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The Multilinear Structure of ReLU Networks

Thomas Laurent * 1 James H. von Brecht * 2

Abstract

We study the loss surface of neural networks
equipped with a hinge loss criterion and ReLU
or leaky ReLU nonlinearities. Any such network
defines a piecewise multilinear form in parame-
ter space. By appealing to harmonic analysis we
show that all local minima of such network are
non-differentiable, except for those minima that
occur in a region of parameter space where the
loss surface is perfectly flat. Non-differentiable
minima are therefore not technicalities or patholo-
gies; they are heart of the problem when investi-
gating the loss of ReLU networks. As a conse-
quence, we must employ techniques from nons-
mooth analysis to study these loss surfaces. We
show how to apply these techniques in some illus-
trative cases.

1. Introduction
Empirical practice tends to show that modern neural net-
works have relatively benign loss surfaces, in the sense that
training a deep network proves less challenging than the non-
convex and non-smooth nature of the optimization would
naı̈vely suggest. Many theoretical efforts, especially in re-
cent years, have attempted to explain this phenomenon and,
more broadly, the successful optimization of deep networks
in general (Gori & Tesi, 1992; Choromanska et al., 2015;
Kawaguchi, 2016; Safran & Shamir, 2016; Mei et al., 2016;
Soltanolkotabi, 2017; Soudry & Hoffer, 2017; Du et al.,
2017; Zhong et al., 2017; Tian, 2017; Li & Yuan, 2017;
Zhou & Feng, 2017; Brutzkus et al., 2017). The properties
of the loss surface of neural networks remain poorly under-
stood despite these many efforts. Developing of a coherent
mathematical understanding of them is therefore one of the
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Figure 1. (a): Parameter space Ω = R2 decomposes into a partition
of four open cells Ωu and a closed boundary set N (solid red
lines). (b): The loss surface is smooth inside each Ωu and non-
differentiable on N . It has two types of local minima, flat minima
(cell Ω1) and sharp minima (boundary between cells Ω3 and Ω4).
The sharp minima must have non-zero loss.

major open problems in deep learning.

We focus on investigating the loss surfaces that arise
from feed-forward neural networks where rectified lin-
ear units (ReLUs) σ(x) := max(x, 0) or leaky ReLUs
σα(x) := αmin(x, 0) + max(x, 0) account for all nonlin-
earities present in the network. We allow the transformations
defining the hidden-layers of the network to take the form
of fully connected affine transformations or convolutional
transformations. By employing a ReLU-based criterion we
then obtain a loss with a consistent, homogeneous structure
for the nonlinearities in the network. We elect to use the
binary hinge loss

`(ŷ, y) := σ
(
1− yŷ

)
(1)

for binary classification, where ŷ denote the scalar output of
the network and y ∈ {−1, 1} denotes the target. Similarly,
for multiclass classification we use the multiclass hinge loss,

`(ŷ, r0) =
∑
r 6=r0 σ

(
1 + ŷr − ŷr0

)
(2)

where ŷ = (ŷ1, . . . , ŷR) ∈ RR denotes the vectorial output
of the network and r0 ∈ {1, . . . , R} denotes the target class.

To see the type of structure that emerges in these networks,
let Ω denote the space of network parameters and let L(ω)
denote the loss. Due to the choices (1,2) of network crite-
ria, all nonlinearities involved in L(ω) are piecewise linear.
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Figure 2. For a certain class of networks, flat local minima are
always optimal whereas sharp ones are always sub-optimal.

These nonlinearities encode a partition of parameter space
Ω = Ω1 ∪ · · · ∪ΩM ∪N into a finite number of open cells
Ωu and a closed set N of cell boundaries (c.f. figure 1).
A cell Ωu corresponds to a given activation pattern of the
nonlinearities, and so L(ω) is smooth in the interior of cells
and (potentially) non-differentiable on cell boundaries. This
decomposition provides a description of the smooth (i.e.
Ω\N ) and non-smooth (i.e. N ) parts of parameter space.

We begin by showing that the loss restricted to a cell Ωu is
a multilinear form. As multilinear forms are harmonic func-
tions, an appeal to the strong maximum principle shows that
non-trivial optima of the loss must happen on cell bound-
aries (i.e. the non-differentiable region N of the parameter
space). In other words, ReLU networks with hinge loss cri-
teria do not have differentiable local minima, except for
those trivial ones that occur in regions of parameter space
where the loss surface is perfectly flat. Figure 1b) provides
a visual example of such a loss.

As a consequence the loss function has only two types of
local minima. They are

• Type I (Flat): Local minima that occur in a flat (i.e.
constant loss) cell or on the boundary of a flat cell.

• Type II (Sharp): Local minima on N that are not on
the boundary of any flat cell.

We then investigate type I and type II local minima in more
detail. The investigation reveals a clean dichotomy. First
and foremost,

Main Result 1. L(ω) > 0 at any type II local minimum.

Importantly, if zero loss minimizers exist (which happens
for most modern deep networks) then sharp local minima
are always sub-optimal. This result applies to a quite general
class of deep neural networks with fully connected or con-
volutional layers equipped with either ReLU or leaky ReLU
nonlinearities. To obtain a converse we restrict our attention
to fully connected networks with leaky ReLU nonlinearities.
Under mild assumptions on the data we have

Main Result 2. L(ω) = 0 at any type I local minimum,
while L(ω) > 0 at any type II local minimum.

Thus flat local minima are always optimal whereas sharp
minima are always sub-optimal in the case where zero loss
minimizers exist. Conversely, if zero loss minimizers do not
exist then all local minima are sharp. See figure 2 for an

illustration of such a loss surface.

All in all these results paint a striking picture. Networks with
ReLU or leaky ReLU nonlinearities and hinge loss criteria
have only two types of local minima. Sharp minima always
have non-zero loss; they are undesirable. Conversely, flat
minima are always optimal for certain classes of networks.
In this case the structure of the loss (flat v.s. sharp) provides
a perfect characterization of their quality (optimal v.s. sub-
optimal).

This analysis also shows that local minima generically occur
in the non-smooth region of parameter space. Analyzing
them requires an invocation of machinery from non-smooth,
non-convex analysis. We show how to apply these tech-
niques to study non-smooth networks in the context of bi-
nary classification. We consider three specific scenarios to
illustrate how nonlinearity and data complexity affect the
loss surface of multilinear networks —

• Scenario 1: A deep linear network with arbitrary data.

• Scenario 2: A network with one hidden layer, leaky
ReLUs and linearly separable data.

• Scenario 3: A network with one hidden layer, ReLUs
and linearly separable data.

The nonlinearities σα(x) vary from the linear regime (α =
1) to the leaky regime (0 < α < 1) and finally to the
ReLU regime (α = 0) as we pass from the first to the third
scenario. We show that no sub-optimal local minimizers
exist in the first two scenarios. When passing to the case
of paramount interest, i.e. the third scenario, a bifurcation
occurs. Degeneracy in the nonlinearities (i.e. α = 0) in-
duces sub-optimal local minima in the loss surface. We also
provide an explicit description of all such sub-optimal local
optima. They correspond to the occurence of dead data
points, i.e. when some data points do not activate any of
the neurons of the hidden layer and are therefore ignored
by the network. Our results for the second and third sce-
narios provide a mathematically precise formulation of a
commonplace intuitive picture. A ReLU can completely
“turn off,” and sub-optimal minima correspond precisely to
situations in which a data point turns off all ReLUs in the
hidden layer. As leaky ReLUs have no completely “off”
state, such networks therefore have no sub-optimal minima.

Finally, in section 4 we conclude by investigating the ex-
tent to which these phenomena do, or do not, persist when
passing to the multiclass context. The loss surface of a
multilinear network with the multiclass hinge loss (2) is
fundamentally different than that of a binary classification
problem. In particular, the picture that emerges from our
two-class results does not extend to the multiclass hinge
loss. Nevertheless, we show how to obtain a similar picture
of critical points by modifying the training strategy applied
to multiclass problems.
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Many recent works theoretically investigate the loss sur-
face of ReLU networks. The closest to ours is (Safran &
Shamir, 2016), which uses ReLU nonlinearities to partition
the parameter space into basins that, while similar in spirit,
differ from our notion of cells. Works such as (Keskar et al.,
2016; Chaudhari et al., 2017) have empirically investigated
the notion of “width” of a local minimizer. Conjecturally,
a “wide” local minimum should generalize better than a
“narrow” one and might be more likely to attract the solu-
tion generated by a stochastic gradient descent algorithm.
Our flat and sharp local minima are reminiscent of these
notions. Finally, some prior works have proved variants of
our results in smooth situations. For instance, (Brutzkus
et al., 2017) derives results about the smooth local minima
occurring in scenarios 2 and 3, but they do not investigate
non-differentiable local minima. Additionally, (Kawaguchi,
2016) considers our first scenario with a mean squared error
loss instead of the hinge loss, while (Frasconi et al., 1997)
considers our second scenario with a smooth version of the
hinge loss and with sigmoid nonlinearities. Our non-smooth
analogues of these results require fundamentally different
techniques. We prove all lemmas, theorems and corollaries
in the appendix.

2. Global Structure of the Loss
We begin by describing the global structure of ReLU net-
works with hinge loss that arises due to their piecewise
multilinear form. Let us start by rewriting (2) as

`(ŷ,y) = −1 +

R∑
r=1

σ
(
1 + ŷr − 〈y, ŷ〉

)
= −1 +

〈
1 , σ

(
(Id− 1⊗ y)ŷ + 1

)〉
(3)

where we now view the target y ∈ {0, 1}R as a one-hot
vector that encodes for the desired class. The term 1 ⊗
y denotes the outer product between the constant vector
1 = (1, . . . , 1)T and the target, while 〈y, ŷ〉 refers to the
usual Euclidean inner product. We consider a collection
(x(i),y(i)) of N labeled data points fed through a neural
network with L hidden layers,

x(i,`) = σα(W (`)x(i,`−1) + b(`)) for ` ∈ [L]

ŷ(i) = V x(i,L) + c, (4)

so that for ` ∈ [L] := {1, . . . , L} each x(i,`) refers to
feature vector of the ith data point at the `th layer (with the
convention that x(i,0) = x(i)) and ŷ(i) refers to the output
of the network for the ith datum. By (3) we obtain

L(ω) = −1+
∑
i

µ(i)
〈
1, σ

(
(Id−1⊗y(i))ŷ(i) +1

)〉
(5)

for the loss L(ω). The positive weights µ(i) > 0 sum to one,
say µ(i) = 1/N in the simplest case, but we allow for other

choices to handle those situations, such as an unbalanced
training set, in which non-homogeneous weights could be
beneficial. The matrices W (`) and vector b(`) appearing in
(4) define the affine transformation at layer ` of the network,
and V and c in (4) denote the weights and bias of the output
layer. We allow for fully-connected as well as structured
models, such as convolutional networks, by imposing the
assumption that each W (`) is a matrix-valued function that
depends linearly on some set of parameters ω(`) —

W (`)
(
cω(`) + dω̂(`)

)
= cW (`)

(
ω(`)

)
+ dW (`)

(
ω̂(`)

)
;

thus the collection

ω = (ω(1), . . . , ω(L), V,b(1), . . . ,b(L), c) ∈ Ω

represents the parameters of the network and Ω denotes pa-
rameter space. As the slope α of the nonlinearity decreases
from α = 1 to α = 0 the network transitions from a deep
linear architecture to a standard ReLU network. Finally, we
let d` denote the dimension of the features at layer ` of the
network, with the convention that d0 = d (dimension of
the input data) and dL+1 = R (number of classes). We use
D = d1 + . . .+ dL+1 for the total number of neurons.

2.1. Partitioning Ω into Cells

The nonlinearities σα(x) and σ(x) account for the only
sources of nondifferentiabilty in the loss of a ReLU network.
To track these potential sources of nondifferentiability, for a
given a data point x(i) we define the functions

s(i,`)(ω) := sign(W (`)x(i,`−1) + b`) for ` ∈ [L]

s(i,L+1)(ω) := sign
(

(Id− 1⊗ y(i)) ŷ(i) + 1
)
, (6)

where sign(x) stands for the signum function that vanishes
at zero. The function s(i,`) describes how data point x(i)

activates the d` neurons at the `th layer, while s(i,L+1)(ω)
describes the corresponding “activation” of the loss. These
activations take one of three possible states, the fully active
state (encoded by a one), the fully inactive state (encoded
by a minus one), or an in-between state (encoded by a zero).
We then collect all of these functions into a single signature
function

S(ω) =
(
s(1,1)(ω), . . . , s(1,L+1)(ω); . . . . . . ;

s(N,1)(ω), . . . , s(N,L+1)(ω)
)

to obtain a function S : Ω 7→ {−1, 0, 1}ND since there are
a total of D neurons and N data points. If S(ω) belongs to
the subset {−1, 1}ND of {−1, 0, 1}ND then none of the
ND entries of S(ω) vanish, and as a consequence, all of
the nonlinearities are differentiable near ω; the loss L is
smooth near such points. With this in mind, for a given
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u ∈ {−1, 1}ND we define the cell Ωu as the (possibly
empty) set

Ωu := S−1(u) := {ω ∈ Ω : S(ω) = u}

of parameter space. By choice L is smooth on each non-
empty cell Ωu, and so the cells Ωu provide us with a parti-
tion of the parameter space

Ω =

 ⋃
u∈{−1,1}ND

Ωu

 ⋃
N

into smooth and potentially non-smooth regions. The set N
contains those ω for which at least one of the ND entries
of S(ω) takes the value 0, which implies that at least one of
the nonlinearities is non-differentiable at such a point. Thus
N consists of points at which the loss is potentially non-
differentiable. The following lemma collects the various
properties of the cells Ωu and of N that we will need.

Lemma 1. For each u ∈ {−1, 1}ND the cell Ωu is an open
set. If u 6= u′ then Ωu and Ωu′ are disjoint. The set N is
closed and has Lebesgue measure 0.

2.2. Flat and Sharp Minima

Recall that a function φ : Rd1 × . . . × Rdn → R is a
multilinear form if it is linear with respect to each of its
inputs when the other inputs are fixed. That is,

φ(v1, . . . , cvk + dwk, . . . ,vn) = cφ(v1, . . . ,vk, . . . ,vn)

+ dφ(v1, . . . ,wk, . . . ,vn).

Our first theorem forms the basis for our analytical results.
It states that, up to a constant, the loss restricted to a fixed
cell Ωu is a sum of multilinear forms.

Theorem 1 (Multilinear Structure of the Loss). For each
cell Ωu there exist multilinear forms φu0 , . . . , φ

u
L+1 and a

constant φuL+2 such that

L|Ωu(ω(1), . . . , ω(L), V,b(1), . . . ,b(L), c) =

φu0 (ω(1), ω(2), ω(3), ω(4) . . . , ω(L), V )

+φu1 (b(1), ω(2), ω(3), ω(4) . . . , ω(L), V )

+φu2 (b(2), ω(3), ω(4) . . . , ω(L), V )

...

+φuL−1(b(L−1), ω(L), V )

+φuL(b(L), V )

+φuL+1(c)

+φuL+2.

The proof relies on the fact that the signature function S(ω)
is constant inside a fixed cell Ωu, and so the network reduces

to a succession of affine transformations. These combine to
produce a sum of multilinear forms. Appealing to properties
of multilinear forms then gives two important corollaries.
Multilinear forms are harmonic functions. Using the strong
maximum principle for harmonic functions1 we show that
L does not have differentiable optima, except for the trivial
flat ones.

Corollary 1 (No Differentiable Extrema). Local minima
and maxima of the loss (5) occur only on the boundary set
N or on those cells Ωu where the loss is constant. In the
latter case, L|Ωu

(ω) = φuL+2.

Our second corollary reveals the saddle-like structure of the
loss.

Corollary 2 (Saddle-like Structure of the Loss). If ω ∈
Ω \ N and the Hessian matrix D2L(ω) does not vanish,
then it must have at least one strictly positive and one strictly
negative eigenvalue.

These corollaries have implications for various optimiza-
tion algorithms. At a local minimum D2L either vanishes
(flat local minima) or does not exist (sharp local minima).
Therefore local minima do not carry any second order in-
formation. Moreover, away from minima the Hessian is
never positive definite and is typically indefinite. Thus an
optimization algorithm using second-order (i.e. Hessian)
information must pay close attention to both the indefinite
and non-differentiable nature of the loss.

To investigate type I/II minima in greater depth we must
there exploit the multilinear structure of L itself. Our first
result along these lines concerns type II local minima.

Theorem 2. If ω is a type II local minimum then L(ω) > 0.

Modern networks of the form (5) typically have zero loss
global minimizers. For any such network type II (i.e. sharp)
local minimizers are therefore always sub-optimal. A con-
verse of theorem 2 holds for a restricted class of networks.
That is, type I (i.e. flat) local minimizers are always optimal.
To make this precise we need a mild assumption on the data.

Definition 1. Fix α > 0 and a collection of weighted data
points (µ(i),x(i),y(i)). The weighted data are rare if there
exist N coeffecients λ(i) ∈ {1, α, . . . , αL} and a non-zero
collection of NR scalars ε(i,r) ∈ {0, 1} so that the system

ε(i) =
∑

r:y
(i)
r =0

ε(i,r)

∑
i:y

(i)
r =1

λ(i)µ(i)ε(i)x(i) =
∑

i:y
(i)
r =0

λ(i)µ(i)ε(i,r)x(i)

1The strong maximum principle states that a non-constant har-
monic function cannot attain a local minimum or a local maximum
at an interior point of an open, connected set.
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i:y

(i)
r =1

λ(i)µ(i)ε(i) =
∑

i:y
(i)
r =0

λ(i)µ(i)ε(i,r) (7)

holds ∀r ∈ [R]. The data are generic if they are not rare.

As the possible choices of λ(i), ε(i,r) take on at most a finite
set of values, rare data points (µ(i),x(i),y(i)) must satisfy
one of a given finite set of linear combinations. Thus (7)
represents the exceptional case, and most data are generic.
For example, if the x(i) ∼ X(i) come from indepenendent
samples of atomless random variables X(i) they are generic
with probability one. Similarly, a small perturbation in the
weights µ(i) will usually transform data from rare to generic.

