically

combined.3

The regressive mode originated in ancient Greek geometry, and has

formed the core of a common conception ever since. A classic statement

was given by Pappus in his Mathematical Collection around 300 AD: “In

analysis we suppose that which is sought to be already done, and we

inquire from what it results, and again what is the antecedent of the lat-

ter, until we on our backward way light upon something already known

and being first in order.”4 This conception was central in discussions of

Aristotelian methodology during the Renaissance, and also found ex-

pression in the Port-Royal Logic of the seventeenth century. We can see

it illustrated, too, in Frege’s and Russell’s logicist project – in seeking

to identify the fundamental logical axioms and definitions by means of

which to prove mathematical truths. The conception was articulated

by Russell himself in a paper he wrote in 1907 entitled ‘The Regressive

Method of Discovering the Premises of Mathematics’.5

Although the decompositional mode is also exhibited in ancient Greek

geometrical analysis, it rose to prominence during the early modern pe-

riod, inspired by Descartes’ work in analytic geometry. It achieved its

philosophically most significant form in the decompositional concep-
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tion of conceptual analysis developed by Leibniz and Kant. Central to

Leibniz’s philosophy was what can be called his containment principle:

“in every affirmative true proposition, necessary or contingent, univer-

sal or singular, the notion of the predicate is contained in some way in

that of the subject, praedicatum inest subjecto” (1973, p. 62). Analysis

was then seen as the process of decomposing the subject concept into

its constituent concepts until the containment of the relevant predicate

is explicit, thereby achieving a proof of the proposition. Although Kant

came to reject the generality of Leibniz’s view, he accepted that contain-

ment held the key to what he called ‘analytic’ truths. A true proposition

of the form ‘a is B’ is ‘analytic’, on Kant’s account, if and only if the

predicate B is contained in the subject a.6

The decompositional conception of analysis has dominated philoso-

phy in the modern period, from Descartes onwards. Although Kantian

(along with Hegelian) philosophy was rejected by Russell and Moore

in their early work, they retained the underlying conception of analy-

sis. Indeed, their rebellion against British idealism was grounded on

their endorsement of decompositional analysis as the primary method

of philosophy. This endorsement can be seen as one characteristic fea-

ture of the ‘analytic’ tradition that they helped found. But precisely

because decompositional analysis was not itself new, this is hardly suf-

ficient to explain what was ground-breaking about analytic philosophy.

On my view, it is the role played, instead, by interpretive or transfor-

mative analysis that is particularly distinctive of analytic philosophy, or

at least, of one central strand in analytic philosophy, and it is the in-

terpretive mode of analysis that came of age in early twentieth-century

philosophy.

Interpretive analysis was not new in analytic philosophy. On the

contrary, it is implicit in all forms of analysis. For in attempting to

analyze anything, we need first to interpret it in some way – drawing

a diagram, for example, or ‘translating’ an initial statement into the

privileged language of logic, mathematics or science – in order for the

resources of a relevant theory or conceptual framework to be brought

to bear. In Euclidean geometry, for example, a diagram is typically pro-

vided in order to see exactly what is to be demonstrated and to provide

the basis for adding the auxiliary lines that are needed in the required

construction or proof. In analytic geometry, geometrical problems are

Vol. 4: 200 Years of Analytical Philosophy
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first ‘translated’ into the language of arithmetic and algebra in order

to solve them more easily. Indeed, in the sixteenth and seventeenth

centuries, algebra was specifically called an ‘art of analysis’, and while

this phrase was used in deliberate allusion to the supposed secret art of

analysis of the ancients, it is also appropriate, as I see it, in light of the

role played by interpretive analysis.7 Descartes himself may have con-

ceived of analysis in decompositional terms, as illustrated, for example,

in his stressing how complex problems should be broken down into sim-

pler ones.8 But that does not mean that interpretive analysis played no

role in his practice. Indeed, the superior power of analytic geometry

as opposed to synthetic geometry – as Euclidean geometry then came

to be called by contrast – lies precisely in the translation of geometri-

cal problems into arithmetical and algebraic ones, allowing the richer

resources of arithmetic and algebra to be utilized.

When we come to analytic philosophy, the significance of interpre-

tive analysis is revealed most clearly in logical formalization. Just as

in analytic geometry the problems are translated into the language of

arithmetic and algebra to facilitate their solution, so too in analytic phi-

losophy – or at least, in that central strand originating in the work of

Frege and Russell – the statements seen as philosophically problematic

are translated into the language of logic to reveal their ‘real’ logical

form. If this analogy is right, then analytic philosophy is ‘analytic’ much

more in the sense that analytic geometry is analytic than in the crude

decompositional sense that many have taken ‘analysis’ to have.

Russell’s theory of descriptions has frequently been described as

a paradigm of philosophical analysis. On my view, though, it is a

paradigm of interpretive analysis rather than of decompositional analy-

sis – or more exactly, of the role that interpretive analysis plays as a pre-

requisite to decompositional analysis. For the key move here is translat-

ing or paraphrasing a problematic statement (in this case, a statement

in which there is apparent reference to something that does not exist)

into one which makes clearer what is meant, or what ontological com-

mitments are involved. As Russell recognized, it was the invention of

quantificational theory, which provided a far more powerful interpre-

tive system than anything that had hitherto been available, that made

such logical translation possible and that truly inaugurated the age of

analytic philosophy.

www.thebalticyearbook.org
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The theory of descriptions, however, did not appear until 1905, and

the story of Russell’s earlier work is indeed one in which decomposi-

tional analysis is dominant. What happens, though, is that Russell grad-

ually realizes the limitations of decompositional analysis and develops

ever more sophisticated analytic tools – such as logical formalization

and later logical construction – to supplement his use of decomposi-

tional analysis. It is this move that I want to illustrate in the present

paper by considering the early life of his notion of a propositional func-

tion. Russell never abandons his belief that decompositional analysis

lies at the core of his method, but his actual practice certainly shows

that more subtle conceptions gradually enter the picture.

On Russell’s early view, then, analysis is understood as the process

of breaking something down into its constituents – or at the intellectual

level, as the process of identifying the constituents of something. This

is reflected in the centrality that the whole-part relationship had in his

thinking during this period. As Russell wrote in his 1899/1900 draft of

the Principles, “The only kind of unity to which I can attach any precise

sense—apart from the unity of the absolutely simple—is that of a whole

composed of parts”.9

In his initial rebellion against British idealism, Russell adopted a

view of propositions as being both independent of the mind and quite

literally composed of their constituents. In adopting this view, Russell

was influenced by Moore, who, in his own early work, had declared

that “a proposition is nothing other than a complex concept . . . a syn-

thesis of concepts” (1899, p. 5). According to Moore, concepts are the

things out of which the world itself is formed, leading naturally to the

claim that “A thing becomes intelligible first when it is analysed into its

constituent concepts” (1899, p. 8). A decompositional conception of

analysis is clearly presupposed here.

The significance of this conception can be illustrated by taking the

case of relational propositions, which, as Russell recognized from the

very beginning, are fundamental in mathematics. Relational proposi-

tions are constituted, on Russell’s view, by the relations and relata they

contain. Consider the following example that Frege gives in §9 of his

Begriffsschrift of 1879:

(Lhc) Hydrogen is lighter than carbon dioxide.

According to Frege, this has the same ‘content’ as:

Vol. 4: 200 Years of Analytical Philosophy
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(Hch) Carbon dioxide is heavier than hydrogen.

We might agree with Frege that there is at least some sense in which

(Lhc) and (Hch) have the same ‘content’; certainly, they are equivalent

in the sense that if one is true, then the other is true, and vice versa. At

the time of the Principles, however, Russell regarded these as represent-

ing two different propositions, because while one proposition contains

the relation is lighter than, the other contains the converse relation is

heavier than, and these are different relations. What is driving his de-

parture from Frege (and perhaps our own intuitions about sameness of

content) here is the idea that a proposition is quite literally composed

of its constituents.10

A proposition, however, cannot be treated as simply a collection of

constituents. Consider the following:

(Lch) Carbon dioxide is lighter than hydrogen.

On Russell’s view, the propositions expressed by (Lhc) and (Lch) have

exactly the same constituents – the objects hydrogen and carbon dioxide

and the relation is lighter than. Yet they are clearly different proposi-

tions: one is true and the other is false. Russell took this to show that

something was therefore right in the Bradleian doctrine that (crude de-

compositional) analysis is falsification. In the case of propositions, the

whole is more than the sum of its parts, and breaking it down into its

constituents loses something essential. Nevertheless, he insisted on the

importance of analysis. In discussing the doctrine in the Principles, he

wrote:

In short, though analysis gives us the truth, and nothing but

the truth, yet it can never give us the whole truth. This is

the only sense in which the doctrine is to be accepted. In

any wider sense, it becomes merely a cloak for laziness, by

giving an excuse to those who dislike the labour of analy-

sis.11

The obvious answer to the objection that analysis is falsification,

however, is to argue that analysis must identify not only the constituents

of a proposition but also the way in which they are arranged, i.e., the

form of the proposition. Russell recognized that a distinction needed to

be drawn between two types of wholes, which he called ‘aggregates’,

www.thebalticyearbook.org
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which are simply the sum of their parts, and ‘unities’, which are more

than the sum of their parts (1903, ch. 16). But he did not immedi-

ately take this to suggest two notions of analysis, or a richer notion

that construes analysis as the identification of the form as well as the

constituents of a proposition. This is something that developed later,

and received its most explicit statement in the chapter on analysis and

synthesis in his 1913 ‘Theory of Judgement’ manuscript.12 Russell dis-

tinguishes here between ‘material’ and ‘formal’ analysis, both being re-

flected in his definition of ‘analysis’ (in the broadest decompositional

sense) as “the discovery of the constituents and the manner of combi-

nation of a given complex”.13

Understanding how form is involved here is an important element in

Russell’s struggle with the problem of the unity of the proposition.14 As

he recognized from the very beginning, a proposition is not just a col-

lection of constituents, but has an essential ‘unity’. Such a unity can be

seen as conferred by the way in which those constituents are arranged,

reflecting the form of the proposition. Introducing talk of ‘forms’ opens

up a whole new dimension to analysis: not just identifying the relevant

forms, as if that were a relatively straightforward matter, but elucidating

the many complex ways in which different kinds of things fit together.

As Russell thought through the implications of his new philosophical

views and concerns, in other words, there was an inevitable move away

from the crude decompositional conception of analysis that he initially

endorsed in his rebellion against British idealism.

The limitations of this conception are obvious when we consider

function-argument analysis, on which quantificational logic depends:

in general, the value of a function does not literally contain its argu-

ment(s) as part(s). Russell began to appreciate the power of function-

argument analysis after his meeting with Peano in 1900, and as he

learnt, developed and applied Peano’s logic, he was forced to rethink

his adherence to decompositional (whole-part) analysis. This is illus-

trated most strikingly in the evolution of his conception of a proposi-

tional function, which came to lie at the core of his philosophy. The

idea of a propositional function is introduced very early in the final text

of the Principles, but it did not emerge until relatively late in the actual

writing of the text, and Russell’s conception continued to evolve after

the completion of the Principles. I describe its emergence in the next

Vol. 4: 200 Years of Analytical Philosophy
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section, before indicating its implications and subsequent development

in section 3.

3. THE BIRTH OF THE NOTION OF A PROPOSITIONAL FUNCTION

We can begin here with the draft that Russell wrote some time between

August 1899 and June 1900, which is the first to appear under the title

‘The Principles of Mathematics’.15 Part I is called ‘Number’, beginning

with a chapter on ‘Collections’, and Part II is called ‘Whole and Part’,

beginning with a chapter on ‘The Meaning of Whole and Part’, where we

find the first draft of the remark quoted above about analysis not giving

us “the whole truth”.16 There is no mention of propositional functions,

which is not surprising, given that Russell had not yet met Peano. In the

months immediately following his meeting with Peano (from October to

December 1900), however, he redrafted Parts III to VI, which became

the corresponding Parts of the Principles, with only minor subsequent

revision. He did not return to Parts I and II until May and June 1901,

when Part I on ‘Number’ became Part II (as it is in the Principles), what

had been Part II was reworked into this new Part II, and a completely

fresh Part I was written.

This fresh version of Part I is significant because it represents Rus-

sell’s first attempt to explain the logical system he had learnt from Peano

and developed for his own purposes. Entitled ‘The Variable’, it gives

pride of place to what Russell saw as the central notion of logic, the ‘log-

ical variable’, understood as ranging over everything, and not just the

objects of mathematics (cf. 1901, p. 201). Even here, however, there

is still no talk of propositional functions. The closest Russell comes is in

the draft chapter on ‘Peano’s Symbolic Logic’. Russell writes:

. . . what Peano and mathematicians generally call one pro-

position containing a variable is really the disjunction or

conjunction (according to circumstances) of a certain class

of propositions defined by some constancy of form. . . . “x is

an a” stands for the variable conjunction of all true proposi-

tions in which terms are said to be a’s; and similar remarks

apply to any other proposition containing a variable. (1901,

p. 205)

‘x is an a’, where x is the variable, is what comes to be called a ‘propo-

www.thebalticyearbook.org
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sitional function’.

Russell goes on to note that ‘x is an a’ can be symbolized as ‘ f (x)’,

but he recognizes that there is a difficulty in regarding what is repre-

sented here as a (single) proposition:

. . . it must always be remembered that the appearance of

having one proposition f (x) satisfied by a number of values

of x is fallacious: the proposition f (x) is a conjunction of

just as many propositions as there are terms in the class of

terms such that f (x) is true. (1901, p. 206)

Russell senses the problem lurking here, but he does not deny that what

we have is a proposition: it is seen, though, not as a single proposition

but as a conjunction of propositions, i.e., a complex proposition. Com-

pare this with the corresponding passage in the Principles:17

. . . it must always be remembered that the appearance of

having one proposition f (x) satisfied by a number of values

of x is fallacious: f (x) is not a proposition at all, but a

propositional function. (1903, p. 29)

The confusions that may arise in regarding ‘x is an a’ as representing a

proposition are now removed: what we have is a propositional function.

We can date the emergence of the notion of a propositional function

in Russell’s work to the first week of May 1902. The notion is not re-

ferred to in the plan for a revised version of Part I that he drew up at

the very end of April 1902,18 yet the revision of that Part – in which the

notion finally appears – was completed by 13 May.19 So the idea clearly

came to Russell at some point during this period. In fact, we can be far

more precise than this. In the Principles, the notion is introduced at the

beginning of chapter 2 (p. 13), and identified as a fundamental notion

a few pages later (p. 19). The passage quoted above also comes from

this chapter, towards the end. Chapter 2 was written (almost certainly)

on 3 and 4 May.20 So this makes 3 May the most likely date of birth of

Russell’s notion of a propositional function.

If we look at the passage in which the notion of a propositional func-

tion is introduced, it is clear what motivated it. The passage occurs in

section 13 of the book, the third section of chapter 2, the chapter enti-

tled ‘Symbolic Logic’, where Russell explains the new logical system he

Vol. 4: 200 Years of Analytical Philosophy
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had learnt from Peano and had been developing and applying. Russell

is concerned in this section with the distinction between the calculus of

propositions and the calculus of classes, and sides with McColl in see-

ing the former as more fundamental.21 But he criticizes McColl for not

appreciating the distinction between “genuine propositions and such as

contain a real variable”, which leads McColl, according to Russell, “to

speak of propositions as sometimes true and sometimes false, which of

course is impossible with a genuine proposition” (1903, p. 12). Russell

goes on:

As the distinction involved is of very great importance, I

shall dwell on it before proceeding further. A proposition,

we may say, is anything that is true or that is false. An ex-

pression such as “x is a man” is therefore not a proposition,

for it is neither true nor false. If we give to x any constant

value whatever, the expression becomes a proposition: it is

thus as it were a schematic form standing for any one of a

whole class of propositions. And when we say “x is a man

implies x is a mortal for all values of x ,” we are not as-

serting a single implication, but a class of implications; we

have now a genuine proposition, in which, though the letter

x appears, there is no real variable: the variable is absorbed

in the same kind of way as the x under the integral sign in a

definite integral, so that the result is no longer a function of

x . Peano distinguishes a variable which appears in this way

as apparent, since the proposition does not depend upon the

variable; whereas in “x is a man” there are different propo-

sitions for different values of the variable, and the variable

is what Peano calls real. I shall speak of propositions exclu-

sively where there is no real variable: where there are one

or more real variables, and for all values of the variables the

expression involved is a proposition, I shall call the expres-

sion a propositional function. The study of genuine propo-

sitions is, in my opinion, more fundamental than that of

classes; but the study of propositional functions appears to

be strictly on a par with that of classes, and indeed scarcely

distinguishable therefrom. Peano, like McColl, at first re-

garded propositions as more fundamental than classes, but

www.thebalticyearbook.org
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he, even more definitely, considered propositional functions

rather than propositions. (1903, pp. 12-13)

The notion of a propositional function thus emerges in articulating

the distinction between ‘genuine propositions’, the bearers of truth or

falsity, and schematic expressions that represent a class of propositions,

expressions which do so by containing one or more ‘real variables’, to

use the term Russell took from Peano. Since these expressions yield

genuine propositions whenever all their real variables are given values,

it is natural to call them ‘propositional functions’.22 A few pages later, in

claiming that the notion of a propositional function is one of the three

fundamental notions that characterize the class-calculus (alongside the

notions of class-membership and of such that), Russell explains it as

follows:

ϕx is a propositional function if, for every value of x , ϕx

is a proposition, determinate when x is given. Thus “x is a

man” is a propositional function. In any proposition, how-

ever complicated, which contains no real variables, we may

imagine one of the terms, not a verb or adjective, to be re-

placed by other terms: instead of “Socrates is a man” we

may put “Plato is a man,” “the number 2 is a man,” and so

on. Thus we get successive propositions all agreeing except

as to the one variable term. Putting x for the variable term,

“x is a man” expresses the type of all such propositions.

(1903, pp. 19-20)

After its introductory sections (§§ 11-13), chapter 2 of the Principles

is divided into four parts, on the propositional calculus (§§ 14-19), the

calculus of classes (§§ 20-6), the calculus of relations (§§ 27-30), and

Peano’s symbolic logic (§§ 31-6). For this final part, Russell simply took

over the draft chapter on ‘Peano’s Symbolic Logic’ he had composed a

year earlier.23 Comparison of the two texts reveals little revision.24 The

only significant change is that noted above: with the distinction be-

tween genuine propositions and propositional functions now drawn,

Russell was able to refine his account of expressions such as ‘x is an a’.

Russell’s main discussion of propositional functions, however, oc-

curs in chapter 7, which bears the title ‘Propositional Functions’. This

chapter, it seems, was written on 10 May 1902.25 In the plan drawn up
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in April 1902, it was called ‘Assertions’, and it is clear that the central

issue to be addressed was the analysis of propositions. In the published

chapter itself, Russell reiterates his concern that “when a proposition

is completely analyzed into its simple constituents, these constituents

taken together do not reconstitute it” (1903, p. 83). In places, he talks

of the analysis of a proposition into subject and ‘assertion’. In ‘Socrates

is a man’, he writes, “we can plainly distinguish Socrates and some-

thing that is asserted about him; we should admit unhesitatingly that

the same thing may be said about Plato or Aristotle” (1903, p. 84). An

‘assertion’, as Russell characterizes it, is “everything that remains of the

proposition when the subject is omitted”, i.e., what is obtained “by sim-

ply omitting one of the terms occurring in the proposition” (1903, pp.

83, 85). An assertion thus counts as a constituent of a proposition, even

if there remains a problem in explaining how it contributes to the unity

of a proposition.

The connection between an assertion and a propositional function

can now be easily seen. For if what is omitted (in obtaining an asser-

tion) is instead replaced by a variable, then we have a propositional

function. What seems to have happened during the course of writing

chapter 7 is that Russell switched from his intended focus on assertions

to further exploration of the notion of a propositional function: given

how recently the notion had been introduced, this is hardly surprising,

and the new title reflects this change.26 He begins, indeed, by saying

that the task of chapter 7 (in accord, presumably, with his original plan

drawn up 10 days or so earlier) is to critically examine the “scope and

legitimacy” of the general notion of an assertion and its connection with

the notions of class and of such that (p. 82). But the focus soon shifts to

the question of the definability of propositional functions and this then

becomes the central issue of the chapter.27

Concern with assertions does not disappear, however. What Russell

considers is whether ‘propositional function’ can be defined in terms of

‘assertion’, along the lines just indicated. Can a propositional function

be seen as an assertion plus one or more variables? This looks plausible

in the case of simple subject-predicate propositions such as ‘Socrates

is a man’. But whether or not this is indeed so, problems certainly

arise when we consider more complex propositions, where there is more

than one term that can be omitted or replaced by a variable. Russell
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takes the proposition ‘Socrates is a man implies Socrates is a mortal’.

Omitting Socrates here, Russell writes, yields “. . . is a man implies . . .

is a mortal”. But in this formula, he goes on:

it is essential that, in restoring the proposition, the same

term should be substituted in the two places where dots in-

dicate the necessity of a term. It does not matter what term

we choose, but it must be identical in both places. Of this

requisite, however, no trace whatever appears in the would-

be assertion, and no trace can appear, since all mention of

the term to be inserted is necessarily omitted. When an x is

inserted to stand for the variable, the identity of the term to

be inserted is indicated by the repetition of the letter x; but

in the assertional form no such method is available. (1903,

p. 85)

On Russell’s account, then, it would seem, we leave something out when

we extract the assertion from a proposition, which cannot be put back

in again by simply adding the variable. The propositional function, on

the other hand, already contains the variable(s): it already has, we can

say, the requisite structure.

Why cannot the assertion have the requisite structure? In the pas-

sage just quoted Russell seems to just assume that there must be “no

trace” of the omitted term(s), but this is presumably because he thought

that the assertion must be independent of any particular term if it is to

be assertible of any other term. A propositional function, on the other

hand, it would seem, does indeed have some kind of dependence on the

omitted term(s) through the variable(s) it contains, and hence must be

taken as structured. In any case, were the assertion to have a structure,

this structure could presumably only be specified by identifying the cor-

responding propositional function. So propositional functions would

still seem to be more fundamental than assertions.

Russell also considers the case of relational propositions (pp. 85-

8) and once again finds difficulties in trying to define propositional

functions in terms of assertions. His conclusion is that propositional

functions must indeed be taken as indefinable – as “ultimate data” (p.

88). He ends the chapter, however, by noting a further problem, which

highlights just how deep the influence is at this time of a crude decom-

positional conception of analysis, despite the emergence of the notion
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of a propositional function. He writes that “according to the theory of

propositional functions here advocated, the ϕ in ϕx is not a separate

and distinguishable entity: it lives in the propositions of the form ϕx ,

and cannot survive analysis” (p. 88).

What does Russell mean by ‘living’ in a proposition? And why is

what he calls ‘the ϕ in ϕx ’ – which he also terms ‘the functional part of

a propositional function’ (ibid.) – not an entity? It is not an entity, ac-

cording to Russell, because if it were, then there would be a proposition

asserting it of itself, and hence a proposition denying it of itself, giving

rise to a version of the contradiction that came to bear his name (ibid.).

But if it is not an entity, on Russell’s view, then it cannot be a constituent

of a proposition, and this in turn means that we cannot speak about it

(since this would be treating it as the subject of a proposition). So there

is no option but to use metaphorical expressions, talking of its ‘living’

in a proposition, for example. As soon as we attempt to ‘cut it out’, as it

were, we destroy its essential nature.

4. SIGNIFICANCE AND SUBSEQUENT DEVELOPMENTS

As we have seen, Russell’s notion of a propositional function arose in

clarifying the difference between genuine propositions such as ‘Socrates

is mortal’ and expressions such as ‘x is mortal’ that represent a class

of propositions. At the time, Russell’s basic distinction in the analysis

of propositions was between subject and ‘assertion’ (cf. 1903, §43, p.

39). The notion of an assertion had been taken as one of the three

fundamental notions (alongside those of class-membership and of such

that) that characterize the class-calculus. But as soon as he had the

notion of a propositional function, this replaced the notion of an asser-

tion as one of these three fundamental notions.28 Russell nevertheless

considered whether ‘propositional function’ might be defined in terms

of ‘assertion’, but came to the conclusion that it could not, and that

‘propositional function’ should be treated as indefinable.

Now an obvious question to ask here is whether the notion of a

propositional function might be defined in terms of the more general

notion of a function.29 Propositional functions might be seen as simply

functions from objects to propositions (understood as complexes of ob-

jects, on Russell’s early view). Russell does not consider this question
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directly in the Principles, but having noted the indefinability of both the

notion of such that and the notion of a propositional function at the

beginning of chapter 7, Russell remarks:

When these have been admitted, the general notion of one-

valued functions is easily defined. Every relation which is

many-one, i.e. every relation for which a given referent has

only one relatum, defines a function: the relatum is that

function of the referent which is defined by the relation in

question. (1903, p. 83)

The idea here can be easily explained. Consider the successor func-

tion, for example, which maps each number onto its successor. To say

that x is the successor of y is to say it is the x such that x = y+1. Here

we make use of both the notion of such that and the notion of a propo-

sitional function, in this case, the propositional function ‘x = y + 1’,

which yields true propositions such as ‘3 = 2+ 1’, and so on. Similarly,

to talk of ‘the father of y ’ is to talk of ‘the x such that x is the father of

y ’, where the propositional function here is ‘x is the father of y ’.30 In

Russell’s later terminology, descriptive functions can be defined in terms

of propositional functions.31

The view that descriptive functions are to be defined in terms of

propositional functions is a view that Russell holds throughout his sub-

sequent work. Treating propositional functions as more basic than de-

scriptive functions, however, sheds little light on the notion of a propo-

sitional function itself, and in the period that immediately follows the

completion of the Principles, its clarification is one of the main tasks

that occupies Russell.32 For present purposes what is of most interest

is the distinction that he draws between two kinds of analysis, the first

being traditional decompositional analysis of a whole into its parts (of a

complex into its constituents), and the second being function-argument

analysis. In a set of notes written in 1904, he remarks:

What we want to be clear about is the twofold method of

analysis of a proposition, i.e., first taking the proposition as

it stands and analyzing it, second taking the proposition as

a special case of a type of propositions. Whenever we use

variables, we are already necessarily concerned with a type

of propositions. E.g. “p⊃q” stands for any proposition of a
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certain type. When values are assigned to p and q, we reach

a particular proposition by a different road from that which

would have started with those values plus implication, and

have so built up the particular proposition without refer-

ence to a type. This is how functions come in. (1904, p.

118)

The first is decompositional analysis, the second function-argument anal-

ysis. But Russell describes the latter in a way that might strike anyone

who is familiar with Frege’s conception as peculiar. What Russell has

in mind here is made more explicit towards the end of the notes: “We

ought to say, I think, that there are different ways of analysing com-

plexes, and that one way of analysis is into function and argument,

which is the same as type and instance” (1904, p. 256).

Russell’s idea might be explained by returning to Frege’s example

of (Lhc) – ‘Hydrogen is lighter than carbon dioxide’. The first form of

analysis proceeds by decomposing the proposition into its constituents

– hydrogen, carbon dioxide and the relation represented by ‘is lighter

than’. The second form of analysis is exemplified by extracting the

propositional function expressed by ‘x is lighter than carbon dioxide’

(which Frege takes to represent the relevant concept, understood as

‘unsaturated’). This shows what type of proposition the proposition can

be regarded as instantiating, namely, that type instantiated by ‘Helium

is lighter than carbon dioxide’, ‘Oxygen is lighter than carbon dioxide’,

and so on. It can also be regarded as instantiating other types, such

as that instantiated by ‘Hydrogen is lighter than helium’, ‘Hydrogen is

lighter than oxygen’, and so on (which Frege takes to involve the con-

cept represented by ‘x is heavier than hydrogen’). Propositional func-

tions are not themselves constituents of the proposition, according to

Russell, which is why a distinction is needed between the two forms of

analysis.

Recognition of propositional functions, then, in the context of Rus-

sell’s insistence that propositions are quite literally composed of – and

uniquely determined by – their constituents, seems to drive Russell to-

wards admitting that simple decompositional analysis is not the only

form of analysis. A single proposition, such as (Lhc), can be taken to

instantiate more than one propositional function – ‘x is lighter than

carbon dioxide’, ‘Hydrogen is lighter than x ’, ‘x is lighter than y ’, ‘Hy-
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drogen is R-related to carbon dioxide’, and so on. Since it seems implau-

sible to suppose that all these propositional functions are constituents

of the proposition, the identification of them cannot count as a form of

decompositional analysis.

However, if it is Russell’s recognition of propositional functions that

seems to drive him to admit two forms of analysis, and propositional

functions play a fundamental role in his philosophy from 1902 on-

wards, then one would expect to find him reiterating the distinction,

and even clarifying it further, in his later work. But to my knowledge,

Russell nowhere does so. As noted in §1 above, he distinguishes be-

tween ‘material’ and ‘formal’ analysis in his 1913 ‘Theory of Judgement’

manuscript, but this is a distinction that is drawn under his general def-

inition of ‘analysis’ as “the discovery of the constituents and the manner

of combination of a given complex” (1913, p. 119).

There is an obvious answer as to why Russell did not draw the dis-

tinction later. Russell believed that everything had an ultimate analysis,

and it is at this level that decompositional analysis comes to the fore.

While (Lhc) permits a number of possible function-argument analyses,

only one of these is arguably basic. If we take its ultimate analysis

(let us say) to involve decomposition into hydrogen, carbon dioxide

and the relation represented by ‘is lighter than’, then the most funda-

mental form would seem to be ‘xRy ’, the other forms being derivable

from this together with the constituents. Russell continues to deny that

propositional forms are themselves constituents, but he does come to

regard them as required in the ultimate (material and formal) analysis

of a proposition – at any rate by 1913, when the ‘Theory of Judgement’

manuscript is written.33

If this is right, then we can say that Russell comes to see function-

argument analysis as subordinate to the general process of identifying

the ultimate constituents and forms of things. It is not a different “way

of analysing complexes”, to use Russell’s 1904 phrase, on a par with

decompositional analysis. It is employed in the service of decomposi-

tional analysis. In the terminology I introduced in §1 above, function-

argument analysis might be better seen as a form of interpretive anal-

ysis, interpreting a given proposition as instantiating one of a number

of different types (propositional forms). For Russell, this is required for

ultimate decompositional analysis, but is not an end in itself.34
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As mentioned above, the role of interpretive analysis comes out

in an especially clear way in the theory of descriptions. Function-

argument analysis is clearly presupposed in interpreting propositions

of the grammatical form ‘The F is G’ as having a more complex ‘un-

derlying’ logical form with a quantificational structure (‘There is one

and only one F, and whatever is F is G’). Perhaps the theory of de-

scriptions allowed Russell to see more clearly how function-argument

analysis plays a role in uncovering the ‘real’ logical form of a proposi-

tion, though it remains the case that he never conceptualized it in this

way. Even after the theory of descriptions was firmly established as a

paradigm of analytic philosophy, Russell’s official conception of anal-

ysis remained staunchly decompositional. The role that the theory of

descriptions played in the development of Russell’s conception of anal-

ysis, however, is part of a much longer story.35, 36

Notes

1 See especially Weitz 1944; Hager 1994, 2003. Weitz claims that the “fundamental

element” in Russell’s philosophy is his method of analysis, though he sees this method as

being exemplified “in four rather distinct ways” (p. 57), which he calls ‘ontological analy-

sis’ (identifying the ultimate constituents of reality), ‘formal analysis’ (identifying logical

forms), ‘logistic’ (reducing mathematics to logic) and ‘constructionism’ (also called ‘the

resolution of incomplete symbols’). He regards these four ways as being united, however,

by a single conception: “By analysis Russell—although he has never systematically said

so—means mainly a form of definition, either real definition of a non-Aristotelian sort, or

contextual definition, i.e., definition of symbols in use” (ibid.; cf. p. 110). In discussing

ontological analysis in his long (23-page) first section, Weitz is clearly sensitive to many

of the changes that Russell’s ontological views go through. It is therefore surprising that

he does not consider whether there might have been methodological changes as well. The

changes in Russell’s ontological views, he writes, “are due to a more rigorous application

of his analytical method. Once the primacy of analysis is understood, it will become evi-

dent that there is a basic unity in his work, and that this unity revolves around his method”

(p. 58). But whatever unity there may be, the conception of analysis as definition that

