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Neural Machine Translation is the primary algorithm used in industry to perform
machine translation. This state-of-the-art algorithm is an application of deep learning in

which massive datasets of translated sentences are used to train a model capable of
translating between any two languages. The architecture behind neural machine

translation is composed of two recurrent neural networks used together in tandem to
create an Encoder Decoder structure. Attention mechanisms have recently been

developed to further increase the accuracy of these models. In this senior thesis, the
various parts of Neural Machine Translation are explored towards the eventual creation

of a tutorial on the topic. In the first half of this paper, each of the aspects that go into
creating a NMT model are explained in depth. With an understanding of the mechanics
of NMT, the second portion of this paper briefly outlines enhancements that were made
to the PyTorch tutorial on NMT to create an updated and more effective tutorial on the

topic.
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CHAPTER 1

Introduction

As technology continues to advance, the world becomes more and more connected. Physical
distance is no longer as big of a roadblock as it once was; allowing people to connect with one
another over a number of different social platforms. Yet, while distance may not divide us like
it once did, the vast number of spoken languages continues to make universal communication
difficult. With over 30 languages with 50 million or more speakers in the world,1 language
barriers are a common occurrence that hinder communication and collaboration all across the
globe. And while translators have been effectively overcoming these barriers for centuries,2 the
demand for translation far outweighs the supply of translators available. However, just as it
helped overcome the roadblock of physical distance, technology is continually improving our
ability to overcome language barriers as well. Currently, the most effective manner by which
technology is able to accomplish this task is through neural machine translation (NMT). In fact,
NMT is the algorithm behind the globally utilized Google Translate system.

While NMT is a relatively new concept, the idea of machine translation has been studied
on-and-off for several decades. Warren Weaver was the first to propose the idea of machine
translation in 1949.3 Weaver was inspired by the concepts of code breaking from WWII and
the idea of an underlying similarity between all languages. Since the conception of machine
translation in 1949, research on the topic has transitioned through several active and stagnant
periods. Before NMT, statistical machine translation (SMT) provided the most state-of-the-
art results. While many initially believed that SMT would eventually become the answer to
machine translation, several issues, including the number of components that went into a single
translation model and the lack of generalizability of a model, stagnated SMT progress and
prevented SMT from ever providing perfect translations.

After multiple decades of SMT research, in the past five years NMT has arose as a far
superior method at performing the task of machine translation. The rise of neural machine
translation is due in large part to the increasing popularity of deep learning and the advanced
power of GPUs and computers. Cho et. al was the first group to propose the concept of NMT
in their paper ”Learning Phrase Representations using RNN Encoder-Decoder for Statistical

1Ethnologue Languages of the World, ed. Summary by language size. https://www.ethnologue.
com/statistics/size. [Online; accessed 2-April-2019]. 2019.

2Jean Delisle and Judith Woodsworth. Translators through History: Revised edition. Vol. 101. John Ben-
jamins Publishing, 2012.

3Fatemeh Nahas. “A Brief Review of Neural Machine Translation (NMT)”. in: SAMPLE TRANSLATIONS (),
p. 15.

1



1. INTRODUCTION 2

Machine Translation”.4 In the paper, Cho et. al proposed the use of two separate RNN networks
to perform machine translation, a structure they called an RNN Encoder-Decoder. While the
paper initially garnered little attention, it eventually led to a revolution in machine translation.
The power of NMT was first introduced to the public at the 2015 OpenMT machine transla-
tion competition, where the model was so successful that over 90% of teams utilized the NMT
structure in the following year’s 2016 OpenMT competition.5 Now, five years since its concep-
tion, NMT has taken off, capturing the attention of tech giants like Google and Facebook as the
cutting edge technology in machine translation. This paper will investigate the mechanics and
mathematical foundations of the NMT Encoder-Decoder architecture. Furthermore, this paper
will look into the recent trend of attention-mechanisms and the added benefit they provide to
NMT. Finally, the research portion of this paper will critique and enhance the current neural
machine translation tutorial on the PyTorch website. PyTorch is one of the two most widely
used machine learning libraries in Python (with TensorFlow being the other). And while the
current PyTorch tutorial on machine translation does an adequate job of building a tutorial level
translation model, there are several areas for improvement in both the explaining of the topics
and the actual implementation of the code.

4Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder for statistical machine
translation”. In: arXiv preprint arXiv:1406.1078 (2014).

5Ondřej Bojar et al. “Findings of the 2016 conference on machine translation”. In: Proceedings of the First
Conference on Machine Translation: Volume 2, Shared Task Papers. Vol. 2. 2016, pp. 131–198.