Theorem 3. Consider the loss (5) for a fully connected
network. Assume that α > 0 and that the data points
(x(i),y(i)) are generic. Then L(ω) = 0 at any type I local
minimum.

For most data we may pair this result with its counterpart for
fully connected networks and obtain a clear picture. Desir-
able (zero loss) minima are always flat, while undesireable
(positive loss) minima are always sharp. Analyzing sub-
optimal minima therefore requires handling the non-smooth
case, and we now turn to this task.

3. Critical Point Analysis
In this section we use machinery from non-smooth analy-
sis (see chapter 6 of (Borwein & Lewis, 2010) for a good
reference) to study critical points of the loss surface of such
piecewise multilinear networks. We consider three scenarios
by traveling from the deep linear case (α = 1) and passing
through the leaky ReLU case (0 < α < 1) before arriving
at the most common case (α = 0) of ReLU networks. We
intend this journey to highlight how the loss surface changes
as the level of nonlinearity increases. A deep linear network
has a trivial loss surface, in that local and global minima
coincide (see theorem 100 in the appendix for a precise
statement and its proof). If we impose further assumptions,
namely linearly separable data in a one-hidden layer net-
work, this benign structure persists into the leaky ReLU
regime. When we arrive at α = 0 a bifurcation occurs,
and sub-optimal local minima suddenly appear in classical
ReLU networks.

To begin, we recall that for a Lipschitz but non-differentiable
function f(ω) the Clarke subdifferential ∂0f(ω) of f at a
point ω ∈ Ω provides a generalization of both the gradient
∇f(ω) and the usual subdifferential ∂f(ω) of a convex
function. The Clarke subdifferential is defined as follow (c.f.
page 133 of (Borwein & Lewis, 2010)):

Definition 2 (Clarke Subdifferential and Critical Points).
Assume that a function f : Ω 7→ R is locally Lipschitz
around ω ∈ Ω, and differentiable on Ω \M whereM is a

Figure 3. Illustration of the Clarke Subdifferential

set of Lebesgue measure zero. Then the convex hull

∂0f(ω) := c.h.

{
lim
k
∇f(ωk) : ωk → ω,ωk /∈M

}
is the Clarke Subdifferential of f at ω. In addition, if

0 ∈ ∂0f(ω), (8)

then ω is a critical point of f in the Clarke sense.

The definition of critical point is a consistent one, in that (8)
must hold whenever ω is a local minimum (c.f. page 125 of
(Borwein & Lewis, 2010)). Thus the set of all critical points
contains the set of all local minima. Figure 3 provides
an illustration of the Clarke Subdifferential. It depicts a
function f : R2 7→ R with global minimum at the origin,
which therefore defines a critical point in the Clarke sense.
While the gradient of f(x) itself does not exist at 0, its
restrictions fk := f |Ωk

to the four cells Ωk neighboring
0 have well-defined gradients ∇fk(0) (shown in red) at
the critical point. By definition the Clarke subdifferential
∂0f(0) of f at 0 consists of all convex combinations

θ1∇f1(0) + θ2∇f2(0) + θ3∇f3(0) + θ4∇f4(0)

of these gradients; that some such combination vanishes
(say, 1

2∇f1(0) + 1
2∇f3(0) = 0) means that 0 satisfies

the definition of a critical point. Moreover, an element
of the subdifferential ∂0f naturally arises from gradient
descent. A gradient-based optimization path x(j+1) =
x(j)−dt(j)∇f(x(j)) (shown in blue) asymptotically builds,
by successive accumulation at each step, a convex combina-
tion of the∇fk whose corresponding weights θk represent
the fraction of time the optimization spends in each cell.

We may now show how to apply these tools in the study of
ReLU Networks. We first analyze the leaky regime (0 <
α < 1) and then analyze the ordinary ReLU case (α = 0).

Leaky Networks (0 < α < 1): Take 0 < α < 1 and
consider the corresponding loss L(W,v,b, c) =∑

µ(i) σ
[

1− y(i)
{
vTσα(Wx(i) + b) + c

}]
(9)

associated to a fully connected network with one hidden
layer. We shall also assume the data {x(i)} are linearly
separable. In this setting we have
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Theorem 4 (Leaky ReLU Networks). Consider the loss
(9) with α > 0 and data x(i), i ∈ [N ] that are linearly
separable. Assume that ω = (W,v,b, c) is any critical
point of the loss in the Clarke sense. Then either v = 0 or
ω is a global minimum.