Weitz identifies does not do justice to it. For one thing, the idea of contextual definition

only emerges with the theory of descriptions, so in what sense was Russell an ‘analytic’

philosopher before 1905? If real definition is what is important before 1905, then what

role does this play after 1905, and what is its relationship to contextual definition? Weitz

attributes to Russell a disjunctive conception of analysis, but the connection between the

two disjuncts needs elucidation. Weitz offers some brief remarks on the connection (see

e.g. p. 116, fn. 191; pp. 119-20), but more is needed to establish that there is a unity of

method. Nevertheless, I think Weitz has correctly identified two central elements of Rus-

sell’s method of analysis, corresponding to what I call ‘decompositional’ and ‘interpretive’

(or ‘transformative’) analysis, as I hope this paper makes clear.
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Hager (1994, 2003) has also emphasized the unity and continuity of Russell’s philos-

ophy, but sees it as grounded in a quite different conception of analysis, which he calls

Russell’s “two-directional view of philosophical analysis” (2003, p. 311):

Throughout his career Russell adhered to a characteristic view of the na-

ture of philosophical analysis according to which it has two parts. Firstly,

philosophical analysis proceeds backwards from a body of knowledge to

its premisses, and, secondly, it proceeds forwards from the premisses to

a reconstruction of the original body of knowledge. Russell often called

the first stage of philosophical analysis simply “analysis”, in contrast to the

second stage which he called “synthesis” (or, sometimes, “construction”).

While the first stage was seen as being the most philosophical, both stages

were nonetheless essential to philosophical analysis. (2003, p. 310)

What Hager is identifying here as the first part of Russell’s method is what I call ‘regres-

sive’ analysis. But if this is what forms part of Russell’s method of analysis, then it is

far from new: it goes all the way back to ancient Greek geometry (see Beaney 2007c,

§2.2). So what has happened to the other two modes of analysis? Hager assimilates the

decompositional mode to the regressive. He writes that “When characterizing his method

of analysis, Russell sometimes, for convenience, uses ‘premisses’ in a wider sense to refer

to concepts or ideas, as well as propositions” (2003, p. 313). Hager provides no textual

evidence for this claim, however, which amounts to attributing to Russell confusion about

the meaning of ‘premise’. It is Hager who is confused here, in failing to distinguish the

two modes of analysis. As far as interpretive analysis is concerned, Hager seems not to

recognize it at all: in his 2003 paper, for example, he alludes just once to that ‘paradigm’

of analysis, Russell’s theory of descriptions (p. 330). It is surprising, to say the least, that

someone should attempt to elucidate Russell’s method of analysis without discussion of

the theory of descriptions.

On my view, as I explain in this section, one should distinguish three main modes of

analysis – the regressive, the decompositional, and the interpretive. Hager identifies the

first as constituting Russell’s method of analysis, while Weitz identifies the second and

third. That two scholars of Russell’s work, with knowledge of his entire corpus, should

offer such different interpretations of his supposedly core methodology, should make one

cautious in talking of a unity here. As I see it, all three modes are present in Russell’s

philosophy, in a complex form that undergoes subtle change during the course of his

thinking. Illustrating this by considering the development of Russell’s conception of a

propositional function is the aim of the present paper.
2 Cf. Beaney 2007c, introductory paragraph.
3 For a fuller account, on which I draw in the present section, see Beaney 2007b,c.
4 Tr. in Hintikka & Remes 1974, p. 8.
5 For more on the regressive conception, see Beaney 2007c, §2.
6 Again, for more on the decompositional conception of analysis, see Beaney 2007c,

§4.
7 Central to analysis in ancient Greek geometry was the idea of taking something as a

‘given’ and working back from there – an idea that is reflected in algebra in representing

the ‘unknown’ to be found by ‘x ’. Cf. Beaney 2007c, §4.
8 See e.g. Descartes, Rules for the Direction of the Mind, in Philosophical Writings, I, p.

51; Discourse on Method, in Philosophical Writings, I, p. 120.
9 Russell 1899/1900, pp. 160-1; cf. 1903, p. 466. This remark is made in the context

Vol. 4: 200 Years of Analytical Philosophy

http://www.thebalticyearbook.org/


21 Michael Beaney

of a critique of the idea of an ‘organic unity’.
10 For more on the differences between Frege and Russell here, which reflect their

different conceptions of analysis, see Beaney 2003, §6; 2007b,§2; Levine 2002.
11 Russell 1903, p. 141; cf. pp. 466-7; 1899, pp. 299-300; 1899/1900, pp. 16, 39,

160-1. Interestingly, the only entries on ‘analysis’ in the index to the Principles (which

Russell prepared himself) are to these two passages (pp. 141, 466-7) where the doctrine

that analysis is falsification is discussed. For later references to the doctrine, see 1914,

pp. 156-8; 1918, pp. 178-9; 1959, p. 49.
12 This is the manuscript that was abandoned as a result of criticisms that Wittgenstein

made of the so-called multiple relation theory of judgement that Russell was developing

here. For discussion of this, see Candlish 2007, ch. 3; Carey 2007; Hylton 1990, pp.

357-61; Ricketts 1996, §3; 2002, §§ 2-3; Stevens 2005, ch. 4.
13 Russell 1984, p. 119. The distinction between ‘material’ and ‘formal’ analysis is

reflected in Weitz’s distinction between ‘ontological’ and ‘formal’ analysis; cf. n. 1 above.
14 The problem has been much discussed in the secondary literature. See, e.g., Griffin

1993; Candlish 2007, ch. 3; Stevens 2005.
15 This is not the first draft of material that eventually appeared in the final text. Russell

had been working on what he called his ‘big book’ since 1897. For details of the history of

the composition of the Principles, see Gregory Moore’s editorial introductions in Russell

1993, pp. xiii-xlviii, 3-12, 181-4, 209-10. The drafts considered in what follows are all

published in this volume.
16 Russell 1899/1900, p. 39. The remark in this first draft is the same as in the pub-

lished text, but with the qualification “except where what is in question is a mere collec-

tion not taken as a whole” being added after “the whole truth”.
17 The change is noted in the editorial material in Russell 1993, pp. 716, 781.
18 See Russell 1902, pp. 211-12. The list of chapters of Part I that Russell gives corre-

sponds exactly to what was published in the Principles, with the sole exception of chapter

7, the title of which is changed from ‘Assertions’ to ‘Propositional Functions’ (on which I

comment shortly). The introduction of the notion of a propositional function thus seems

to have been the last significant development in the evolution of the main text of the

Principles.
19 The whole manuscript was finished on 23 May 1902, and submitted to Cambridge

University Press four days later, though small changes were made and the two appendices

added during the course of the rest of the year. Cf. Moore 1993b, pp. xxxv-xxxvi.
20 Cf. Blackwell 1985, p. 278.
21 The issue had been much debated in the second half of the nineteenth century. Frege,

too, had argued for the primacy of the propositional calculus. Cf. Beaney 1996, pp. 44-5.
22 An obvious suggestion to make at this point is that Russell’s use of the term ‘propo-

sitional function’ was inspired by his reading of Frege’s works, which took place around

this time. According to Frege, concepts are functions, concept expressions being formed

by removing a proper name from a sentence, with the gap marked in some way (‘( ) is

a man’ or ‘x is a man’), in just the same way that propositional functions are formed,

according to Russell. Frege may see the values of such functions as truth-values, while

Russell sees the values of propositional functions as propositions, but the basic idea is

similar. In fact, however, although he was aware of the significance of Frege’s work from

August 1900, when he first met Peano, Russell seems not to have read Frege properly

until after he sent the manuscript of the Principles to Cambridge University Press in May
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1902. As the passage just quoted from the Principles suggests, Peano had a far greater

influence on Russell from August 1900 to May 1902 than Frege did.
23 1901, pp. 203-8. This had been chapter 7 in his 1901 plan (cf. 1901, p. 184).
24 This is true, at any rate, in comparing the final text with what has been preserved of

the 1901 draft. The final page or so of the draft, which presumably formed the basis of

the second paragraph of §35 and the whole of §36 of the Principles, is missing.
25 Unlike the other chapters of Part I, there is no reference to his work on this chapter,

in the letters he wrote at the time, which enables us to be sure of its date of composition.

But the only date possible seems to be 10 May. Cf. Blackwell 1985, p. 278.
26 In the manuscript kept in the Bertrand Russell Archives at McMaster University, we do

indeed find the original title ‘Assertions’ crossed out and ‘Propositional Functions’ written

above it instead. I am grateful to Ken Blackwell for showing me this manuscript.
27 In this respect it is worth noting that Russell’s original plan suggests that the notion

of an assertion is seen as one of the fundamental notions of the class-calculus (cf. 1901,

p. 211, line 14); in the Principles itself, the notion of a propositional function is identified

instead (1903, p. 19).
28 Cf. the previous note.
29 For a full discussion of the issue, see Hylton 1993.
30 We could also speak of x as the object that satisfies the relevant propositional func-

tion. As Russell remarks, “Such that is roughly equivalent to who or which, and represents

the general notion of satisfying a propositional function” (1903, p. 83).
31 Cf. Russell & Whitehead 1910-13, *30; Russell 1919, pp. 46, 180.
32 See especially papers 3, 5, 6, 7, 8 and 9 in Russell 1994.
33 Even as late as 1912, when The Problems of Philosophy is published, we find no ap-

peal to propositional forms in the (ultimate) analysis of propositions. Strictly speaking,

by 1912, Russell has come to ‘eliminate’, i.e. ‘analyse away’, propositions themselves

(understood as complexes of objects, rather than mere sentences), developing his so-

called ‘multiple relation theory’ of judgement instead. But by 1913, under the influence

of Wittgenstein, he sees that forms are needed as well, and this is the view he tries to

develop in his ‘Theory of Judgement’ manuscript (see esp. chs. I and II of Part II). We

might also note here the brief period (around 1906) in which Russell developed his ‘sub-

stitutional theory’, according to which propositional functions are themselves ‘eliminated’

by taking propositions as entities and employing the idea of substituting one entity for

another within propositions. We might see this as further evidence of the dominance

that the decompositional conception of analysis had on his thinking. Russell soon came

round to accepting propositional functions, however, although he never held that they are

constituents in propositions. For discussion of Russell’s substitutional theory, see Hylton

1980, Landini 1998.
34 This marks a fundamental difference between Russell and Frege. While Russell be-

lieved that every proposition (‘content’ in Frege’s early terminology, ‘thought’ in his later

terminology) had an ultimate analysis, Frege did not. For Frege, function-argument anal-

ysis was fundamental to his philosophy, underlying all of his characteristic doctrines. For

discussion, see Beaney 2007d, and the works cited in n. 10 above.
35 For discussion, see especially Hylton 2003, 2005b, 2007.
36 A talk based on this paper was given at the conference in Riga on ‘200 Years of

Analytical Philosophy’ in August 2008, in a session on Russell with James Levine and

Bernard Linsky. I am grateful to the organizers for inviting me to the conference, and to
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the participants in the session, and in particular, to James and Bernard, for discussion of

the issues. I would also like to thank Ken Blackwell for his help during my visit to the

Bertrand Russell Archives, and David Hitchcock for his hospitality, at McMaster in October

2007.
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