CHAPTER 2

Background and Review

The RNN Encoder-Decoder structure is composed of two separate RNN networks: the en-
coder and the decoder. Towards understanding how this architecture works, it is first essential to
understand the basics behind neural networks and recurrent neural networks (RNN). Therefore,
this background section will first cover the fundamentals of a neural network and the key dis-
tinctions that make a neural network a recurrent neural network. From there, this section will
take a brief look at the data processing technique of One Hot Encoding before finally diving
into the Encoder-Decoder structure. Lastly, this section will discuss Long-Short Term Mem-
ory RNNs and Attention mechanisms; two concepts which vastly improve the effectiveness of
NMT.

2.1. Neural Network

The objective of any neural network is to train a set of learnable parameters to perform
prediction tasks on inputted data. Any dataset used to train a model is made up of input data x

composed of Lx features and an output target, y. In simpler machine learning tasks, this output
target, y, is a single number corresponding to a value or class. However, in more complicated
machine learning tasks, such as machine translation, this output target, y, is composed of Ly

features. Before training begins, preprocessing of the data is performed. In general, for any
machine learning task using a neural network the steps are as follows:

(1) Any preprocessing steps needed to make non-numeric data interpretable by computers
are performed (see One Hot Encoding).

(2) The data is split into Train, V alidation, and Test sets. A typical split is around
70%:20%:10%.

(3) Train data is split into mini-batches for training purposes.
With the data prepared, the training process can begin. At the most basic level, the process of
training a machine learning model is made up of 4 separate steps. When working with a train
set size n, the first step of a neural network is to take an input xi for i 2 [1, n] and predict a
label ŷi (1).

ŷi = softmax(Wxi) (1)

In (1), W is referred to as a weight matrix, and is composed of a number of learnable parameters.
Since the objective of W is to predict yi for xi, the dimensions of W in the above example are
(Ly, Lx). In this way, the matrix-vector multiplcation Wxi transforms the input vector of length
Lx (the number of input features) into a vector of length Ly (the number of classes). The softmax
function (2) then computes the probability of each class (c). With these predicted classes, the

3



2.1. NEURAL NETWORK 4

second step in the training process is to compute a loss li from the computed ŷi (3).

P (cj) =
e
cj

PLy

k=1 e
ck

8 class cj where j 2 [1, Ly] (2)

li = LossFunction(ŷi, yi) (3)
The LossFunction can be a number of different functions that analyze the accuracy of the
predicted ŷ. Now, the third step of the training process is to repeat steps (1) and (2) on xi for
every i 2 [1, n] and take a summation over li to obtain a total loss L for a single loop through
the entire dataset (4). A complete run through every training point in the dataset is referred to
as a single epoch.

L =
nX

i=1

li (4)

Now, we can use this L to update W , the final step of the training process. L is differentiated
with respect to W to obtain @L/@W . Since L is being differentiated by W , @L/@W will
retrieve a different gradient for each value in W , thus, @L/@W will be a matrix the same size
as W with each index corresponding to the gradient of the loss with respect to the weight in W

at that particular index. Therefore, we can use @L/@W to update W (5).

W = W � lr(@L/@W ) (5)

lr is a hyperparameter referred to as the learning rate and determines by how much to update
W .

Once complete, these four steps are performed iteratively for a specified number of epochs
to train the model. These four steps which make up the process of training the network are
depicted in Figure 1.

In order to track the progress of the training process, the accuracy of the model on the
validation set is computed at predetermined points in the training (ex. every 5 training loops).
This is done by computing the loss on the validation set, Lval exactly like in the training steps 1-
3. Thus, the only difference between this process and the training process performed on the train
set is that step 4 of the training process, where the parameters of the weight matrices are updated,
is not performed. By calculating this loss, Lval, at points throughout training, the ability for the
model to accurately make predictions on data beyond the train set can be tracked. This step
is crucial in avoiding issues such as overfitting. Finally, once the training process is complete,
the loss is computed on the test set, Ltest, as another way of determining the effectiveness of
the model. While the loss on the validation set, Lval, should represent the model’s ability to
generalize to data outside of the training set, the test set is used at the completion of the entire
training process as a way of exposing the model to data it has never before seen and thus double
checking this characteristic.

While it is generally good practice to use both a validation set and a test set, oftentimes a
validation set is not used. This allows for more data to be used in the train set (for example
an 80%:20% train set:test set split is common). If this method is employed, the accuracy of
the model is just computed on the test set, rather than the validation set, at predetermined
points in training. And while this does slightly decrease the ability to determine how the model
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FIGURE 1. The training process for a one-layer neural network.

generalizes to outside data, it oftentimes is the superior method due to the increased training set
size.

As an important note, in the above example, since there was only a single weight matrix W ,
this type of network is referred to as a one-layer neural network. However, in the application
of deep learning, several of these weight matrices are applied to the input data, with non-linear
functions between them, before a prediction vector is calculated. While this paper will not cover
this topic in detail, it is important to mention as it is the standard in neural networks today.

2.2. Recurrent Neural Network

In the task of neural machine translation, the input data comes in the form of time-series
data. Recurrent Neural Networks are a particular type of neural network designed specifically
to deal with the intricacies of temporal data. In the case of time-series data,1 the input of each
training point, xi, consists of a number of sequential data points xit=1 , xit=2 , ..., xit=Lx

of equal
size, where Lx is the length of the time-series. Just like a standard neural network, the aim of a
RNN is to predict the label yi for each xi. Training a RNN is very similar to training a standard
neural network, with just slight modifications to steps 1 and 4 outlined in the Neural Network

1David E Rumelhart et al. “Sequential thought processes in PDP models”. In: Parallel distributed processing:
explorations in the microstructures of cognition 2 (1986), pp. 3–57.
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FIGURE 2. Predicting a label using a RNN.

section above.2 In step 1 of training, an RNN analyzes each data point xit=1 , xit=2 , ..., xit=Lx
in

consecutive order and stores information in a hidden vector, ht, to ultimately make a prediction,
ŷi, at the end of the sequence. ht=0 is initialized to a zero vector, and updated at each time step
t (6).

ht = �(Rht�1 +Wxit) (6)
In (6), R and W are weight matrices and � is a non-linear function such as tanh or sigmoid.
Using this architecture, the hidden vector ht captures the important information from the time
series data by being updating at each time step t. Thus, at any time step s < Lx, the hidden
state ht=s contains information about the data points xit=1 up to xit=s . In this way, at any time
step s, the hidden vector, ht=s, can be used to create a prediction, ŷi. This prediction vector is
created just as in the first step of training a standard neural network (7).

ŷi = softmax(Uht=s) (7)

Where U is another weight matrix which converts the size of hs to the size of the possible
outcome classes. The modified first training step for a RNN is shown in Figure 2. Now, using
this ŷi, steps 2 and 3 of training a RNN are exactly the same as training a standard neural
network in that (2) the loss is computed for ŷi and (3) steps 1 and 2 are repeated for each
training example and the losses are summed together to obtain a total loss L. With this L, a

2Minh-Thang Luong. “Neural Machine Translation”. In: (2016). (Unpublished doctoral dissertation) and
[Online; accessed 27-March-2019].
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slightly modified step 4 is conducted to update all of the weight matrices W , R, and U . In
particular, L is differentiated with respect to each weight matrix and used to update each matrix
(8).

W = W � lr(@L/@W )
R = R� lr(@L/@R)
U = U � lr(@L/@U)

(8)

Just as in any neural network, this process is then repeated for multiple epochs in order to train
the RNN model. With an understanding of the structure of a RNN, let’s turn our attention to-
wards the topic of neural machine translation. However, we must first address how we transform
text data into computationally friendly data.

2.3. One Hot Encoding

In machine translation, we are given a sentence in one language and tasked with translating
the sentence to another language. The most obvious roadblock with machine translation is the
issue of performing machine learning with textual data. The answer to this issue is one hot
encoding, which involves converting each word in the dataset into a vector with a 0 at every
index with the exception of a single 1 at the index corresponding to that particular word.3 To
determine the size of these one hot encoding vectors, a separate vocabulary is created for both
the input and output languages. Ideally, these vocabularies would be every unique word in
each of these respective languages. However, given that a single language can have millions
of unique words, vocabularies often consist of a subset of the most common words in each
language. Typically, these vocabularies are allowed to be in the hundreds of thousands (if not
millions) of words for each language. But, for the sake of example, let’s let the vocabulary
for our input language (English) consists of the words in Table 1. We are then able to use this
vocabulary to make one-hot encoding vectors for each of the word in the input language where
each vector will be the same size as the input vocabulary. For example, if one of our input
sentences is ”the blue whale ate the red fish” the one hot encoding vectors for this sentence are
shown in and Figure 3

The start of sentence, <SOS>, and end of sentence, <EOS>, tags are added to the vocab-
ulary to denote the start and end-points of sentences. These tags become important during the
training process, which will become apparent in the next section. And, while not shown here,
this same process must be done to the output sentences of the dataset (i.e. the ys).

2.4. Encoder-Decoder

With a way to transform textual data into numerical vectors, we can now begin the task of
NMT. The training set for an RNN translating from language A to language B is composed of
pairs of an input sentence in language A (the xi) and target sentence in language B (the yi) (9).

xi = xit=1 , xit=2 , ..., xit=Lx
| Lx = length(input sentence)

yi = yit=1 , yit=2 , ..., yit=Ly
| Ly = length(output sentence) (9)

3Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation”,
op. cit.
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TABLE 1. Input Language Vocabulary

a 0
the 1
red 2
orange 3
blue 4
black 5
fish 6
whale 7
beaver 8
ate 9
drank 10
<SOS> 11
<EOS> 12

the =

2

66666666666666666664

0
1
0
0
0
0
0
0
0
0
0
0
0

3

77777777777777777775

blue =

2

66666666666666666664

0
0
0
0
1
0
0
0
0
0
0
0
0

3

77777777777777777775

whale =

2

66666666666666666664

0
0
0
0
0
0
0
1
0
0
0
0
0

3

77777777777777777775

ate =

2

66666666666666666664

0
0
0
0
0
0
0
0
0
1
0
0
0

3

77777777777777777775

the =

2

66666666666666666664

0
1
0
0
0
0
0
0
0
0
0
0
0

3

77777777777777777775

red =

2

66666666666666666664

0
0
1
0
0
0
0
0
0
0
0
0
0

3

77777777777777777775

fish =

2

66666666666666666664

0
0
0
0
0
0
1
0
0
0
0
0
0

3

77777777777777777775

FIGURE 3. One hot encoding of ”the blue whale ate the red fish.”

The obvious difference between this dataset and the type used in the RNN section is the fact that
the target, yi, is a variable length vector rather than a single label. In order to combat this issue,
NMT utilizes the Encoder-Decoder architecture.4 In this structure, a first RNN (the encoder)
analyzes the input sentence and passes its final hidden state, hE

t=Lx
, onto a second RNN (the

decoder) to use as its first hidden state, hD
t=0. For example, if we wanted to translate the English

sentence ”the blue whale ate the red fish” to the French sentence ”la baleine bleue a mangé
le poisson rouge”, the encoder portion of this translation would take ”the blue whale ate the
red fish” as input, and feed its final hidden vector, hE

t=7 (t = 7 because the sentence is 7 words

4Ibid.
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FIGURE 4. Encoder portion of NMT

long), to the decoder to use as its first hidden vector hD
t=0 (Figure 4). On the decoder portion of

the Encoder-Decoder, a separate RNN predicts words for the variable length output statement
ŷi. In the first time step, the h

D
t=0, retrieved from the encoder, and the <SOS> token, which is

used as the first input vector xit=1 , are used to compute h
D
t=1. However, unlike the vanilla RNN

described in the RNN section, the decoder outputs a predicted word for each time step t up to
Ly. Thus, the Decoder uses the hidden state hD

t=1 to compute a predicted word ŷit=1 in the same
manner as the final step of a vanilla RNN ((10) & Figure 5).

ŷit=1 = softmax(UD
h
D
t=1) (10)

With this prediction vector, ŷit=1 , a loss is computed for the first word, where yit=1 is the correct
word for that output sentence at t = 1 (11).

li = LossFunction(ŷit=1 , yit=1) (11)

When testing the model, the index with the highest value in the prediction vector, ŷit=1 , de-
termines what word becomes the next input vector, xit=2 . However, during training, a more
common procedure, referred to as Teacher Forcing, is used to speed up the training process.
In teacher forcing, rather than using the predicted word, the Decoder simply inputs the correct
word, yit=1 , as the next input vector, xit=2 . This process is then carried out Ly times until a
prediction vector has been created for each word in the output sentence (Figure 6).

The losses for each word are summed to obtain a loss for the whole sentence, and this
process is repeated for each word in the training set to obtain a total loss L. From here, L is
differentiated with respect to each weight matrix and used to update both the Encoder’s and the
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FIGURE 5. First step of Decoder

FIGURE 6. Decoder portion of NMT
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Decoder’s weights (12).
W

E = W
E � lr(@L/@WE)

R
E = R

E � lr(@L/@RE)
W

D = W
D � lr(@L/@WD)

R
D = R

D � lr(@L/@RD)
U

D = U
D � lr(@L/@UD)

(12)

Now, with an understanding of NMT, let’s take a look at a more sophisticated RNN architecture
which will go a long way in improving the results of machine translation.

2.5. Long Short-Term Memory

The Long Short-Term Memory (LSTM) architecture is perhaps the most widely used RNN
structure in large part due to its effectiveness at dealing with the issue of vanishing gradients.5
LSTM is modeled after the traditional RNN format, but incorporates a number of ”gates,” which
work together with a memory cell, to smooth the back-propagation procedure and create a
seamless flow through the network. In particular, at any time step t = s the LSTM structure
updates the hidden state, ht=s, by incorporating information from the current input vector, xt=s,
the previous hidden state, ht=s�1, and an additional memory cell, ct=s. In order to conduct this
update, three separate gates, known as the input gate (i), forget gate (f ), and the output gate
(o), are used to determine how much information to draw from the current input versus how
much information to draw from the memory cell. All three of these gates are calculated using
information from the current input vector, xt=s, and the previous hidden state, ht=s�1. To use
information from each of these vectors, they are concatenated together [ht=s�1, xt=s]; meaning
the xt=s vector of size Xx1 is added to the end of the ht=s�1 vector of size Hx1 to create a
vector of size (H + X)x1. A separate weight matrix for each gate is then used to transform
this concatenated vector, [ht=s�1, xt=s], into a vector the same size as the memory cell, and
each of these transformed vectors are then passed through a � function to produce a vector with
weighted indices that sum to one (13).

i = �(Wi[ht=s�1, xt=s])
f = �(Wf [ht=s�1, xt=s])
o = �(Wo[ht=s�1, xt=s])

(13)

Before these gates can be used, the current input vector xt=s and the previous hidden state,
ht=s�1 are used to generate a c̃t=s (14).

c̃t=s = tanh(Wc̃[ht=s�1, xt=s]) (14)

Now, the gates and c̃ are used to calculate a new ct=s which is subsequently used with ct=s�1 to
generate a hidden state ht=s (15).

ct=s = (i ⇤ c̃t=s) + (f ⇤ ct=s�1)
ht=s = o ⇤ tanh(ct=s)

(15)

5Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. “LSTM neural networks for language modeling”. In:
Thirteenth annual conference of the international speech communication association. 2012.
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FIGURE 7. First step of LSTM

FIGURE 8. Encoder of NMT with LSTM

In equation 15, the ⇤ symbol signifies element wise multiplication; meaning the corresponding
indices of each of the vectors are multiplied together. Figure 7 puts all these steps together into
a visualization of the first step of an LSTM.

Replacing this LSTM architecture with the vanilla RNN in the NMT section above, the full
Encoder can be visualized as in Figure 8. This same substitution is performed for the Decoder
RNN to convert an NMT model into a full LSTM NMT architecture. The other steps of training
remain exactly the same, with predictions computed from the hidden vector, ht, and the total
loss, L, determined from these predictions. The total loss is then differentiated with respect to
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each of the weight matrices in the encoder and the decoder and updated as in (16).
W

E
i = W

E
i � lr(@L/@WE

i )
W

E
f = W

E
f � lr(@L/@WE

f )
W

E
o = W

E
o � lr(@L/@WE

o )
W

E
c̃ = W

E
c̃ � lr(@L/@WE

c̃ )
Wi[D= W

D
i � lr(@L/@WD

i )
W

D
f = W

D
f � lr(@L/@WD

f )
W

D
o = W

D
o � lr(@L/@WD

o )
W

D
c̃ = W

D
c̃ � lr(@L/@WD

c̃ )
U

D = U
D � lr(@L/@UD)

(16)

Along with creating a more seamless flow back through the network for back-propagation,
by creating the ht at each time-step t using both information from the input vector, xt, and
the memory cell state from the previous time step, ct�1, LSTMs also helps preserve long term
dependencies that often exist in time series data. This is a highly desirable trait of a MT model
given that oftentimes in the task of machine translation a word towards the end of the sentence
may be highly dependent on a word towards the beginning of the sentence. It is because of
these numerous advantages that the LSTM architecture was chosen to perform the task of NMT
in this research.

2.6. Attention Mechanism

Perhaps the most difficult aspect of machine translation is handling longer pieces of text.
Given the time-step nature of the RNN structures used in machine translation, the longer the
input sentence, the more steps needed by an encoder to create a thought vector, hE

t=Lx
, to be

inputted into a decoder . Furthermore, the longer the input sentence becomes, the more in-
formation that needs to be stored in this thought vector and then subsequently decoded by the
decoder. While a sentence as short as shown below would probably not cause major problems
for a simple machine translation architecture, for the sake of example let’s consider translating
the following sentence from English to French:

The black cat ran across the pond. >> Le chat noir a traversé l’étang.
Observe how in this sentence, similar to most sentences from English to French, the words

towards the beginning of the English sentence seem to correspond well with the words towards
the beginning of the French sentence (the=le, black=noir, cat=chat, etc.). Thus, it can be un-
derstood how when the sentence becomes longer, it may be difficult for the encoder to preserve
information from the beginning of the sentence in the thought vector it produces and passes onto
the decoder. Subsequently, the decoder is provided with little information on how it should start
its outputted sentence. In order to combat this issue, it had previously been found beneficial
to reverse the order of the input sentence in order to move the words thats correspond to the
first words of the outputted sentence closer to the end of the encoder; ensuring that information
on these first few words becomes encoded in the thought vector and passed onto the decoder.6

6Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with neural networks”. In:
Advances in neural information processing systems. 2014, pp. 3104–3112.
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However, while this method has minimal success with translating between some languages, it
does not generalize well to translation between all languages (given that the sentence structure
of languages varies greatly). Furthermore, this method sacrifices quite a bit of the information
from the end of the input sentence, as that information is inputted first into the encoder and is
oftentimes not accessed again until the end of the output sentence, creating several steps over
which this information often becomes lost.

A more full-proof fix to the issue of translating long pieces of text, the attention mechanism
proposed by Bahdanau in 2014,7 has become the standard in machine translation attention ar-
chitecture. In general, Luong’s attention mechanism utilizes the hidden states outputted by the
encoder at each time step, rather than just the final thought vector. In doing so, the decoder can
”refer back” to the source sentence at each step to help determine which parts of the inputted
sentence are most helpful in determining what the next outputted word should be. In general,
the attention mechanism gives heavier weights to encoder hidden states which more closely
resemble the current hidden state.This is done by computing a context vector dt, at each time
step t in the decoder, as a weighted average over a selection of the hidden states outputted from
the encoder. This weighted average is computed by first creating an alignment vector, at, whose
length corresponds to the number of source hidden states the weighted average is being taken
over. This at is computed (17) by comparing the similarity between the current hidden state,
h
D
t , and each separate encoder hidden state, hE

t0 , being considered.

at[s] =
exp(score(hD

t , h
E
t0=s))PLx

⌧=0 exp(score(h
D
t , h

E
t0=⌧ ))

8s 2 [0, Lx] (17)

Where hD
t is the current hidden state being inputted into the decoder, hE

t0=⌧ is an encoder hidden
state for some time-step ⌧ , Lx is the number of encoder hidden states which are being weighted
over, and exp is the exponential function. By computing an element at[s] 8s 2 [0, Lx], at
becomes a vector of size Lxx1. Finally, in (17), score is the function which computes the
similarity between the hidden states, and can be one of a variety of different forms (18).

score(hD
t , h

E
t⇤) = (hD

t )
T(hE

⌧ ) (dot)
score(hD

t , h
E
t⇤) = (hD

t )
T(Wah

E
⌧ ) (general)

score(hD
t , h

E
t⇤) = V

T
a tanh(Wa[hD

t : hE
⌧ ]) (concatenation)

(18)

In the general and concatenation score functions, Wa and Va are learnable weight matrices.
Using these attention scores, Luong proposed two attention mechanisms; global and local.

The global approach is the simpler form of attention and the one which will be covered in this
paper. For details on local attention refer to (Luong et al., 2015).8

Global attention considers all parts of the input sequence, using information from each
of the hidden states in the encoder to help predict each of the target words. In order to use
information from every encoder hidden state, the softmax function is used to take a weighted
average over all of the indices in at to create a vector, a0t, whose indices sum to one. In this way,

7Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by jointly learning to
align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).

8Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective approaches to attention-based
neural machine translation”. In: arXiv preprint arXiv:1508.04025 (2015).



2.6. ATTENTION MECHANISM 15

FIGURE 9. Step 1 of Decoder using Global Attention

each index at[s] where s 2 [0, Lx] corresponds to the weight of that encoder hidden state, hE
t=s

. Thus, the context vector, dt, is simply the weighted average over all the source hidden state’s
h
E
t0=s 8s 2 [0, Lx] (19).

a
0
t = softmax(at)

dt =
PLx

s=0 a
0
t[s] ⇤ hE

t0=s

(19)

This context vector dt is then used along with the the decoder hidden state, hD
t , to compute h̃

D
t ,

which takes the place of hD
t as the outputted hidden state (20).

h̃
D
t = tanh(Wh̃[dt : h

D
t ]) (20)

From here the prediction vector, ŷt, is computed by simply replacing the h
D
t with the new h̃

D
t

(21)
ŷi = softmax(Uh̃

D
t ) (21)

h̃
D
t also replaces hD

t as the hidden state fed to the next step step t+1 in the RNN. The attention
mechanism in the first step of the decoder is depicted in Figure 9.



