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Characterization and Visualization of Spatial Patterns of Urbanisation and
Sprawl through Metrics and Modeling

Characterisation of spatial patterns of urban dynamics of Coimbatore, India is done using temporal remote
sensing data of 1989 to 2013 with spatial metrics. Urban morphology at local levels is assessed through
density gradients and zonal approach show of higher spatial heterogeneity during late1980’s and early 90’s.
Urban expansion picked up at city outskirts and buffer region dominated with large number of urban
fragments indicating the sprawl. Urban space has increased from 1.87% (1989) to 21.26 % (2013) with the
decline of other land uses particularly vegetation. Higher heterogeneous land use classes during 90’s, give way
for a homogeneous landscape (with simple shapes and less edges) indicating the domination of urban
category in 2013. Complex landscape with high number of patches and edges in the buffer region indicate of
fragmentation due to urban sprawl in the region. Visualisation of urban growth through Fuzzy-AHP-CA
model shows that built up area would increase to 32.64% by 2025. The trend points to lack of appropriate
regional planning leading to intensification of spatial discontinuity with the unsustainable urban growth.
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INTRODUCTION  
 

Urbanization is a dynamic process involving the expansion of urban pockets in response to the 

population growth, industrialization, political, cultural and other socio-economic factors. Insights 

to the spatial patterns of urbanization are essential for an effective and better planning 

(Ramachandra et al. 2012). