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Abstract 
 

The purpose of this study is to examine the position and use of an upper extremity prosthetic 
simulator on non-amputees. To see how a 3D printed prosthetic simulator can be optimized to 
serve the user correctly and accurately. In addition, this study examines the improvement of the 
Hosmer 5X Prosthetic Hook with the addition of newly designed trusses on to the prosthetic, as 
well as utilizing a new manufacturing method known as 3D printing. These topics are important 
because there is no standardized prosthetic simulator for schools and research facilities to use. 
Off the shelf prosthetic simulator cost upwards of $2000, often too expensive for early stage 
research. By optimizing the Hosmer 5X Prosthetic Hook with 3D printing, this new opportunity 
could allow amputees, from a range of income classes, to have access to a wide variety of 
prosthetics that are strong enough to support everyday living activities. A low-cost prosthetic that 
is easily distributable and accessible can give people a chance to regain their independence by 
giving them different options of efficient prosthetic devices, without having to spend so much. 
The devices in this project were design and analyzed on SOLIDWORKS, 3D scanned on the 
Artec Space Spider, and surfaced on Geomagic Wrap. Key results include developing a low-cost, 
robust prosthetic simulator capable of operating a Hosmer 5X Prosthetic hook, as well as 
developing a lighter version of the Hosmer 5X Prosthetic Hook that is more cost efficient and 
easily obtainable to the population around the world. 
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1. Introduction 
 

1.1 Background and Motivation 
 

 A prosthetic can be defined as an artificial substitution for a human body part (Disabled 

World). Some examples include legs, hands, eyes, and bone structures of the face (Disabled 

World). Prosthetic use can be traced back to more than two millennia. Currently, the oldest 

known prosthetic device dates back to 950-710 B.C.E. It was a prosthetic toe developed for an 

Egyptian noblewoman, seen in Figure 1 (Finch et al. 2012). A prosthetic toe, as small as it may 

be, played a significant role because it was necessary for the Egyptians to maintain physical 

wholeness (Mota 2017). The importance of a prosthetic toe in society is incredible, because it 

allows users to regain their independent mobility without the assistance from anyone else. 

Another historic prosthetic dates between 218-201 B.C.E. and belonged to a Roman general 

named Marcus Sergius who lost his hand in the Second Punic war (Zuo and Olson 2014). The 

prosthetic was an iron hand that resembled a gauntlet (Figure 2). It allowed the general to return 

to battle after losing his hand during the Siege of Landshut in Bavaria. This iron prosthetic had 

flexibility at the metacarpophalangeal, distal interphalangeal, and the proximal interphalangeal 

joints, allowing the general to hold weapons. The prosthetic was ultimately strapped to his armor 

via leather straps due to its heavy weight. 

Prosthetics have been around to help aid humans, and even animals, who have 

experienced a traumatic event that left them without a limb, or part of a limb. When it comes to 

the upper limb specifically, the human hand is incredibly important because it allows the person 

to interact and operate with the environment around them sophisticatedly and intelligently; the 

hand and wrist alone give humans a total of 27 degrees of freedom (Cordella et al. 2016). When 
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a person, or an animal, experiences the loss of an arm, limb, or a hand, restoring some of these 

capabilities gives them back a multitude amount of freedom to perform working and social tasks 

again (Cordella et al. 2016). Prosthetic ears are being 3D printed to be attached to humans 

because of an incident that left them without one (K Mills 2015). This prosthetic helps the 

human regain some hearing capability that was lost. Animals benefit from prosthetics, too, 

because prosthetics give the animal the ability to survive again in their environment. For 

example, an alligator was given the ability to swim again because of the addition of a 3D printed 

prosthetic tail (3DPrint.com). Without the tail, the animal lost the ability to swim and gather 

food. Now, the prosthetic allowed the animal to regain its ability to swim and thrive. The big toe 

that was made for the noblewoman in Egypt, as simple as it was, the prosthetic gave the women 

back her balance needed for walking, as well as the body limb needed to wear the Egyptian 

sandals (Finch et al. 2012). 

 

Figure 1: A prosthetic big toe that dates back to the years 950-710. Fabricated out of cartonnage 
and covered in plaster, this prosthetic was created in Egypt for a noblewoman. Image retrieved 

from The University of Manchester <www.manchester.ac.uk/discover/news/egyptian-toes-likely-
to-be-the-worlds-oldest-prosthetics/> 
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Figure 2: Iron prosthetic arm of general Marcus Sergius who lost his arm in the Second Punic 
war. The prosthetic had to be attached to his armor by leather straps due to its heavy weight. 

Image retrieved from The Collectors Weekly < https://www.collectorsweekly.com/articles/war-
and-prosthetics/> 

 

The development of prosthetics has given amputees a tool that can allow them to live 

their original life before their amputation. As the years move forward, the technology being 

applied to prosthetics is being accelerated incredibly. Advances in material, design, power, and 

assembling are areas where prosthetics have seen a rapid growth in its efficiency. Early 

prosthetics were made out of a variety of materials, including iron, wood, leather, bronze, glass, 

gold, and cartonnage (Mota 2017). The material was typically chosen based off obtainable 

resources and the prosthetic desired. Using an iron prosthetic arm that would be used for battle 

versus a wooden arm for less strenuous tasks is one example (Figure 2). This was because 

different prosthetics served different functions to the amputee that required different material 

characteristics in order to be successful. 

The manufacturing of prosthetics in the past included the use of carved wood, leather 

straps, string, and textile (Mota 2017). Like the iron hand that was worn by Marcus Sergius after 

https://www.collectorsweekly.com/articles/war-and-prosthetics/
https://www.collectorsweekly.com/articles/war-and-prosthetics/
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the second Punic War, past designs using similar material can lead to prosthetics that are heavy 

to wear (Zuo and Olson 2014). However, the prosthetic did give the user some ability back to 

where the limb used to be. Even with prosthetics not being as efficient as the original body part, 

prosthetics have contributed to giving the amputee some of their original functions back, giving 

the user a tool that would suffice (Mota 2017). 

In the modern day, there are many causes of amputations, as well as a variety of 

classifications of prosthetics that help describe the location of where the prosthetics is applied. 

About 1.6 million people live with a loss of limb, with 54% due to vascular disease, 45% due to 

a trauma, and less than 2% due to cancer (Ziegler-Graham et al. 2008). There are four main types 

of artificial prosthetic limbs: transradial, transhumeral, transtibial, and transfemoral (Disabled 

World; Figure 3). A transradial prosthetic is a device that replaces an arm missing below the 

elbow. The Hosmer 5X Prosthetic Hook and the devices created in this study work around this 

kind of amputation.  

 

Figure 3: Locations of different amputations. Image retrieved from Semantic Scholar 
<https://www.semanticscholar.org/paper/Ideal-functional-outcomes-for-amputation-levels.-

Meier-Melton/8a832a826762d371f3693704259f88f31ba21e64> 

 

Modern day upper-limb prosthetics serve both passive and active roles (Biddiss and Chau 

2007). A prosthetic is considered solely passive if its main intention is to simply look human, 
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realistic, or otherwise appealing to the user, and if it serves no other function other than 

cosmetic. A prosthetic is considered active if it was design to be put to work under loads of 

force, moveable, or have functioning parts that allows the user to actively actuate the prosthetic. 

In addition, there are three main types of prosthetics that fit into these two roles. These three 

types of prosthetics are: cosmetic prosthetics, myoelectric prosthetics, and body powered 

prosthetics.  

1.1.1 The Problems to Address 

In the current medical market of prosthetics, there are a variety of challenges that still 

must be overcome in order to bring improvement to the quality of life of the prosthetic users. 

According to a study done by Brienne Phillips and her colleagues, the importance of introducing 

prosthetics to an amputee in the early months of amputation is essential. Early fitting and training 

with a prosthetic contribute to longer continuous use of the device. In their research, many 

services in urban areas lacked the ability to get access to large quantities of prosthetics for their 

amputees. The amputees, typically in labor-intensive occupations, were ultimately out of a job 

because they could not continue working without prosthetic assistance (Phillips et al. 2015). The 

fact that some amputees who are in dire need of prosthetics cannot even begin to learn and train 

with a prosthetic is a huge problem in lower income areas (Phillips et al. 2015). This issue alone 

leads to people’s lives, and even their family’s lives, being hindered because of the lack of 

resources accessible to them.  

The use of prosthetics is important because it brings back a degree of independence to the 

user. Prosthetics allow amputees to not overexert their other limbs, and this, ultimately, can help 

avoid medical complications from over usage of other body part (Jones and Davidson 1999). 
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However, research found that fitting patients within the first 30 days after surgery was 

critical and had a rehabilitation success rate of 93%, while patients who were fitted 30 days or 

more after their surgery had a rehabilitation success rate of 42% (Malone et al. 1984). In a 

research led by Elizabeth Davies, they reported that the median prosthesis delivery and fitting 

time for upper-limb amputees was six months (Davies, Friz, and Clippinger 1970). Within those 

six months, the amputee ultimately becomes dependent on utilizing one hand, and the rate of 

successful rehabilitation with a prosthetic is lowered significantly. The need to deliver 

prosthetics within the first month to new amputees is imperative for success. 

If an amputee does get a properly working prosthetic early on after their surgery, there 

are still other problems that arise that lead to the amputee abandoning their prosthetic. Wearing 

and using a prosthetic for typical daily tasks, for amputees, typically stop because of three core 

reasons: weight, discomfort, and limited usefulness (Datta, Selvarajah, and Davey 2004). These 

patterns of amputees not using their prosthetic for daily tasks occur throughout multiple studies 

and are said by amputees. By reducing the weight of the prosthetic device, the user will not need 

to exert as much effort to simply hold up their limb in place. A lighter prosthetic will increase the 

mobility for amputees, raise their endurance use with the device, as well as reduce any stress that 

is being created at the points of contact with the device (Amputee Coalition). Reducing forms of 

discomfort, such as any rashes and irritations caused by wearing the prosthetic, will allow the 

wearer to operate the prosthetic for longer periods of time without building up painful sores on 

the body (Amputee Coalition).  

Lastly, usefulness of the prosthetic needs to be addressed because the amputee needs to 

know that the prosthetic device will operate as intended, and should live up to their expectation, 

especially when the prosthetic is used in sports (Radocy 1987). When prosthetic devices are 
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created, they need to be designed for the amputee so that the amputee receives a device that is 

compatible with their lifestyle and daily agenda (Phillips et al. 2015). It is critical that the 

prosthetics are able to address and operate under the user’s specific tasks. If a prosthetic device 

needs to be fixed, redesigned, or even calibrated in order to be more suited for the amputee, 

giving the amputee a more efficient and a more pleasant experience using said prosthetic, then 

the developers of the prosthetic devices need to be able to make these alterations and return a 

reliable prosthetic back to the amputee as swiftly as possible (Davidson 2002). 

Making sure that the amputee continues to wear their prosthetic is an important problem 

to solve because the more an amputee wears their prosthetic, the more likely they are to be 

satisfied with their device. To improve these results, proper, often intensive training with the 

prosthetics is crucial so that the amputee will know how to use their device to its highest 

potential (Davidson 2002). To continue to raise prosthesis satisfaction, the professionals who are 

assisting the users with the prosthetics need to be able test, redesign, and optimize prosthetics for 

their clients (Davidson 2002). If issues arise for amputees, such as profuse sweating, and the 

working professionals had the most efficient technology, then they could bring new changes to 

the prosthetic as swiftly as possible. This is imperative so that the necessary changes to the 

devices can be made promptly, accurately, and correctly.   

A survey of prosthetic users found that the priorities for prosthetic users are 1) increased 

functionality, 2) natural interaction with the environment, 3) reduced weight, 4) higher grasping 

speeds and forces, 5) low noise, and 6) better cosmetic appearance (Dalley et al. 2009). Using 

these claims as the backbone when designing new prosthetic hand devices for amputees to raise 

satisfaction can turn out to be beneficial (Dalley et al. 2009). Giving designers and professionals 

that work with amputees and prosthetics a new realm to work in to improve these important 
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factors of prosthetics could leave an enormous impact on the amputee community. By giving 

these professionals additional tools to improve prosthetics and the important design factors that 

go with them, prosthetic abandonment could drop, time needed to improve prosthetics might 

decrease, and a raise in outputting more prosthetic resources to clinics and facilities could occur.   

The body powered prosthesis is a device that is controlled using a cable that opens or 

closes the prosthetic with the use of tension. The cable system is controlled by the shoulder and 

wrist flexion of the wearer (Phillips et al. 2015). With there being a wide variety of prosthesis 

that used the body powered system, the potential users with transradial  amputations have a large 

number of designs to choose from (Phillips et al. 2015). In addition, because body powered 

prosthesis typical have simple designs that are either 3D printed, injection molded, or assembled, 

prosthetist can be easily taught how to produce and repair them (Phillips et al. 2015). 

1.1.2 Prosthetic Simulators 
 

Body powered prosthetic hand simulators are important because they allow nonamputees 

to test hand prosthetic designs on larger populations as well as themselves. The use of a 

simulator gives researchers a tool to help develop more reliable prosthetics at a faster rate by 

increasing their feedback on their device they are developing (Gao and Kapp 2011). Currently, 

there is a small market and research being done with body powered prosthetic simulators; 

however, there are some design flaws and drawbacks to this. Examining the performance of the 

Hosmer 5XA Hook, the TRS Grip Hook 2S, and the Otto Bock VO hand was performed on a 

prosthetic simulator to determine which prosthetic delivered better results than others 

(Haverkate, Smit, and Plettenburg 2016). The simulator positioned all the prosthetics under and 

in front of the hand. Another study used a simulator of their own to determine if intermanual 
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transfer effects can be detected after training with their myoelectric upper limb prosthesis 

simulator (S. Romkema, Bongers, and van der Sluis 2013). The simulator was position inline 

with the user’s hand and placed the prosthetic directly in front of the hand. Last, another study 

used a simulator to look at bilateral transfer movement across limbs and to see if it effected a 

person’s ability to learn how to use their prosthetic simulator (Weeks, Wallace, and Anderson 

2003). The simulator also had the prosthetic positioned directly in front of the hand while being 

in line with the arm. The first issue to acknowledge is the position of the prosthetic on these 

simulators. The end of the prosthetic hand reaches further than the human hand operating the 

simulator. This is a crucial issue because the prosthetic should reach only as far as the human 

hand reaches, giving a more realistic use. Another concern is the price of some of the simulators. 

One prosthetic simulator can have a price of around $3,500 (TRS Prosthetics). Not all facilities 

can have access to these prosthetic simulators because of this cost (Figure 4). A more cost 

effective and accurate design of the prosthetic simulators need to be developed to help enhance 

our understanding of prosthetic hand designs. A prosthetic simulator was used as a body 

powered simulator and a myoelectric simulator to help determine the order of practice tests in the 

study that had the highest effect on using their upper-limb prosthetic simulator (Bouwsema, van 

der Sluis, and Bongers 2008; Figure 5). Making these simulators also easily accessible to 

researchers and prosthetist is key to help improve the trials and the redesigning process that goes 

in to improving prosthetic hands (Gao and Kapp 2011). Ultimately, by creating a universal 

standard for upper limb prosthetic simulators, schools and researchers can have simulators in 

house ready to use that they are confidence in to deliver accurate and reliable measurements. 

Research that focuses on optimizing a prosthetic simulator’s position to deliver consistent 
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results, can give users an authentic experience with the prosthetic and help lead to a universal 

standard for prosthetic simulators.  

 

Figure 4: A body powered prosthetic simulator being used with a prosthetic hook. Image 
retrieved from TRS Prosthetics <https://www.trsprosthetics.com/product/body-powered-

prosthetic-simulator/> 

 

 

Figure 5: Two powered prosthetic simulators being powered through (A) the human body and 
(B) myoelectric simulators (Bouwsema, van der Sluis, and Bongers 2008). 

 

1.1.3 Hosmer 5X Prosthetic Hook 

The Hosmer 5X Prosthetic Hook was used in this research to perform the varying tests 

and analysis (Figure 6). The Hosmer 5X Prosthetic Hook is a voluntary opening, terminal device 

that is used as a body powered prosthetic. With a height of 4-7/8” (12.4cm) tall and a weight of 
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7.5oz (213g), this stainless-steel prosthetic with nitrile rubber covered tips has a simplistic, but 

yet multifunctional design that makes it a reliable terminal device for prosthetic users (“Hosmer 

Hooks Catalog” 2018). With the typical amount of rubber bands present on the prosthetic hook, 

the prosthetic hook applies a grip force at the tip of the hooks in between 45-70 N when grasping 

1-3 cm objects, while the grip force can ultimately reach 140 N when grasping a 1cm object 

(Belter, Reynolds, and Dollar 2014). The hook gives the user not only the grasping function of 

opening and closing, the hook shape also allows users to successfully hang objects off of the 

prosthetic without worry of it slipping, as well as the ability to pull, too (“Hosmer Hooks 

Catalog” 2018). The clamps in the middle of the prosthetic that house the rubber band also can 

be used as a clamp to hold objects upright within the prosthetic (“Hosmer Hooks Catalog” 2018).  

 

Figure 6: The Hosmer 5X Prosthetic Hook that was scanned and used for testing. This is a 
terminal device that is body powered operated. In the left image, the prosthetic hook is screwed 

in to the wrist attachment device. 
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The Hosmer Hook comes in a variety of different designs, sizes, and materials to support 

different amputees in different environments (Figure 7). Some hooks may be tailored towards 

more strenuous workloads, but may weigh and cost significantly more than other versions. In this 

study, the focus was on the Model 5X Hook because of ease of accessibility for the research 

study, its adult size, and the simplistic design. The 5X costs between $420.50 - $585.50 

(“Amputee Store” 2018), and is usually worn with a wrist attachment and harness. 

 

Figure 7: Some of the different designs of the Hosmer Hooks. A) Model 12P Hook – Child Size, 
Stainless Steel, B) Model 10X Hook – Child Size, Aluminum, C) Model 5X Hook – Adult Size, 
Stainless Steel, D) Model SS-555 Hook – Adult Size, Stainless Steel, E) Model 6 Work Hook – 

Adult Size, Stainless Steel, F) APRL Voluntary Closing Hook, Aluminum, G) Sierra 2 Load 
Voluntary Opening, Stainless Steel, H) Baseball Glove Attachment. Images retrieved from 

Hosmer <https://hosmer.com/products/hooks/> 
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1.2 3D Printed Prosthetic Hands 
 

With the vast number of 3D printable hand prosthetics out there, a person with a 3D 

printer has a wide variety of choices to choose from if they wanted to 3D print one (Phillips et al. 

2015). The prosthetics come in different shapes to fit specific needs, or in basic shapes to give 

the user a basic, easy-to-use hand (Phillips et al. 2015). Many of the 3D printed prosthetic need 

to be assembled, and require a harness to be purchased separately in order to operate the 

prosthetic. The rise of 3D printable prosthetics came about to help deliver a lower costing 

solution to people in need of a prosthetic in a wide area of places (Zuniga et al. 2015; 

R.Ishengoma and B. Mtaho 2014). Since prosthetic files for 3D printers can be delivered 

anywhere online, it is easy to get access to the designs for them. Some 3D printable prosthetics 

are made as myoelectric, and require some form of expertise to assemble the prosthetic correctly 

and to maintain it, while others are body powered and require only two parts to be printed with 

an easy assembling process (Phillips et al. 2015). 

One 3D printed hand prosthetic example is the Cyborg Beast (Zuniga et al. 2015). This is 

a low-cost upper limb prosthetic that is 3D printable for children from PLA and ABS material 

(Figure 8). The goal of the prosthetic and the engineers who designed it were to create a 

prosthetic for children in low-income, developing countries with little to no health care 

assistance. The Cyborg Beast prosthetic costs about $50 for all the material and is currently free 

online to download for anyone to use. The Cyborg Beast is an active prosthesis that is body 

powered through wrist flexion (Zuniga et al. 2015). Currently, the model is being further 

examined in order to make it more durable, functional, and to improve the rejection rate (Zuniga 

et al. 2015). Plus, with the rise of 3D scanning, they plan to utilize a 3D scanner in the future to 

improve fitting (Zuniga et al. 2015; Dombroski, Balsdon, and Froats 2014; Doneus et al. 2014). 
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Figure 8: Cyborg Beast 3D printable prosthetic hand. A low-costing upper limb prosthetic design 
to fit children. 

 

Other 3D printed prosthetics include The Trautman Hook and The OpenBionics Hand 

(Phillips et al. 2015; Figure 9). The Raptor Hook is an upper limb prosthetic that is fabricated 

from a metal 3D printer from stainless steel powder. Similar to the Hosmer Hooks, the Trautman 

Hook has two halves that are closed and open with the use of rubber bands and a wire. The total 

cost for this metal prosthetic to be made was $550; however, the design can be fabricated in less 

expensive material for a lower price on other printers. The OpenBionics Hand has 3D printed 

components and requires other materials found in hardware stores in order to be assembled. 

Powered by electricity, this prosthetic may require some expert help to connect it and get it 

functioning properly, and costs about $200 to be manufactured. 

 On the premise of 3D printed parts, this research will help determine the optimal position 

for prosthetic simulators. This research is focusing on answering how can a 3D printed prosthetic 

simulator be positioned appropriately, when attached to a prosthetic, to deliver consistent results. 

With a vast number of the currently made simulators being positioned in front of the user’s hand, 

it is understood that numerous of groups have created their own prosthetic simulators (Sietske 

Romkema, Bongers, and van der Sluis 2017; Huinink et al. 2016; Sobuh et al. 2014; 
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Buckingham et al. 2018; Haverkate, Smit, and Plettenburg 2016; Weeks, Wallace, and Anderson 

2003; Hackaday.io); however, creating a correct, universal prosthetic simulator that can be used 

to help deliver consistent results is the goal of the study. Ultimately, with the influence of 3D 

printing, an optimized simulator can be made easily, while being distributable to many. 

 

Figure 9: The Trautman Hook (left) and the OpenBionics (right) both were made from 3D 
printing so that people can have easier accessibility to upper limb prosthetics (Phillips et al. 

2015). 

 

2. Development and Analysis of 3D Printed 5X Clone 
 

2.1 Types of Hand Prostheses 
 

The first type is cosmetic prosthetics (Figure 10). Cosmetic prosthetics play a passive role 

in prosthetic use. They are typically created to look realistic, and are made to give off a nice-

looking appearance. Myoelectric prosthetics produce an active role in prosthetic use and are 

operated by electricity (Figure 11). The electrical signals are received from the user’s muscles 

through EMG sensors and batteries are utilized in order to power the motors and any other 

electronics that are inside of the prosthetics. The last and final prosthetic is the body powered 
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prosthetic (Figure 12). This active prosthetic uses no electricity. The movement of the prosthetic 

device comes from a combination of hinges and wires that move the prosthetic due to forces 

from body movement. These three types of upper-limb prosthetics all play a role in creating a 

satisfying device for amputees. They have their pros and cons for different scenarios that makes 

one type of prosthetic more ideal for different users based off their living conditions and life 

habits. 

 

Figure 10: A set of silicon cosmetic prosthetic hands and fingers that were made for a specific 
client. Image retrieved from The National University Hospital 

<https://www.nuh.com.sg/uohc/patients-and-visitors/facilities/prosthetics-hand-clinic.html> 

 

 

Figure 11: A myoelectric prosthetic that is hooked up to a person’s arm. The electrical signals 
from the arm muscles sends information to the prosthetic to direct it how to move in specific 

positions. Image retrieved from The Perse School 
<https://www.perse.co.uk/news/2017/10/rouse-awards-chloe-curtis-smith/> 
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Figure 12: A body-powered prosthetic that uses a harness and a wire to connect the prosthetic 
hook to the body. Certain body movements then allow the prosthetic to open and close. Image 
retrieved from StudyLib <https://studylib.net/doc/5594843/file---a-transradial-prosthetic-arm> 

 

Cosmetic prosthetics are typically the lightest prosthetic of the three. Reason being is that 

the cosmetic prosthetic does not require numerous mechanical properties. Typically, the 

prosthetic is made of silicon and fits on the amputee like a glove. The average price of a 

cosmetic prosthetic hand ranges from $3,000 to $5,000 (Strait, McGimpsey, and Bradford 2006). 

Even though the cosmetic prosthetic is the lightest and costs the least of the group, this type of 

prosthetic brings up some issues to its group of users. There are expressed heat problems with 

the socket that fits on the amputee, worn clothing issues, as well as problems with the wearable 

gloves (Kejlaa 1993). 

Myoelectric prosthetics have the capability to use EMG sensors and batteries to move the 

prosthetic on the amputee. With the price of the myoelectric prosthetic hands costing between 

$20,000 to $100,000, this prosthetic is the most expensive of the three (Strait, McGimpsey, and 

Bradford 2006). The myoelectric prosthetic allows the amputee to move the prosthetic hand 

easily with slight muscle stimulation. This gives the user the capability to have control over the 
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prosthetic without having to exert a tremendous amount of energy to do so. This ability also 

allows the user to move the prosthetic hand without having to rely on extending out their entire 

arm every time to retract a connected wire. As popular and advanced as these prosthetics are, 

they are reported to me a bit more fragile than the other two hand prostheses due to all the 

electrical components in its design, as well as the EMG sensors. This prosthetic has been noted 

to be heavier than the other two prosthetics due to many of its components, as well as being 

hotter. The myoelectric prosthetic also was shown to be slow moving due to its dependency on 

the batteries and the signals from the EMG sensors. The requirement for electricity means that 

the user must have access to electricity to recharge the prosthetic or have batteries to use 

(Phillips et al. 2015). There were other similar uncomfortable socket problems as well, just like 

the cosmetic prosthetic, and wearing out of clothing too. Lastly, a large key issue was that 

whenever a failure would occur, the user almost always had to consult the center they got the 

prosthetic from or their prosthetist in order to fix the electrical problem (Kejlaa 1993). 

Body powered prosthetics, which utilize a wire to apply tension on to the prosthetic hand, 

are often favored because they typically can move and respond faster than the myoelectric 

prosthetics (Davidson 2002). This type of prosthetic is simpler, making it easier to fix if a 

problem occurs. The body powered prosthetic costs less than the myoelectric prosthetic as well, 

generally around $10,000 (Strait, McGimpsey, and Bradford 2006). Another benefit of the body 

powered prosthetic is that there is a high number of designs for long transradial amputations 

(Phillips et al. 2015). The body powered prosthetic; however, can have wire malfunctions such 

as slacking or breaking that could lead to issues. The wire that applies tension to the prosthetic 

can damage clothing from its movements when worn above the user’s shirt as well (Kejlaa 

1993). The body is required to move a larger range of motion than the myoelectric prosthetic in 
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order to get the body powered prosthetic to work. The arm would need to extend outward to 

activate the prosthetic hand, thus limiting the opening and closing position of the prosthetic hand. 

However, since the prosthetic gets its power from the body and tension being applied to it via 

rubber bands or a wire, the amount of force being delivered by these prosthetics to grasp items is 

great. Furthermore, the use of a body powered prosthetic typically requires utilizing a less 

cosmetic look, such as a hook for a prosthetic hand. In the study by Kejlaa, for people who did 

not rely heavily on the cosmetic look of their prosthetic, the body powered prosthetic was the 

most efficient choice for them because of weight, cost, independency from batteries and 

electricity, and speed (Kejlaa 1993). 

Some prosthetic hands do utilize components from more than one type. For example, 

there are cosmetically realistic myoelectric prosthetic hands, as well as cosmetic hands that have 

a body powered hook built inside of the prosthetic (Figure 13). One example of a cosmetically 

realistic myoelectric prosthetics is the “i-limb quantum” that is compatible with covers that 

mimic the looks of human skin. The cosmetically realistic myoelectric prosthetic costs between 

$20,000 and $30,000 and some of the prosthetics have processors that can determine the amount 

of pressure it delivers on an object, as well as if the object is cold or hot (Strait, McGimpsey, and 

Bradford 2006). An example for a body powered cosmetic prosthetic is the “Otto Bock System 

Hand”. This has a grasping mechanism inside that is covered by a cosmetic glove to give the 

natural perception of a human hand. The shape, weight, and size of this prosthetic are the big 

factors that make this prosthetic different than the body powered prosthetic hooks. This 

prosthetic has extra mechanism inside in order to operate a couple of the fingers and to house the 

moving components inside. 
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Figure 13: The i-limb quantum (left), a cosmetic myoelectric terminal device, and The Ottobock 
System Hand terminal device (right), a cosmetic body powered prosthetic hand for amputees. 

Images retrieved from Ottobock <https://professionals.ottobockus.com/Prosthetics/Upper-Limb-
Prosthetics/Body-Powered-Systems/Ottobock-System-Hands/Otto-Bock-System-Hand-

passive/p/8K19> and Touch Bionics <http://touchbionics.com/products/i-limb-accessories> 

 

2.1.1 Prosthetic Harness for Body Powered Prosthetics 

The upper limb prosthetic harness and cable is what allows the body powered prosthetic 

to operate. In this study, the Hosmer Northwestern Ring Harness was used to conduct our tests. 

The harness is strapped on to the back of the user and the cable is ran along the arm towards the 

prosthetic (Figures 14, 15, and 16). The anchor ring on the harness must be located directly in the 

center of the user to insure proper stability of the harness. This is done by placing the anchor ring 

on top of the spine to center the prosthetic harness. A leather padding is strapped on to the user’s 

triceps and the cable connects the leather padding to the strap that is connected to the anchor 

ring, as well as to the prosthetic. 



21 
 

 

Figure 14: Back view of the upper limb prosthetic harness and all of its components that connect 
the prosthetic hook.  

 

 

Figure 15: Side view of the upper limb prosthetic harness. The cable of the harness runs under 
the arm of the user towards the prosthetic.  



22 
 

 

Figure 16: Clear view of the front of the upper limb prosthetic harness. 

 

When the cable is pulled upon, this causes the prosthetic to activate. Depending on the 

type of prosthetic that the user is wearing, this action can either open or close the prosthetic 

device. In this study, the prosthetic is a voluntary opening device, meaning it requires a force 

from the cable to open it. The other type of device is a voluntary closing prosthetic that requires 

action to close it. When the user does not move their arm and flexes their shoulders forward to 

activate the prosthetic, this movement is called scapular abduction. When the user extends their 

arm only and does not move their shoulders, that movement is glenohumeral extension. These 

types of movements are critical because depending on how far the user wants to reach with the 

prosthetic, they must switch off between these two movements. For example, to grab something 

close, the user may not want to extend their arm out far. At that point, they would use scapular 
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abduction. When the user wants to grab an item from a distance, they want to extend their arm 

out and reach the object. That is when they would use glenohumeral extension. 

2.1.2 3D Printing 
 

 As 3D printing continues to advance, companies, researchers, and engineers receive an 

incredible toolset that allows them to develop parts never created before in new ways. This new 

technology allows parts to be created in complex geometries while using strong material (Figure 

17). Some geometries that are possible on 3D printers would be impossible on a more traditional 

route of manufacturing, such as using a Computer Numerical Control (CNC) Machine. Reason 

being is that 3D printing creates the parts layer by layer, allowing the machine to create interior 

features. On a CNC, multiple angles would be needed to get certain parts made; however, some 

interior features would simply be impossible to be created. 3D printing allows the user to create 

complex geometries without any additional costs to make the part. In addition, 3D printing 

allows manufacturers to create assemblies of multiple parts in to one conjoined piece. This 

ultimately saves the user time and money because some parts do not need to be assembled any 

more. This makes them lighter because only the material that is necessary is being used. By 

turning an assembly in to a single part, the need for screws, bolts, and other small parts to 

connect pieces together are no longer needed. 
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Figure 17: A 3D printed part that was fabricated in a single cycle. Models with complex interior 
geometries would be impossible to be made on other manufacturing machines. Image retrieved 

from 3D HUBS < https://www.3dhubs.com/knowledge-base/advantages-3d-printing> 

 

 In the 3D printing industry, there are many different types of 3D printers, each with a 

different method of fabricating a part and with different material chooses. Seven different 3D 

printer types include: Fused Deposition Modeling (FDM), Stereolithography (SLA), Digital 

Light Processing (DLP), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), 

Laminated Object Manufacturing (LOM), and Electron Beam Melting (EBM) (Noorani 2006). 

The prototypes that were created in this study were all done on an FDM 3D printer because of 

the variety of material choices that could be utilized, the large build size, the lack of post 

processing needed, the low price to print a single model, as well as the speed to develop the 

prototypes. An FDM printer works by first feeding a spool of filament in to a heated extruder. 

Once the filament is inside the extruder and the 3D model is uploaded to the printer, the printer 

begins printing the part, layer by layer, starting from the bottom. 

2.2.1 Material 
 

 For the FDM printer, material selection is continuously growing as the printers become 

more advanced. Material choice is important because it can determine the success of the part and 
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how it functions. The most common materials for FDM printers are Acrylonitrile Butadiene 

Styrene (ABS) and Polylactic Acid (PLA) because of their durability and ease to print. Many of 

the prototypes in this study were printed in PLA material because of availability and strength of 

the material. NylonX is another material that can be used on an FDM printer. NylonX is a carbon 

fiber filament reinforced with nylon that is stronger than ABS and PLA. This material delivers 

high tensile strength and impact resistance. PolyFlex is another example of the variety of 

materials that can be printed on an FDM printer. PolyFlex is highly flexible filament that allows 

the user to print out elastic parts. If needed, there is also castable materials too for FDM printers 

called PolyCast. This material allows users to create metal castings of items if they need a new, 

quick alternative to creating cast moldings of parts. 

2.2.2 Cost 
 

 The cost of 3D printing varies tremendously because of a wide variety of parameters. 

These variables include: the type of 3D printer you are using, the build volume of the printer, the 

material that can be used, the quality of the print, and the printing speed of the printer. For FDM 

printers specifically, these 3D printers come in a variety of price ranges as well. Some FDM 

printers have the capability to use two extruders. This feature allows users to design parts made 

out of two types of materials or colors. This is extremely useful when you need specific 

characteristics at specific areas of interest. For example, if you need a harder material on the 

outside for protection, and a softer material on the inside for a comfortable fit, like a helmet. 

Another common use of the dual extruder is using water soluble material in one of the extruders. 

By adding water-soluble material to your print job, the designer is able to dissolve away all the 

water-soluble support material that is used. This is beneficial because the water dissolves away 

any support material that is located in small, inconvenient crevices that would otherwise be 



26 
 

difficult or impossible to pull out manually. Some FDM 3D printers have a heated build plate. 

This feature allows more complex materials to adhere to the build plate easier, as well as make 

the finish part that was built detach from the build plate quicker and cleaner. Other FDM 3D 

printers have an enclosed build compartment in order to keep the temperature inside the machine 

regulated to help the material’s temperature stay consistent throughout the print. This is 

important because temperature plays a vital role in the success of a 3D print. The material must 

be kept at a consistent temperature to prevent any deformation of the part while it is being 

fabricated. There are FDM printers that have a large build volume of 12” x 12” x 24” while 

others have a small build volume of 4.7” x 4.7” x 4.7”. The variety in 3D printers allows user to 

get the perfect printer for their personal or professional needs, making 3D printers accessible to a 

wide range of people (Figure 18). 

 

Figure 18: A) Raise 3D’s Pro2 Plus 3D Printer that has a build volume of 12” x 12” x 24”, dual 
extruder, layer resolution down to .01mm, a heated bed, can print in a large variety of materials, 

has an enclosed build compartment, and costs $5,999 (Raise 3D). B) MakerBot’s Replicator 
Mini+ Compact 3D Printer has a build volume of 4” x 5” x 5”, only has one extruder, layer 

resolution down to .1mm, and costs $1,299 (MakerBot). C) Monoprice’s MP Select Mini 3D 
Printer V2 has a heated bed, single extruder, layer resolution of .1mm, a build volume of 4.7” x 
4.7” x 4.7”, and costs $189.99 (Monoprice). D) Stratasys’ F123 Series 3D Printers have a build 
volume starting at 10” x 10” x 10”, have an enclosed build compartment, can build prints with a 

layer thickness down to .127mm, and cost starts around $20,000 (Stratasys). 

A 
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 Material cost and the cost to create a part varies based off the type of material, the 

company, and the quality of the material. A kilogram spool of PLA or ABS material can range 

between $20 and $60, while half a kilogram of Nylon based material can cost about $55. Better 

quality material typically delivers a cleaner finish for the 3D printed part. The surface finish of 

the higher quality material allows the filament to work more efficiently with the 3D printer, 

reducing the chance of clogging within the nozzles. The cost to create a 3D printed part depends 

on how much material is used for the part. This includes support material, a raft to build the part 

on, and a wipe tower for dual extruders to clean off the nozzle when switching between two 

nozzles. For example, to 3D print the Hosmer 5X Prosthetic Hook prototype in PLA material on 

a Raise 3D Pro2 Plus 3D Printer, the cost of material is estimated to be about $1.00, and since it 

only takes about 31.1g of PLA material to make the prosthetic, about 32 Hosmer 5X Prosthetic 

Hooks can be printed from a single 1kg spool of PLA.  

2.2.3 Accessibility 
 

 As mentioned before, because 3D printers come in a wide range of types and prices, 

consumers are able to purchase printers within their budget for under $200. Some of the FDM 

3D printers are compact enough that they can fit perfect on a desk with no need for special hook 

ups or safety requirements to house the small 3D printer. This portability allows the typical 

consumer to keep a 3D printer in their house if they please, giving them the capability to 

fabricate parts 1st handedly. 

 Another benefit is that the 3D printing files can be shared among people via the internet 

or USB drive. Stereolithography (.stl) files are the file format that most 3D printers use to 

fabricate the part desired. A .stl file is a 3D model that has been simplified and triangulated so 
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that the 3D printer can interpret the shape of the model (Noorani 2006; Figure 19). These files 

can be emailed, downloaded from online, and are easily distributable among people to share 

designs and prototypes to communities across the globe. With the convenience that comes with 

3D printers, as long as a consumer has electricity and internet, a person can 3D print an ever-

expanding number of models and prototypes within their own household. 3D printers give 

designers accessibility to do rapid prototyping and shortens the time towards perfection of a 

given part.   

 

Figure 19: Halves of the Hosmer 5X Prosthetic Hook prototype in a Computer-Aided Design 
(CAD) file format, as well as a triangulated .stl file format that can be sent to 3D printers for 

fabrication. 

 

2.3 Prototypes 
 

Numerous iterations were done throughout this study in order to come to a complete 

design that can fulfill the actions required for the experiments. The Hosmer 3D prints went 

through tedious evaluation to determine what is needed versus what was unnecessary for the 

device. 
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2.3.1 3D Printed Hosmer 5X Prosthetic Hook 
 

The redesigning of the Hosmer 5X Prosthetic Hook that was 3D printed went through a 

couple minor iteration to create a model that would work with the designed simulator, as well as 

the standard harness typically used for the original prosthetic. These two iterations included 

added a larger clearance of 1mm in between the rotating centers to provide smoother movement, 

and the addition of rubber tips (Figure 20). Before the addition of the rubber tips, the 3D printed 

material did not have the ability to grasp on to items efficiently. The slick surface profile of PLA 

material made it an extreme challenge. To combat this issue, a small cutout was design on the 

tips of the prosthetic models, and a rubber insert was then placed in the cutout to give the 

gripping capability to the models. 

 

Figure 20: The first iteration of the 3D printed Hosmer 5X Prosthetic Hook (left, grey) and the 
final iteration of the Hosmer 5X Prosthetic Hook (right, green) with a M12-1.25 screw. 

 

2.3.2 Added Trusses to Hosmer 5X Prosthetic Hook 
 

 The trusses on the side of the newly designed model of the Hosmer 5X Hook were 

inspired by bridges and the truss system used for them. The purpose of the truss is to reduce any 
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form of displacement of the prosthetic hook, as well to disperse the stress and strain that the 

prosthetic encounters throughout the device more evenly. The truss was designed to reduce any 

bending or twisting moment due to a force on the tip of the hook. By doing so, the prosthetic is 

able to withstand higher forces and reduce the buildup of maximum stress in certain locations. 

2.4 Methods 
 

2.4.1 Finite Element Analysis 
 

 A Finite Element Analysis (FEA) was performed on the two sides of the replica 

prosthetic, as well as the modified prosthetic with trusses added. The redesigning and FEA was 

done in SOLDIWORKS 2017. An isolated, true point load of 3.3lbs of force was applied to the 

inside tip of the prosthetics, perpendicular to the surface, because that is the force calculated to 

open the hook with the standard rubber band used with the Hosmer hooks (Figure 21). The 

normal stress in the Z direction, due to the entire loading force, but just stress caused by the 

normal stress acting in the Z direction, was examined as well. For the screw-housing side, the 

model was given fixed constraints to the bottom surface of the screw housing. For the thumb 

side, the model was fixed about the inside surface of the bearing housing. In the FEA, PLA 

material was assigned to the model in order to calculate the appropriate stress and displacement 

of the models. The PLA material properties used were: elastic modulus of 2.79E10 N/m2, shear 

modulus of 1.287E9 N/m2, Poisson’s ratio of .36, mass density of 1240 kg/m3, tensile strength of 

7.3E7 N/m2, yield strength of 7E7 N/m2, thermal conductivity of .2256 W/(m*k), and a specific 

heat of 1386 J/(kg*k). 
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2.4.2 Stress Test 
 

 A stress test was administered on the 3D printed prosthetic parts (Figure 22). The parts 

were tightened in to a vice and a 50lb spring scale was used to measure the amount of force 

needed to break each of the two pieces that compose the prosthetic. A ruler was used to measure 

the displacement of each piece right before breakage, with video recording allowing for the 

measurement to be taken retroactively. The pieces of the 3D printed prosthetic with and without 

the truss added all went through the test with PLA as the material of choice and the 50lb spring 

scale exhibiting the force on the tips of each half of the prosthetic. 

 

Figure 21: Displacement values of the screw-housing side (left) and the thumb side (right) of the 
prosthetic replica using PLA material properties. 
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Figure 22: Stress test being performed on screw-housing side of the 3D printed prosthetic 
without the added truss. 

2.5 Results 
 

2.5.1 Finite Element Analysis 
 

 A force of 3.3lbs, the force to open the prosthetic with one prosthetic sized rubber band, 

was performed on PLA material in the analysis. Consistently, the results showed an 

improvement on the thumb side and the screw-housing side of the prosthetic towards resistance 

to displacement and stress at the failure point (Table 1). The thumb side of the prosthetic showed 

that with the addition of a truss, the max displacement and the normal stress in the Z direction at 

the point of failure all decreased by 88% and 83% respectively. On the screw-housing side of the 

prosthetic, with the addition of the truss, the max displacement decreased by 23%, while the 

normal stress in the Z direction at the point of failure had a decrease in value by 57%. The data 
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shows that the addition of the truss on the thumb side of the prosthetic showed a higher decrease 

in displacement and stress when compared to the screw-housing side. 

Table 1: Comparison of the thumb and screw-housing sides, with the use of a truss and without 
the truss, in the finite element analysis. 

 

2.5.2 Stress Test 
 

 The stress test that was performed on two 3D printed parts made out of PLA material 

showed that with the addition of a truss, the amount of force needed to break the part increased; 

however, the displacement of the tip of the prosthetic did not decrease for all the parts (Table 2). 

Table 1: Force and displacement values of the 3D printed prosthetics in the stress test needed to 
break the part. 

 
 

The thumb side of the prosthetic showed a significant improvement with the addition of the truss. 

With the addition of the truss, it was able to withstand more than double the amount of force than 

the prosthetic without the truss. The amount of displacement decreased by about 33% on the 

thumb side as well. The breaking point was different in these two parts, however. The thumb 

side, without the truss, broke in the divot on the tip, while the part with the truss broke around 

the bearing housing section. The screw-housing side of the 3D printed prosthetics showed slight 

improvements in the max force it could withstand. With the addition of the truss, the screw-

Δ Δ% Δ Δ%
No Truss Truss No Truss Truss

Max Displacement 
(mm)

5.499E+00 6.414E-01 -4.858E+00 -88% 9.791E+00 7.578E+00 -2.213E+00 -23%

Z Normal at the 
Failure Point (N/m^2) 6.559E+06 1.083E+06 -5.476E+06 -83% 8.641E+06 3.746E+06 -4.895E+06 -57%

Thumb Side Screw-housing Side

Force (lbs) Displacement (mm) Notes
No Truss (thumb side) 8.5 22.5 Broke at the divot on the tip

Truss (thumb side) 20 15 Broke in the housing area
No Truss (screw-housing side) 12 80 Broke at the divot on the tip

Truss (screw-housing side) 13.5 90 Broke at bottom and at the divot on the tip
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housing side of the prosthetic was able to withstand an extra 1.5lbs of force, however, the 

displacement of the part actually increased. The part without the truss broke in the divot on the 

tip of the part, same as the thumb side, and the part with the truss broke in two places 

simultaneously, at the divot on the tip, as well as right above the housing unit for the screw. 

2.6 Discussion 
 

2.6.1 Finite Element Analysis 
 

The finite element analysis showed that for the thumb side and the screw-housing side of 

the prosthetic, the addition of the truss greatly improves the performance of the part by lowering 

the max displacement and the stress at the point of failure that the part goes through.  

The design of the truss on the thumb side of the prosthetic delivered better results to the 

part because it distributed the force of the weight better. On the screw-housing side, there was no 

“thumb” to distribute the forces to. This distribution of force is what sets apart these two halves 

of the same prosthetic. An additional part to help distribute the weight on the screw-housing side, 

like a new “thumb” part, could greatly influence the results of the data and produce a more 

efficient prosthetic. 

2.6.2 Stress Test 
 

The stress test showed a clear design flaw to the geometry of the 3D prosthetic designs. 

The corner on the tip of the prosthetic, where the rubber inserts were placed, is where 

improvements can be made. This corner was a stress concentration point and a majority of the 

parts broke at this location by delaminating the layers on either side of this corner. If this corner 

was rounded, the stress concentration may have been relaxed. 
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The addition of the truss on the thumb side showed greater improvement than the screw-

housing side. It is interesting to note that with the addition of the truss on the screw-housing side, 

the stress test displayed an increase in displacement. This is due to the truss distributing the force 

to the lower portion of the prosthetic and allowing more bending to occur around the screw 

housing unit before breaking at the corner in the divot on the tip of the part. From the results in 

the finite element analysis and the stress test, the truss system on the screw-housing side of the 

3D printed prosthetic needs to be reevaluated to produce a more efficient model. 

2.6.3 Comparison 

In the failure analysis, the normal stress from the loading force that was acting in the Z 

direction was looked at to see if this force contributed significantly to the location of failures in 

all of the prosthetic halves. 

The thumb side of the prosthetic without a truss added showed that the max normal stress 

in the Z direction was located in the same area where the part broke in the stress test (Figure 23). 

However, when just looking at the von Mises stress, the max was not located in the area of 

failure during the stress test. The max normal stress in the Z normal direction could have led to 

delamination in that area, resulting in the part to fail in the corner on the tip, or areas of 

delamination, instead of at another location. 

The other halves showed similar results (Figure 24, 25, and 26). The halves broke in the 

area where the max stress, due to the normal stress in the Z direction, was located, except for the 

screw-housing side with no truss added. The max stress from the Z normal stress for all the 

halves was in the direction to delaminate the layers in the 3D printed parts. The force required to 

delaminate the parts and break required less force, so when a large concentration of stress in the 
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Z normal direction was focused on a certain area, delamination occurred and failure came about 

in that vicinity first, than in the area of the max von Mises stress. For the screw-housing half that 

did not break in the area where the max Z normal stress occurred, the part still failed in the area 

where high concentration of the Z normal stress was located. The part must have just undergone 

delamination in that area first. 

Looking at the system in the stress test, it works similarly to a spring. The expected 

displacement values from a force of 3.3lbs can be estimated for the parts in the stress test by 

utilizing the spring force equation: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆𝑆𝑆 × 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹𝐷𝐷𝐹𝐹𝑆𝑆𝑆𝑆 

Table 3: Estimated displacement values from a force of 3.3lbs. 

    

The thumb side of the prosthetic showed similar displacement values when comparing the 

estimated displacement to the FEA displacement, while the screw-housing side shows a large 

difference between the two. As mentioned earlier, this difference in displacement, from a force 

of 3.3lbs, could be largely due to the truss distributing the force to a lower portion of the 

prosthetic, allowing more bending to come about before breaking at the corner. Lastly, the 

stiffness of the parts was calculated to be: .378 for the thumb side with no truss, 1.333 for the 

thumb side with a truss, and .15 for the screw-hosing side with and without the truss. Seeing an 

increase in the value for stiffness for the thumb side with the addition of the truss versus the 

consistent stiffness values in the screw-housing side delivers additional signs that improvements 

in the truss system for the screw-housing side of the prosthetic can be implemented. 

Force 
(lbs)

Stiffness Displacement 
(mm)

Estimated Displacement from force of 3.3lbs 
(mm)

FEA max displacement 
(mm)

No Truss (thumb side) 8.5 0.378 22.5 8.74 5.499
Truss (thumb side) 20 1.333 15 2.48 0.641

No Truss (screw-housing side) 12 0.15 80 22 9.791
Truss (screw-housing side) 13.5 0.15 90 22 7.578
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Figure 23: Comparison of the max location between the normal stress in the Z direction (right) 
and the von Mises stress (left) on the tip of the thumb side of the prosthetic. 



38 
 

 

 

Figure 24: Comparison of the max location between the normal stress in the Z direction (right) 
and the von Mises stress (left) on the tip of the thumb side of the prosthetic with truss added. 
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Figure 25: Comparison of the max location between the normal stress in the Z direction (right) 
and the von Mises stress (left) on the tip of the screw-housing side of the prosthetic. 
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Figure 26: Comparison of the max location between the normal stress in the Z direction (right) 
and the von Mises (left) on the tip of the screw-housing side of the prosthetic with truss. 
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3. Development of Hand Prosthesis Simulator 
 

3.1 Prosthetic Simulator 
 

The prosthetic simulator, when first designed, had an issue of being too bulky with an 

unnecessary amount of material present (Figure 23). The first prototype left no room for 

adjusting the position of where the Velcro straps can be independently strapped around the user’s 

arm. The bottom of the simulator was flat, and was uncomfortable to the user as well. In the 

second iteration, a central pole was added so that ribs with the Velcro straps (Figure 24) can be 

slid on to the main body of the simulator to a comfortable distance. The connection point where 

the prosthetic is screwed in to place on the simulator was thinned down to an appropriate 

thickness and was turned to the side to see if the position served better for the user. Problems that 

arrived in the second iteration is that the sideways orientation to attach the prosthetic limited the 

space to open the prosthetic. It was a requirement of ours to have the prosthetic facing the same 

orientation as the hand because we wanted the user to use the prosthetic as if it were their 

original hand with as little alterations to the positioning as possible. Another error that came 

about was that we wanted the wrist of the users to play no role in altering or maneuvering the 

simulator in any way possible. This is was possible with the handle being attached. So, it was 

necessary for us to remove the handle to prevent any wrist action from intervening. Last, the 

circular rod that connected to the ribs allowed the ribs to slightly rotate about it because of its 

smooth surface. To combat this dilemma, the circular rod was turned in to a hexagonal rod to 

prevent any rotation about it. In the final iteration, we made an above-arm simulator and a 

below-arm simulator because we wanted to test out the benefits of using a prosthetic below the 

hand, versus in front of the hand. The rod was also shortened because in the previous iteration, 
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the rod was too long for some people. Before, the simulator was capable of holding three ribs, in 

the final version, it was design to only hold two ribs. 

 

Figure 27: The prosthetic simulator iterations. The first being on the left, and the final above-arm 
and below-arm simulators on the right. The second iteration is the part second from the left. 

 

Figure 28: The prosthetic simulator rib iterations. The left two are the first iterations, while the 
right rib is the final iteration. 
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3.2 Ribs 
 

The ribs went through smaller iterations, mainly focusing on minimizing the size, making 

it comfortable, and allowing it to attach to the entire prosthetic setup. The first prototype of the 

rib was made to fit the circular rod on the main body of the simulator. Screw holes were made 

above the hole that slid over the pole so that a screw can be placed in to tighten the rib around 

the pole of the simulator. Fabric holders were placed on each side of the rib in order to hold on to 

a piece of scuba diving fabric. The scuba diving fabric was placed to give comfort to the user and 

to reduce friction between the device and skin. The rib’s shape was modeled to form a nice arch 

over the user’s arm. This was an improvement over the flat surface on the first iteration of the 

prosthetic simulator. Channels were then inserted on the side of the ribs to allow a 1-inch width 

Velcro strap through to tighten on to the user’s arm. In the final iteration of the ribs, the fabric 

holders were removed because the smooth surface of the 3D printed PLA material was smooth 

enough and did not cause any friction or pain against the skin of the user. The circle was changed 

to a hexagon to prevent any form of rotation about the pole of the simulator. The portion above 

the hexagon was shortened in height, rounded on the top corners, and had extra thickness added 

to the area that the screw is placed to add more reinforcements and a flat surface to the area of 

stress. The ribs were made symmetrical so that it would not matter which way you put on the 

ribs, and a small wire clip was created on both sides of the hexagonal hole so that the wire 

connected to the harness has a place to rest on the prosthetic simulator assembly. 
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4. Human Subject Trials with Prosthetic Simulator 
 

4.1 Background 
 

It is hypothesized that if the Hosmer 5X Prosthetic Hook is positioned below the user’s 

hand instead of in front of the hand, while on the simulator, then the user will perform quicker 

and more accurately with the simulator and the Hosmer prosthetic. That the under-arm position 

better emulates the prosthetic use and will lead to better dexterity than the in front position. 

Hand-eye recalibration, readjustment of posture, and incorrect position of the prosthesis are some 

expected shortcomings of the commonly used in front configuration. This is why the Box and 

Blocks Test is being utilized - to measure the dexterity of the user and to help measure the 

performance of the simulators.  

4.2 Methods 
 

 A small sample population of 4 participants participated in this study. The ages of the 

participants were 22, 23, 23, and 27, and all were male. All participants provided written 

informed consent prior to participation, and all methods were approved by the Institutional 

Review Board of Loyola Marymount University. The Box and Blocks Test used in this study 

works by testing a user’s manual dexterity (Mathiowetz and Weber 1985). Typically used for 

handicapped individuals, the test delivers a score for the users who perform the test. Within a set 

time limit, the participant moves small blocks, from one side of the box to the other. They must 

only pick up one block at a time, and they must move the block over the small divider that 

separates the two sides of the box. 
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The 3D printed prosthetics and the simulators were printed off the Stratasys F270 and the 

MakerBot Replicator in PLA material. Two prosthetic positions for the simulator and two 

different prosthetics were used in randomized order. The two simulator positions were in front of 

the hand and below the hand, while the two different prosthetics were the original stainless-steel 

Hosmer 5X Prosthetic Hook and a PLA 3D printed replica. The two prosthetics weighed 5.5oz 

and 2.5oz respectively, and the only difference being the material and the additional M12-1.25 

hex screw connected to the 3D printed replica. The four testing groups were: (1) in front of the 

hand with the original prosthetic, (2) below the hand with the original prosthetic, (3) in front of 

the hand with the replica, and (4) below the hand with the replica. During these tests, the position 

of the box and blocks were positioned closer to the subject, as well as eight inches away from the 

subject on a table. The three experimental conditions were: the prosthetic material, the prosthetic 

position, and the box position. The prosthetic material was analyzed to see if the weight 

difference played a large role in the success of the test; or if the 3D printed replica model 

performs better or worse than the original. The prosthetic positions were evaluated to see if the 

position directly below the hand delivered better scores than the in front position. The box 

position was looked at so that there was a wider range of subject workspace to analyze, to see if 

there were benefits of a near or far box when testing prosthetic position and material. As 

mentioned before, participants were assigned to these groups randomly to help balance a learning 

effect. As people go through the Box and Blocks Test, they naturally become more familiarized 

with the prosthetic simulators and start to get more skilled at the device. In addition to the 

random assignment, before each participant started, a training period was administered to further 

reduce any learning effect from skewing the data.  
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The participants in this test had an 3D printed PLA prosthetic simulator, that was design 

for this experiment, Velcro strapped on to their dominant forearm. A Hosmer 5X Prosthetic 

Hook will be connected to the 3D printed simulator in the distal direction. From there, the 

Hosmer Northwestern Ring Harness is connected to the prosthetic, fastened on to the back of the 

individual, and the wire is inserted in to the grooves on the prosthetic simulator (Figure 25). The 

Hosmer 5X Prosthetic Hook was 3D scanned with the Artec Space Spider, surfaced on 

Geomagic Wrap, and redesigned in SOLIDWORKS in order to create the 3D printed replica and 

a new 3D printed prototype. 

 

Figure 29: The Box and Blocks Test being performed with the above-arm simulator and the 
plastic prosthetic. 

Last, the number of blocks that were moved in a set time limit of 60 seconds were measured to 

calculate the performance of the individual. The current test results were developed as 

preliminary tests. In future trials, the individuals will perform the Box and Blocks Test while the 

user’s arm positions are tracked and calculated. The participants movements will be calculated 



47 
 

on Qualisys Track Manager software, with a nine-camera tracking system, and a camera sample 

rate of 240Hz. 

4.3 Results 
 

4.3.1 Box and Blocks Test 
 

 During the Box and Blocks Test, all the participants completed all of the tasks asked of 

them (Table 3). Looking at the average scores of all the participants, there was a small learning 

effect in play as the trials progressed through the study, despite there being a training period of 

about 1 minute at the beginning of each study right before they started using the simulator 

(Figure 26). The largest learning effect was displayed after trial number 2. Trial number B1 and 

B2 were the box and blocks assessment trials when the participants used no simulator or 

prosthetic and performed the tasks with their dominant hand. 

 The scores from the two simulator positions were averaged together to look at the 

performance of the front position versus the bottom position. These score averages were taken 

from trial number 1 through 8 (Figure 27), as well as from trial number 3 through 6 (Figure 28) 

to see if the absence of the learning effect affected the results. For trials 1 through 8, the front 

simulator position had an average score of 19.5 ± 3.8, while the bottom position had an average 

score of 20.625 ± 2.9. For trials 3 through 6, the front position had an average score of 21 ± 2.4, 

while the bottom position had a score of 20.125 ± 2.48. The same analysis was performed for the 

effect of prosthetic material. Again, these averages of these two variables were taken from trial 1 

through 8 (Figure 29), and also from trial 3 through 6 when learning had minimal impact (Figure 

30). For trials 1 through 8, the plastic material received an average score of 20.19 ± 3.6, while 
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the metal material received a score of 19.9 ± 3.28. For trials 3 through 6, the plastic material had 

a score of 21 ± 2.45 and the metal material had a score of 20 ± 2.39. 

Table 4: Scores of the four participants in the Box and Blocks Test. Darker rows indicate the 
rows used to remove the learning effect. 

 

 

 

Figure 30: Summation of the scoring averages of all the participants for every simulator trial. 

Task Prosthetic Simulator
Near = 1 Metal = 1 Front = 1
Far = 0 Plastic = 0 Bottom = 0

Subject S33 Task Prosthetic Simulator Score Trial # Subject S35 Task Prosthetic Simulator Score Trial #
1 - - 59 B1 1 - - 59 B1
0 - - 66 B2 0 - - 64 B2
1 0 0 20 1 1 0 1 13 1
0 0 0 17 2 0 0 1 17 2
1 1 0 17 3 1 1 1 22 3
0 1 0 18 4 0 1 1 23 4
1 0 1 19 5 1 0 0 21 5
0 0 1 24 6 0 0 0 22 6
1 1 1 18 7 1 1 0 23 7
0 1 1 16 8 0 1 0 25 8

Subject S34 Task Prosthetic Simulator Score Trial # Subject S36 Task Prosthetic Simulator Score Trial #
1 - - 67 B1 1 - - 54 B1
0 - - 63 B2 0 - - 58 B2
1 1 0 21 1 1 1 1 16 1
0 1 0 25 2 0 1 1 15 2
1 0 0 24 3 1 0 1 18 3
0 0 0 22 4 0 0 1 18 4
1 1 1 23 5 1 1 0 19 5
0 1 1 20 6 0 1 0 18 6
1 0 1 27 7 1 0 0 16 7
0 0 1 23 8 0 0 0 22 8
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Figure 31: Average scores for the simulator positions. 

 

 

Figure 32: Average scores of the simulator positions where the learning effect is less present. 
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Figure 33: Average scores of the prosthetic material. 

 

 

Figure 34: Average scores of the prosthetic material where the learning effect is less present. 
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4.4 Discussion 
 

The entire results from the Box and Blocks Test suggested that there is a minor 

performance enhancement when utilizing the prosthetic simulator in the bottom position as well 

as using the plastic prosthetic.  

The effect of material could have arisen from the difference in weight between the 

prosthetic. The lighter weight of the plastic prosthetic could have allowed the user to move more 

swiftly throughout the study. The metal prosthetic’s weight may have tired the user’s arm 

slightly faster, making them fatigue and less accurate. This is important because it speculates that 

all the weight in the metal prosthetic is overbearing. The user may only need a light prosthetic to 

get simple tasks done, while also being able to minimize the number of pounds they must lift 

with their arm. 

The bottom prosthetic position could have allowed the participant to reach the item 

quicker, thus leading to a slightly higher score. By positioning the prosthetic simulator on the 

bottom, the user was able to position the prosthetic in a similar location as their actual human 

hand. This position could have given them better hand-eye coordination because the prosthetic is 

closer to where their real hand is located, limiting any need for hand-eye calibration. However, 

with the simulator being below the hand, the user could have had a disadvantage by having 

limited eye sight of the prosthetic because of their hand getting in the way of their vision. The 

front simulator position could have impeded the subjects’ dexterity because it effectively 

lengthened their forearm, requiring them to readjust their posture to grab blocks at closer 

distances. Ultimately, the bottom simulator still can mimic the common angles that humans 

encounter in motor movement because it is a simple offset of the joint angle. The simulator 

position in front of the hand is not a common experience when grabbing ahold of items, and this 
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results in new motor movement to compensate for this new position. Lastly, the in-line simulator 

could have made it easier for the participant to get over the divider in the Box and Blocks Test 

since the prosthetic was in line with the user’s arm. For the most part, if their real hand made it 

over the divider, then the prosthetic makes it across too, while for the under-arm prosthetic there 

is still room for hitting the divider, even if their human hand makes it over. 

 There seems to still be a learning effect even after the short training the users received 

before the first trial with the prosthetic simulator. This effect appears to mostly level out after 

trial 2. In future experiments, the results could be better isolated from learning effects by adding 

two full trials prior to the main set of 8 trials. In particular, it may be advantageous if trials 1 and 

2 were repeated before moving on to the remaining 6 trials. Then the data from trials 1 and 2 

could be used to measure the learning effect, and the data from the new trials 3 and 4 (the repeat 

of trials 1 and 2) could be compared with the remaining 6 trials to measure the effects of 

simulator position and material, with a reduced impact of learning. 

 The effects of prosthetic position and material were also measured across trials 3 through 

6 during which the learning effect was not as great. It is interesting to see that the in-line position 

had a slightly better score than the bottom position when only these trials were considered. The 

plastic material still led to a higher score than the metal. If the learning effect was eliminated, it 

is assumed that these results would reappear, with the top simulator and the plastic material 

having higher scores; however, it is impossible to tell which position led to better scores without 

a larger sample size. It is interesting to note that the participants who used the front position 

simulator first had a more dramatic learning effect over the first three trials. As more data is 

collected, it will be intriguing to identify if this phenomenon means that the bottom position has 
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a quicker learning period, while the in-front position has a longer learning period, or was it just 

those subjects in particular. 

5. Conclusion 
 

 It was hypothesized that by locating the prosthetic simulator under the user’s hand, then 

the user would have better results in the Box and Blocks Test. This hypothesis was shown to be 

true; however, there are still many other variables to look at that could change the results. Since, 

on average, the user’s performed better with the above-arm simulator when looking at trials 3 

through 6, this shows that the learning effect needs to be dealt with at a greater scale. To 

completely assess the hypothesis, a larger sample size will be needed to do so. 

These preliminary tests that were done in this study not only gave us insight on the 

prosthetic simulator position and the material choice for the prosthetic, it also gave us a better 

understanding on performing more accurate and reliable tests as we move forward and continue 

with this study. In the upcoming trials, the addition of a tracking system will be added to help us 

understand the body movements that go along with the simulator positions and the prosthetics 

being used. The additional tracking system in the upcoming tests will give us a more in-depth 

view on how the user behaves when they are grabbing an item in a location that is not close to 

their original hand position. The tests in this study also exposed better approaches to drastically 

remove the learning effect when the study is running in the future with the tracking system and a 

larger population. When running the study, trial 1 and 2 will be repeated for a second time in a 

row to help towards eliminating any learning effect. 

 In terms of improving the Hosmer 5X Prosthetic Hook by adding a truss system, 

we learned that if a truss system from the thumb side of the prosthetic was used on the screw-
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housing side of the prosthetic, then the prosthetic can be evenly improved to perform basic 

human tasks, as well as withstand greater forces as well. In addition to that, completely removing 

the divot on the tip of the prosthetic can insure a better distribution of force throughout the 

prosthetic parts. 

As we move forward and continue with the study, as mentioned before, the first thing we 

will be looking in to is improving the format of test to ensure that the data delivers more 

impactful results. The population will be larger, more diverse, while the tracking system and a 

greater reduction of the learning effect will improve our results. For the prosthetic simulator and 

the prosthetic, it will be interesting to work with stronger 3D printing materials, such as NylonX, 

to figure out how to further optimize the models. Diving deeper in to the printing orientation, as 

well, will give us insight on optimizing the prints and making them as durable as possible in 

areas of high loading. The results from the test show that utilizing the replica prosthetic hook for 

heavy duty tasks would be detrimental. Tasks that require strenuous manual labor, like operating 

tools and machinery, may result in to a loading stress too high for the hook to handle, resulting in 

the prosthetic breaking. 

Creating an easily accessible, cost efficient simulator that works consistently and reliably 

for schools and labs is the goal. By having a standardized simulator for schools and laboratories 

to use, any imbalance in simulators can potentially be removed, leading to more consistent 

results in tests and studies. For prosthetic users, they can receive prosthetics that can go through 

more rigorous testing because researchers can utilize a standardized simulator to test prosthetics 

on a wider population of nonamputees. In addition, delivering a 3D printable prosthetic that can 

withstand the use of daily living, weigh less than the original, be more cost effective, and also be 

easily distributed is an important task as well. With the average delivery time for a prosthetic 
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being 6 months, and the critical time to teach an amputee how to use their prosthetic being the 

first 30 days after amputation, delivering a solution to the individual quickly is critically 

important and finding a solution to this issue seems beneficial to the success of the amputee and 

their device (Malone et al. 1984; Davies, Friz, and Clippinger 1970). 
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Appendices 

 

Figure 35: Displacement values of the screw-housing side of the prosthetic with no truss (left) 
and with truss (right) using PLA properties. 
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Figure 36: Strain values of the screw-housing side of the prosthetic with no truss (left) and with 
truss (right) using PLA properties. 
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Figure 37: Stress values of the screw-housing side of the prosthetic with no truss (left) and with 
truss (right) using PLA properties. 
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Figure 38: Displacement values of the thumb side of the prosthetic with no truss (left) and with 
truss (right) using PLA properties. 
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Figure 39: Strain values of the thumb side of the prosthetic with no truss (left) and with truss 
(right) using PLA properties. 
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Figure 40: Stress values of the thumb side of the prosthetic with no truss (left) and with truss 
(right) using PLA properties. 
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Figure 41: Post stress test of screw-housing half of the 3D printed prosthetic with no truss. 

 

 

Figure 42: Post stress test of screw-housing half of the 3D printed prosthetic with truss. 
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Figure 43: Post stress test of thumb half of the 3D printed prosthetic with no truss. 

 

 

Figure 44: Post stress test of thumb half of the 3D printed prosthetic with truss. 
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Figure 45: Entire configuration for the above-arm simulator. 

 

 

Figure 46: Above-arm simulator. 
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Figure 47: Entire configuration for the below-arm simulator. 

 

 

Figure 48: Below-arm simulator. 
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Figure 49: Simulator prototype number two with a sideways grabbing handle and round bar for 
the ribs to clasp on to. 

  

 

Figure 50: First prototype of the simulator. 
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