CHAPTER 3

Experimental Design

In order to apply the above concepts, this research took on the task of enhancing the PyTorch
tutorial on neural machine translation titled ”Translation with a Sequence to Sequence Network
and Attention”.1 While this tutorial employs an encoder-decoder structure and utilizes an at-
tention mechanism, there are a number of faults in the implementation of this code. Primarily,
while this code runs well on a CPU, it does not have the ability to harness the parallel comput-
ing power of a GPU. Particularly, there is no option to batchify the data in order to speed up
the training process. Additionally, the PyTorch tutorial used a gated recurrent network, rather
than the long-short term memory recurrent neural network discussed in this paper. While the
performance difference between these two types of RNN architectures is often insignificant,
recent findings suggests that LSTM models with large forget biases outperform GRU models.2

Finally, and perhaps the most significant flaw of the tutorial, is that the model trained in the
tutorial is never run on a test set. Thus, there is no way of knowing if the model has any ability
to generalize to data outside of the test data.

In this project, the above enhancements were made to the PyTorch tutorial on machine
translation. The following sections outline the dataset used, the model specifications, and the
results of these enhanced models.

3.1. Dataset

The dataset used in this experiment was the same dataset employed by the PyTorch tutorial
itself. This dataset was compiled by Tatoeba and consists of 167,130 sentence pairs of French
and English. While not nearly as large as the datasets used to train state of the art models, this
dataset provides a sufficient amount of sentence pairs to train a neural machine translation model
with limited capabilities. In the case of the translation task at hand, we worked to generate a
model that translated from French to English.

3.2. Initial Experiment

As a way of ensuring that the PyTorch tutorial results could be reproduced with the proposed
enhancements, the preliminary experiment of this study directly compared the results of the
enhanced model with the original PyTorch tutorial model. A direct comparison of the two model

1Sean Robertson. Translation with a Sequence to Sequence Network and Attention. Ed. by PyTorch. https:
//pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html. [On-
line; accessed 17-April-2019]. 2017.

2Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. “An empirical exploration of recurrent network
architectures”. In: International Conference on Machine Learning. 2015, pp. 2342–2350.
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TABLE 1. Model Architectures Comparison

PyTorch Model My Model
Hidden Size 256 440
Bidirectional False True

Number of Layers 1 2
Dropout 0.1 0.2

Batch Size 1 32
Learning Rate 0.01 1

TABLE 2. Start of Sentence Filters

i am i’m
he is he’s
she is she’s

you are you’re
we are we’re

they are they’re

architectures is outlined in Table 1. In order to replicate the PyTorch tutorial, the enhanced
model was trained on the same subset of the data as the tutorial model. This subset consisted
of all sentences from the whole dataset that were ten words or less in length and the english
sentence began with one of the word/words in Table 2. With these filters applied to the dataset,
the set was trimmed to 10,853 sentence pairs of 2,926 unique French words and 4,490 unique
English words. And, as referenced above, there was no test set used by the tutorial, and thus
this subset was not split into a train and test pair; rather all pairs were used as a train set. Each
of these models was trained using this smaller training set for 40 minutes on a GPU, and the
cross entropy loss of each model at various points of the training process was collected. These
losses are depicted in Figure 1. From this graph it is apparent that the enhanced model trained
at a much faster rate, achieving a loss significantly lower than the PyTorch tutorial model in
the 40 minute training period. The majority of this performance gain presumably came from
the enhanced model’s ability to utilize the parallel computing power of the GPU by training in
batches, while the original PyTorch tutorial model still only trained with a batch size of one
even on the GPU.

In a more qualitative sense, the superiority of the enhanced model can be seen in the trans-
lation of select sentence pairs from the training set. Table 3 below depicts this with two seperate
sentence pairs from the training set. These examples work to show how in the short 40 minute
training period, the enhanced model was able to develop a model more effective on translating
sentences from the training set and thus a model that was fit better to the training data. Yet,
despite this improvement, when attempting the translate sentences outside of the training set
(especially sentences longer than ten words), the enhanced model performed quite poorly. For
example, Table 4 shows an example translation of a sentence outside of the training set. (In
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FIGURE 1. Cross Entropy Losses of PyTorch Model vs My Model during 40
Minute Training Period

TABLE 3. Sample Translations from Training Set

Input Sentence je suis en bequilles pour un mois . elles sont dingues de jazz .
Correct Target Sentence i m on crutches for the next month . they are crazy about jazz .

PyTorch Tutorial
Model Translation i m on business to go this . . they re crazy about it .

My Model
Translation i m on crutches for the next month . they are crazy about jazz .

Table 4, the last column of the PyTorch Tutorial Model Translation row is empty because the
PyTorch tutorial model is unable to handle sentences longer than ten words in length.) Thus the
second part of this experiment aimed to improve the enhanced model’s ability to generalize to
sentences outside of the dataset.
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TABLE 4. Sample Translations of Sentences Outside the Train Set

Input Sentence je suis en bequilles pour un mois . j’ai fait très attention à ne pas réveiller
le chien quand je suis parti tôt ce matin .

Correct Target Sentence i hope you have an incredible day . i was very careful to not wake
the dog when i left early this morning .

PyTorch Tutorial
Model Translation i m not telling you some . .

My Model
Translation i m looking for you another wrong . i am very not around the morning .

TABLE 5. Sample Translations of Sentences Outside the Train Set for Model
Trained on Larger Dataset

Input Sentence j’ai fait très attention à ne pas réveiller
le chien quand je suis parti tôt ce matin .

Correct Target Sentence i was very careful to not wake
the dog when i left early this morning .

Model
Translation

i had a very careful not to wake up
the dog when i left early this morning .

3.3. Further Experimentation

In the second portion of this study, slight modifications were made to the model and training
hyper-parameters. In particular, the hidden size of the model was increased from 440 to 1080,
the batch size was decreased from 32 to 10, and the learning rate was set initially to 0.5 and
divided by five after every five epochs. However, more importantly, to create a more capable
translation model the training set needed to be much larger. Thus, the start of sentence filters
in Table 2 were removed and the dataset was trimmed to all sentences of length 40 words or
less. With this less stringent criteria, the dataset was trimmed to 135,834 sentence pairs rather
than 10,853. The max vocabulary was set to 20,000 words for each language resulting in a
vocabulary size of 13,038 French words and 13,586 English words. Furthermore, in order to
track the model’s ability of generalizing to sentences outside the training set, these filtered
sentence pairs were split into a train set consisting of 122,251 sentence pairs and a test set
consisting of the remaining 13,583 sentence pairs. The model was trained for 15 full epochs
through the training set and, now having a test set, the performance on the test set was computed
after each training epoch. The cross entropy loss on both the train and test set after each epoch of
the training process are shown below in Figure 2. With a significantly longer training period on a
much larger training set, this model was able to achieve reasonable translation results on simple
sentences outside the training set. Table 5 shows this model’s relatively accurate translation of
the same sentence that the previous model severely struggled with (Table 4). However, despite
this improvement, the model is far from reaching anything close to state of the art translation
results.
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FIGURE 2. Cross Entropy Losses on Train and Test Sets over 15 Epochs of Training

3.4. Future Enhancements

This research focused primarily on understanding the Encoder Decoder structure and mak-
ing improvements to the PyTorch tutorial on machine translation. Thus, the aim of this research
was to create a model that was slightly more advanced and sophisticated than the current Py-
Torch tutorial model, but still capable of being easily reproduced by an individual looking to
learn about neural machine translation. Moving forward, however, there are still several areas
of improvements that can be made to the machine translation model outlined above. The eas-
iest enhancement would be to simply train the existing model on a significantly larger dataset.
Due to time constraints this was not performed, but would theoretically create an even more
capable NMT model. More related to the architecture of the model, a more advanced attention
mechanism could be implemented. In particular, global attention was used in this model, but re-
search has found various local attention mechanisms to be much more effective.3 Finally, while
the cross entropy loss is one way of understanding a model’s accuracy, there are several more

3Luong, Pham, and Manning, “Effective approaches to attention-based neural machine translation”, op. cit.
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sophisticated manners of quantifying a machine translation model’s accuracy. In particular, a
BLEU score algorithm could be implemented to more effectively understand the accuracy of
the model’s translations.



CHAPTER 4

Conclusion

With increased computational power, NMT has emerged as an effective method for machine
translation. By utilizing the Encoder-Decoder structure, NMT is able to translate sentences with
incredible accuracy. Furthermore, with the added power of attention mechanisms, machine
translation is becoming even more powerful. The Python machine learning package, PyTorch,
provides all of the necessary tools to create a NMT model. In fact, the PyTorch website itself
has a tutorial on creating such a model. However, the model created in this tutorial is lagging in
areas that are crucial to creating a model that fully utilizes the computational power of GPUs.
Thus, this research aimed to enhance this NMT model, while keeping it at a tutorial scale.
By increasing the size of the train set, adding a test set, batchifying the data, and tweaking
a number of other model parameters, a much more effective machine translation model was
ultimately created.
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