The loss in this scenario has two type of critical points.
Critical points with v = 0 correspond to a trivial network
in which all data points are mapped to a constant; all other
critical points are global minima. If we further assume
equally weighted classes∑

i:y(i)=1

µ(i) =
∑

i:y(i)=−1

µ(i)

then all local minima are global minima —

Theorem 5 (Leaky ReLU Networks with Equal Weight).
Consider the loss (9) with α > 0 and data x(i), i ∈ [N ] that
are linearly separable. Assume that the µ(i) weight both
classes equally. Then every local minimum of L(ω) is a
global minimum.

In other words, the loss surface is trivial when 0 < α ≤ 1.

ReLU Networks (α = 0): This is the case of paramount
interest. When passing from α > 0 to α = 0 a structural
bifurcation occurs in the loss surface — ReLU nonlinearities
generate non-optimal local minima even in a one hidden
layer network with separable data. Our analysis provides
an explicit description of all the critical points of such loss
surfaces, which allows us to precisely understand the way
in which sub-optimality occurs.

In order to describe this structure let us briefly assume that
we have a simplified model with two hidden neurons, no
output bias and uniform weights. If wk denotes the kth row
of W then we have the loss

L(W,v,b) =
1

N

∑
σ(1− y(i)ŷ(i)), where

ŷ(i) =

2∑
k=1

vkσ
(
〈wk,x

(i)〉+ bk

)
(10)

for such a network. Each hidden neuron has an associated
hyperplane 〈wk, ·〉+ bk as well as a scalar weight vk used
to form the output. Figure 4 shows three different local
minima of such a network. The first panel, figure 4(a),
shows a global minimum where all the data points have
zero loss. Figure 4(b) shows a sub-optimal local minimum.
All unsolved data points, namely those that contribute a
non-zero value to the loss, lie on the “blind side” of the two
hyperplanes. For each of these data points the corresponding
network output ŷ(i) vanishes and so the loss is σ( 1 −
y(i)ŷ(i)) = 1 for these unsolved points. Small perturbations
of the hyperplanes or of the values of the vk do not change
the fact that these data points lie on the blind side of the

(a) L = 0 (b) L = 3/10 (c) L = 10/10

Figure 4. Three different local minima of the loss L(ω) for a net-
work with two hidden neurons and standard ReLU nonlinearities.
Points belonging to class +1 (resp. -1) are denoted by circles (resp.
triangles). Data points for which the loss is zero (solved points) are
colored in green, while data points with non-zero loss (unsolved
points) are in red. The unsolved data points always lie on the blind
side of both hyperplanes.

two hyperplanes. Their loss will not decrease under small
perturbations, and so the configuration is, in fact, a local
minimum. The same reasoning shows that the configuration
in figure 4(c), in which no data point is classified correctly,
is also a local minimum.

Despite the presence of sub-optimal local minimizers, the
local minima depicted in figure 4 are somehow trivial cases.
They simply come from the fact that, due to inactive ReLUs,
some data points are completely ignored by the network, and
this fact cannot be changed by small perturbations. The next
theorem essentially shows that these are the only possible
sub-optimal local minima that occur. Moreover, the result
holds for the case (9) of interest and not just the simplified
model.

Theorem 6 (ReLU networks). Consider the loss (9) with
α = 0 and data x(i), i ∈ [N ] that are linearly separable.
Assume that ω = (W,v,b, c) is a critical point in the
Clarke sense, and that x(i) is any data point that contributes
a nonzero value to the loss. Then for each hidden neuron
k ∈ [K] either

(i) 〈wk,x
(i)〉+ bk ≤ 0, or (ii) vk = 0.

If vk = 0 then the kth hidden neuron is unused when form-
ing network predictions. In this case we may say the kth

hyperplane is inactive, while if vk 6= 0 the corresponding
hyperplane is active. Theorem 6 therefore states that if a
data point x(i) is unsolved it must lie on the blind side of
every active hyperplane. So all critical points, including
local minima, obey the property sketched in figure 4.

When taken together, theorems 5 and 6 provide rigorous
mathematical ground for the common view that dead or
inactive neurons can cause difficulties in optimizing neural
networks, and that using leaky ReLU networks can over-
come these difficulties. The former have sub-optimal local
minimizers exactly when a data point does not activate any
of the ReLUs in the hidden layer, but this situation never
occurs with leaky ReLUs and so neither do sub-optima min-
ima.
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(a) L(ω) = 0 (b) L(ω) > 0

Figure 5. Four-way classification with multiclass hinge loss (2).
At left — a global minimizer. At right — a sub-optimal local
minimizer where the analogue of theorem 6 fails.

4. Exact Penalties and Multi-Class Structure
These results give a clear illustration of how nonlinearity and
data complexity combine to produce local minimizers in the
loss surface for binary classification tasks. While we might
try to analyze multi-class tasks by following down the same
path, such an effort would unfotunately bring us to a quite
different destination. Specifically, the conclusion of theorem
6 fails for multi-class case; in the presence of three or more
classes a critical point may exhibit active yet unsolved data
points (c.f. figure 5). This phenomenon is inherent to multi-
class tasks in a certain sense, for if we use the same features
x(i,`) (c.f. (4)) in a multi-layer ReLU network but apply
a different network criterion ¯̀(y, ŷ) then the phenomenon
persists. For example, using the one-versus-all criterion

¯̀(ŷ,y) :=
∑
r µ

(i,r)σ
(

1 + ŷ
(i)
r (−1)y

(i)
r

)
, (11)

in place of the hinge loss (2) still gives rise to a network
with non-trivial critical points (similar to figure 5) despite
its more “binary” structure. In this way, the emergence of
non-trivial critical points reflects the nature of multi-class
tasks rather than some pathology of the hinge-loss network
criterion itself.

To arrive at the same destination our analysis must there-
fore take a more circumlocuitous route. As these counter-
examples suggest, if the loss L(ω) has non-trivial critical
points then we must avoid non-trivial critical points by mod-
ifing the training strategy instead. We shall employ the
one-versus-all criterion (11) for this task, as this choice will
allows us to directly leverage our binary analyses.

Let us begin this process by recalling that

x(i,L)
(
ω(1), . . . , ω(L),b(1), . . . ,b(L)

)
and ŷ(i) = V x(i,L) + c denote the features and predictions
of the network with L hidden layers, respectively. The
sub-collection of parameters

ω̆ :=
(
ω(1), . . . , ω(L),b(1), . . . ,b(L)

)
therefore determine a set of features x(i,L) for the network
while the parameters V, c determine a set of one-versus-all

classifiers utilizing these features. We may write the loss for
the rth class as

L(r)(ω̆,vr, cr) =
∑

µ(i,r)σ
(

1 + ŷ(i)
r (−1)y

(i)
r

)
(12)

and then form the sum over classes

L̄(ω) := (L(1) + · · ·+ L(R))(ω)

to recover the total objective. We then seek to minimize L̄
by applying a soft-penalty approach. We introduce the R
replicates

ω̆(r) =
(
ω(1,r), . . . , ω(L,r),b(1,r), . . . ,b(L,r)

)
r ∈ [R]

of the hidden-layer parameters ω̆ and include a soft `2-
penaltyR

(
ω̆(1), . . . , ω̆(R)) :=

R

R− 1

L∑
`=1

R∑
r=1

‖ω(`,r) − ω̄(`)‖2 + ‖b(`,r) − b̄(`)‖2

to enforce that the replicated parameters ω(`,r),b(`,r) re-
main close to their corresponding means (ω̄(`), b̄(`)) across
classes. Our training strategy then proceeds to minimize the
penalized loss Eγ

(
ω(1), . . . ,ω(R)

)
:=∑

r L(r)
(
ω(r)

)
+ γR

(
ω̆(1), . . . , ω̆(R)) (13)

for γ > 0 some parameter controlling the strength of the
penalty. Remarkably, utilizing this strategy yields

Theorem 7 (Exact Penalty and Recovery of Two-Class
Structure). If γ > 0 then the following hold for (13) —

(i) The penalty is exact, that is, at any critical point(
ω(1), . . . ,ω(R)

)
of Eγ the equalities

ω(`,1) = · · · = ω(`,R) = ω̄(`) :=
1

R

R∑
r=1

ω(`,r)

b(`,1) = · · · = b(`,R) = b̄(`) :=
1

R

R∑
r=1

b(`,r)

hold for all ` ∈ [L].
(ii) At any critical point of Eγ the two-class critical point

relations 0 ∈ ∂0L(r)(ω̆,vr, cr) hold for all r ∈ [R].

In other words, applying a soft-penalty approach to minimiz-
ing the original problem (12) actually yields an exact penalty
method. By (i), at critical points we obtain a common set
of features x(i,L) for each of the R binary classification
problems. Moreover, by (ii) these features simultaneously
yield critical points

0 ∈ ∂0L(r)
(
ω̆,vr, cr

)
(14)

for all of these binary classification problems. The fact
that (14) may fail for critical points of L̄ is responsible
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for the presence of non-trivial critical points in the con-
text of a network with one hidden layer. We may there-
fore interpret (ii) as saying that a training strategy that uses
the penalty approach will avoid pathological critical points
where 0 ∈ ∂0L̄(ω) holds but (14) does not. In this way
the penalty approach provides a path forward for studying
multi-class problems. Regardless of the number L of hidden
layers, it allows us to form an understanding of the fam-
ily of critical points (14) by reducing to a study of critical
points of binary classification problems. This allows us to
extend the analyses of the previous section to the multi-class
context.

We may now pursue an analysis of multi-class problems
by traveling along the same path that we followed for bi-
nary classification. That is, a deep linear network (α = 1)
once again has a trivial loss surface (see corollaries 100 and
101 in the appendix for precise statements and proofs). By
imposing the same further assumptions, namely linearly sep-
arable data in a one-hidden layer network, we may extend
this benign structure into the leaky ReLU regime. Finally,
when α = 0 sub-optimal local minima appear; we may
characterize them in a manner analogous to the binary case.

To be precise, recall the loss

L(ω) =

R∑
r=1

L(r)(ω
)

for (15)

L(r)(ω) :=
∑

µ(i,r)σ
(
1− y(i,r)(〈vr,x(i,1)〉+ cr)

)
that results from the features x(i,1) = σα(Wx(i) + b) of a
ReLU network with one hidden layer. If the positive weights
µ(i,r) > 0 satisfy∑

y(i,r)=1

µ(i,r) =
∑

y(i,r)=−1

µ(i,r) =
1

2

then we say that the µ(i,r) give equal weight to all classes.
Appealing to the critical point relations (14) yields the fol-
lowing corollary. It gives the precise structure that emerges
from the leaky regime 0 < α < 1 with separable data —

Corollary 3 (Multiclass with 0 < α < 1). Consider the
loss (15) and its corresponding penalty (13) with γ > 0, 0 <
α < 1 and data x(i), i ∈ [N ] that are linearly separable.

(i) Assume that ω = (ω(1), . . . ,ω(R)) is a critical point of
Eγ in the Clarke sense. If v(r) 6= 0 for all r ∈ [R] then
ω is a global minimum of L and of Eγ .

(ii) Assume that the µ(i,r) give equal weight to all classes.
If ω = (ω(1), . . . ,ω(R)) is a local minimum of Eγ and
vr = 0 for some r ∈ [R] then ω is a global minimum
of L and of Eγ .

Finally, when arriving at the standard ReLU nonlinearity
α = 0 a bifurcation occurs. Sub-optimal local minimizers of

Eγ can exist, but once again the manner in which these sub-
optimal solutions appear is easy to describe. We let `(i,r)(ω)
denote the contribution of the ith data point x(i) to the loss
L(r) for the rth class, so that L(r)(ω) =

∑
i µ

(i,r)`(i,r)(ω)
gives the total loss. Appealing directly to the family of
critical point relations 0 ∈ ∂0L(r)

(
ω̆,vr, cr

)
furnished by

theorem 7 yields our final corollary in the multiclass setting.
Corollary 4 (Multiclass with α = 0). Consider the loss
(15) and its corresponding penalty (13) with γ > 0, α = 0
and data x(i), i ∈ [N ] that are linearly separable. Assume
that ω = (ω(1), . . . ,ω(R)) is any critical point of Eγ in the
Clarke sense. Then `(i,r) > 0

=⇒ (vr)k σ(〈wk,x
(i)〉+ bk) = 0 for all k ∈ [K].

5. Conclusion
We conclude by painting the overall picture that emerges
from our analyses. The loss of a ReLU network is a multi-
linear form inside each cell. Multilinear forms are harmonic
functions, and so maxima or minima simply cannot occur in
the interior of a cell unless the loss is constant on the entire
cell. This simple harmonic analysis reasoning leads to the
following striking fact. ReLU networks do not have differ-
entiable minima, except for trivial cases. This reasoning is
valid for any convolutional or fully connected network, with
plain or leaky ReLUs, and with binary or multiclass hinge
loss. Dealing with non-differentiable minima is therefore
not a technicality; it is the heart of the matter.

Given this dichotomy between trivial, differentiable minima
on one hand and nontrivial, nondifferentiable minima on
the other, it is natural to try and characterise these two
classes of minima more precisely. We show that global
minima with zero loss must be trivial, while minima with
nonzero loss are necessarily nondifferentiable for many fully
connected networks. In particular, if a network has no zero
loss minimizers then all minima are nondifferentiable.

Finally, our analysis clearly shows that local minima of
ReLU networks are generically nondifferentiable. They
cannot be waved away as a technicality, so any study of
the loss surface of such network must invoke nonsmooth
analysis. We show how to properly use this machinery
(e.g. Clark subdifferentials) to study ReLU networks. Our
goal is twofold. First, we prove that a bifurcation occurs
when passing from leaky ReLU to ReLU nonlinearities,
as suboptimal minima suddenly appear in the latter case.
Secondly, and perhaps more importantly, we show how to
apply nonsmooth analysis in familiar settings so that future
researchers can adapt and extend our techniques.
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