

Loyola Marymount University and Loyola Law School **Digital Commons at Loyola Marymount** University and Loyola Law School

Systems Engineering Research Projects and Oral Presentations

Systems Engineering

Fall 2014

Waste Reduction in an Interdependent System through Standardization and Lean Thinking-Chlamydia/GC Testing: Lean Improvements

LaRonda S. Frazier Loyola Marymount University

Follow this and additional works at: http://digitalcommons.lmu.edu/se etdrps

Part of the Systems Engineering Commons

Recommended Citation

Frazier, LaRonda S., "Waste Reduction in an Interdependent System through Standardization and Lean Thinking- Chlamydia/GC Testing: Lean Improvements" (2014). Systems Engineering Research Projects and Oral Presentations. 23. http://digitalcommons.lmu.edu/se_etdrps/23

This Oral Presentation - Campus Accessible Only (with IP restrictions) is brought to you for free and open access by the Systems Engineering at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Systems Engineering Research Projects and Oral Presentations by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact digitalcommons@lmu.edu.

Waste Reduction in an Interdependent System through Standardization and Lean Thinking Chlamydia/GC Testing: Lean Improvements

LaRonda S. Frazier, MS, CLS

Director of Lab Operations, Microbiology Services SCPMG Regional Reference Laboratories Course SELP 695-02

Semester: Spring 2014

Advisor: Bohdan W. Oppenheim, PhD

Table of Contents

- Overview: Optimizing CT/GC Testing
- Current Workflow and Turnaround Time
- Lean Observations
- Analysis: Opportunities for Improvement
- Future State
- Ideal State

The Virology Laboratory – An Overview

Services

- ✓ Comprehensive diagnostic Virology Laboratory
- √ ~ 800,000 samples per year
- ✓ Molecular testing: Mycobacterium tuberculosis TMA, Chlamydia/GC (CT/GC) TMA, C. difficile PCR, Enterovirus PCR, and Respiratory Panel PCR (Inpatient), and Influenza A and B PCR (Outpatient)

Highlights

- √ High volume testing for CT/GC (~2000/day, >430,000/year)
 - Ensures appropriate diagnosis and prevention

CT/GC Testing on the Tigris Instrument

CT/GC Testing Project Focus : Listening to the Voice of the Customer

Customers

- ✓ Patients/members
- ✓ Healthcare providers

Goals

- ✓ Minimize test delays
- ✓ Issue error free results
- ✓ Decrease Turn-Around-Time

Value

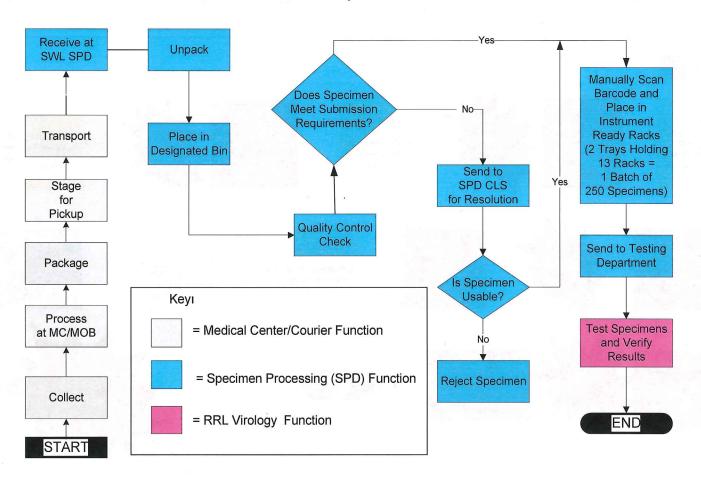
- ✓ Improved result turnaround time
- √ Improved patient care
- ✓ Increased member satisfaction
- ✓ Increased provider satisfaction

Chlamydia/GC (CT/GC) Testing Statistics:

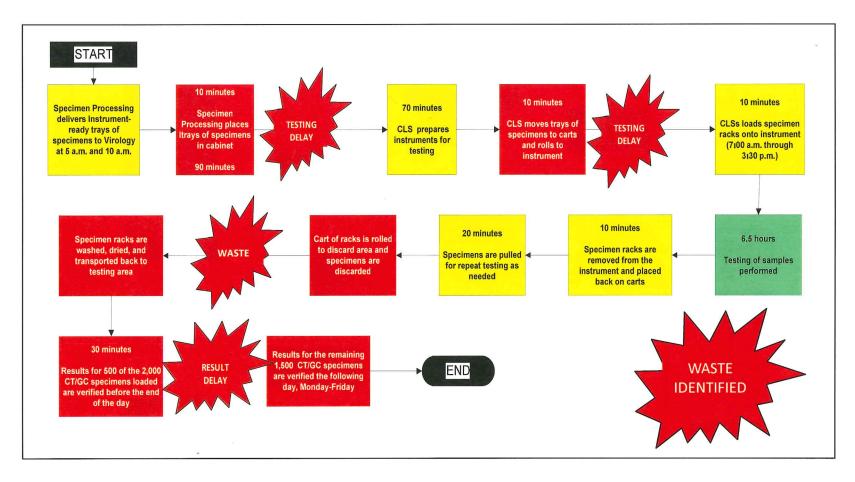
- √ >430,000 tests performed annually
- ✓ Operations (2 day shifts):
 - 1st: 5 am to 1:30 pm (7 CLS)
 - 2nd: 10 am to 6:30 pm (7 CLS, 1 R&D CLS)
- ✓ Staff: 15 licensed, 2 support staff, 1 Section Manager, 1 Assistant Director of Laboratory Services, 1 Director of Laboratory Services

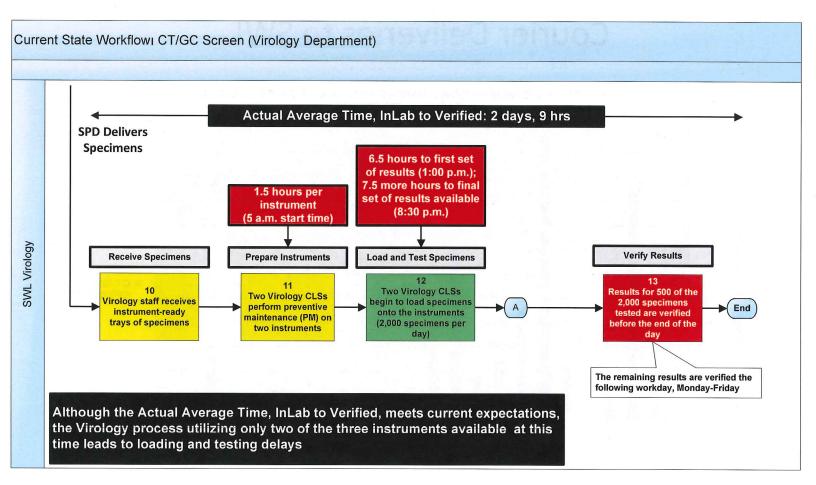
Quality Testing

Error Free

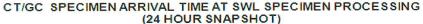

On Time

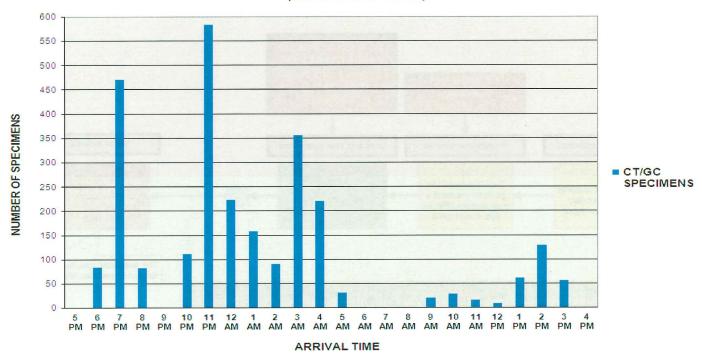
Every Time


CT/GC Overview of Process: (Collection to Result Verification)



CT/GC Workflow In Virology Department

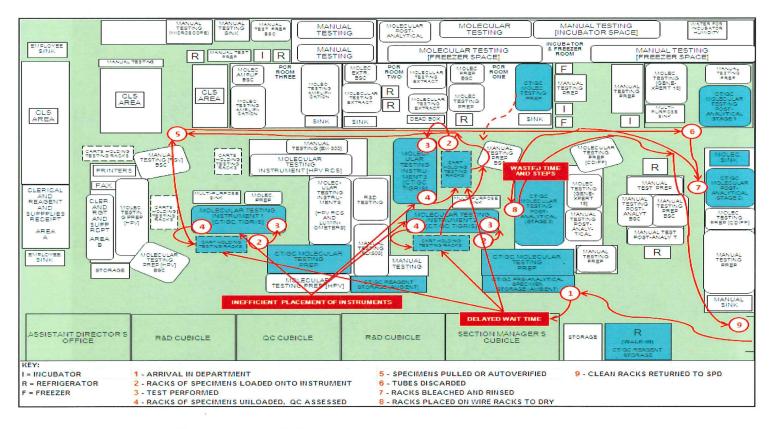




Courier Deliveries to SWL

LEAN OBSERVATION: (Mura) Uneven arrival time contribute to sub-optimal pre-analytical wait time and result delay.

Specimens Stored in Specimen Processing Department



LEAN OBSERVATION: Storage after log-in adds unnecessary pre-analytical wait time

CT/GC Specimen Spaghetti Workflow Diagram in Virology

LEAN OBSERVATION: Workflow pathway is not optimal

Specimens are stored on shelves prior to testing

LEAN OBSERVATION: Storage adds unnecessary pre-analytical wait time

CLS prepares instrument, loads specimens, checks Quality Control for acceptability on completion of testing, pulls specimens for repeat testing, and merges and verifies results

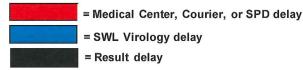


SELP 695 - Capstone Project 2014

(1) Post-analytical discarding of CT/GC specimens

(2) Post-analytical bleaching and rinsing of CT/GC racks

(3) Drying of CT/GC racks, loading onto trays → SPD


LEAN Observation: Location of rack drying/tray prep area is not optimal

of Science and Engineering Test Turnaround Time (TAT)

Virology GenLab Module Test Turnaround Time (d:hh:mm) - 2014

January	Total Count	Drawr	Actual TAT to In Lab allowed)	In Lab	e Actual TAT to Verified e allowed)	Average Actual TAT Drawn to Verfied	Expected TAT Drawn to Verified
Chlamydia GC Swab Amplified Probe	15073	1:04:21	(0:12:00)	2:23:38	(3:12:00)	4:03:59	4:00:00 (96 hours)
Chlamydia GC Urine Amplified Probe	19880	1:04:20	(0:12:00)	2:23:30	(3:12:00)	4:03:50	4:00:00 (96 hours)
	34953			7			

February	Total Count	Average Actual TAT Drawn to In Lab (= time allowed)	Average Actual TAT In Lab to Verified (= time allowed)	Average Actual TAT Drawn to Verfied	Expected TAT Drawn to Verified
Chlamydia GC Swab Amplified Probe	16057	1:19:43 (0:12:00)	3:10:00 (3:12:00)	5:05:43	4:00:00 (96 hours)
Chlamydia GC Urine Amplified Probe	19326	1:22:42 (0:12:00)	3:06:41 (3:12:00)	5:05:23	4:00:00 (96 hours)
	35383			No.	

March	Total Count	Average Actor Drawn to It	n Lab	In Lab	e Actual TAT to Verified e allowed)	Average Actual TAT Drawn to Verfied	Expected TAT Drawn to Verified
Chlamydia GC Swab Amplified Probe	16325	1:12:13 (0:1		,	•	3:22:31	4:00:00 (96 hours)
Chlamydia GC Urine Amplified Probe	21936	1:17:18 (0:1	12:00)	2:11:30	(3:12:00)	3:28:48	4:00:00 (96 hours)
	38261						

LEAN OBSERVATION: Drawn (Collected) to In Lab Times are excessive

Analysis of Opportunities for Improvement –

Current State: (Part 1: Pre-analytical)

- Non Value Added Time (NVAT) = Storage of specimens on shelves prior to testing
 - Specimen Processors move the trays of specimen racks from a cart to the shelves.
 - CLSs move trays of specimens from the shelves to a cart to load the instruments.
- <u>LEAN OPPORTUNITY</u>: Directly deliver racks to a location in front of each instrument.

Analysis of Opportunities for Improvement –

Current State: (Part 2: Testing)

Expedite workflow:

- Utilize all three instruments daily
- Assign a CLS to each instrument at 5 a.m.
- Station PCs near the instruments
- Change rotation to assign a CLS to the weekend staffing
 These changes would:
 - Eliminate the initial delay in loading
 - Expedite completion of testing and reporting
 - Allow verification of results for all 2,000 same day versus the next day or later
 - Enable CT/GC testing 7 days/week, with no added FTEs
 - Allow room for growth

Analysis of Opportunities for Improvement –

Current State: (Part 3: Post-analytical)

- Non Value Added Time (NVAT) = Current location of the rack drying/tray preparation area is not optimal.
 - Unnecessarily moving the cleaned specimen racks to a bench top.

LEAN OPPORTUNITY: Move rack drying/tray preparation area to a bench top area next to the rack washing sink for return to the SPD.

Future State: 6s

Drying of CT/GC racks, loading onto trays \rightarrow SPD

LEAN OBSERVATION: Location of rack drying/tray prep area is optimal

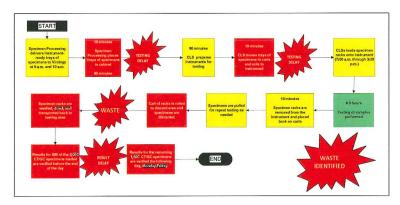
Lean Tools

<u>Currently not used but will be implemented in Future State</u>

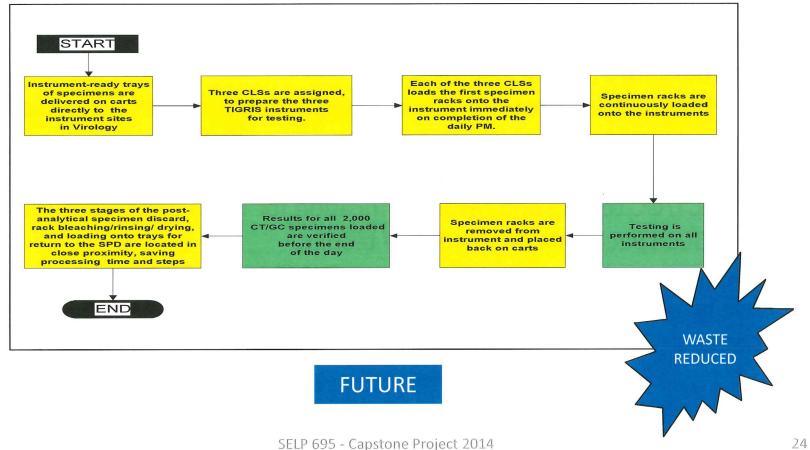
- **6s:** sort, safe, straighten, scrub, standardize, sustain
- Kanban: smaller batch sizes
- Better Layout: spaghetti diagram
- Andon Light: audible error alarm
- Visual Controls: flashing alarm

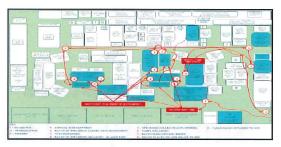
Summary of Current State Gemba Findings

- Inefficient pre-analytical workflow
- Inefficient use of CLS staff
- Excessive NVAT wasted steps
- Inefficient post-analytical workflow

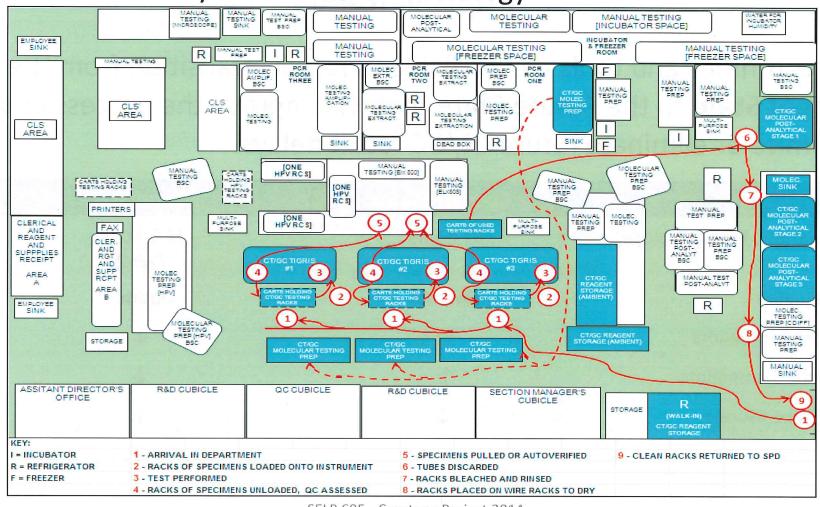


Summary of Lean Improvements Future State:


- Pre-analytical: Deliver trays of instrument-ready racks directly to each instrument area and eliminate the cabinet storage
- Instruments are moved side-by-side
- Three 5 a.m. CLSs instead of two are assigned to prepare and load all three instruments concurrently
- Smaller batch sizes with increased delivery of samples
- Enable CT/GC testing and result verification for up to 2,000 specimens verses 500 specimens on the day of testing.
- Implement testing on weekends instead of Monday-Friday.
- Move location of the post-analytical rack bleaching/tray preparation process.



Workflow Improvements from Current to Future State



Future State: CT/GC Workflow in Virology

Future State Summary of Lean Improvements

Opportunities and tools are available to rapidly transition from the **Current State** to the **Future State** that will improve the process and minimize or eliminate future CT/GC result delays.

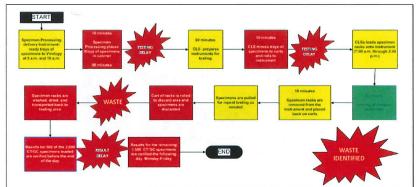
	Current State	Future State
Throughput Time (Virology)	57 hours	13.5 hours (76%)
Test Quality	Optimal	Optimal
Patient Complaints	↑	\
Provider Complaints	↑	\
Employee Morale	\	^

Ideal State

CT/GC Lean Improvement

- Auto-verification and Auto-release (utilize DI software)
- Streamlined pre-analytical process(SPD): Robot delivery
- Post-analytical (EVS and Acquiring of more sample racks)
- 24-hour a day Testing
 - Minimize test delays
 - Implement single piece flow real time processing to increase throughput
 - In-source molecular tests currently performed at Quest as outside lab tests with no additional staff needed

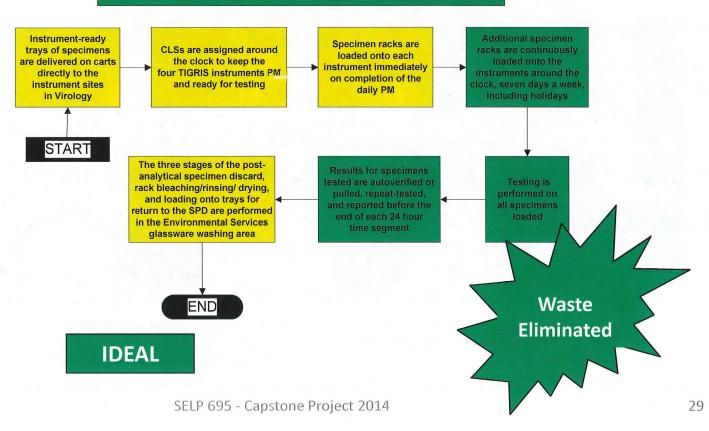
In-Source Testing Capability



The following tests are currently sent out to Quest Diagnostics, Inc.:

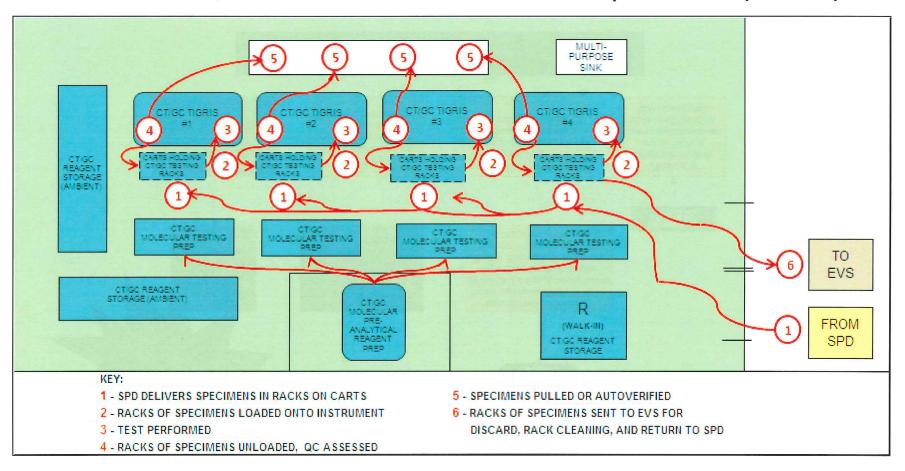
- QuantiFERON TB Gold: 8,663 per year = \$519,768 sendout savings
- Cytomegalovirus PCR: 3,126 per year = \$250,080 sendout savings

The tests can be internalized with no additional staff; will have reagent cost.

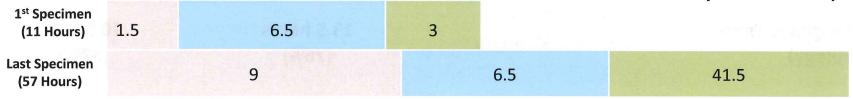


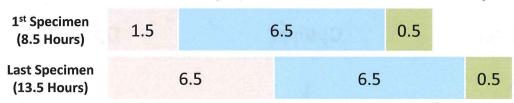
Ideal State: SWL Virology Summary of Workflow Improvements

24 Hours Around the Clock CT/GC Specimen Delivery, Loading, Testing, and Reporting via Autoverification

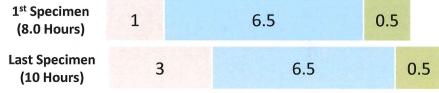


Ideal State: CT/GC Workflow in Molecular Department (Annex)




Time Value Charts: Current, Future, and Ideal States

Key	Virology Receipt	Loading to Test	Test Completion to
(Hours)	to Loading	Completion	Result Verification


Current State: Monday – Friday Only (maximum: 2000 specimens)

Future State: Daily (maximum: 2,000 specimens)

Ideal State: Daily (24-hour-a-day testing, minimum: 4,000 specimens)

Summary: Current State, Future State, Ideal State

(Znembetz)	Current State	Future State	Ideal State
Throughput Time (Virology)	57 hours	13.5 hours (76%)	10 hours (82%)
Direct Cost Savings	\$ 0	\$ 0	\$ 769,848
Test Quality	Optimal	Optimal	Optimal
Patient Complaints	↑	\	$\downarrow \downarrow$
Provider Complaints		\	*
Employee Morale	↓	^	^

Respect for People

- The Lean approach is congruent with Kaiser Permanente's mission which emphasizes that everyone plays an integral role in a successfully functioning process
 - How we relate to one another
 - How we work with one another
 - How we define success
- To provide reliable, accurate, timely, meaningful, and costeffective clinical laboratory services, for the benefit of the patient
- Understanding role of being a part of the team and finding fulfillment in our work; no more silos; empowered

Reflections

Knowledge is Power (when you know better you do better)

- Mindset (Interconnectiveness in our interdependent system)
 - Great to Greater
 - Become Ambassadors to educate staff and leadership team
- Tools and Support
- Coordinate efforts
 - Change dynamics of how we work together to enhance efficiencies
 - Increased level of service will strengthen KP enterprise
- Next Steps (take action: educate and implement)
- Recommendations and acknowledgements

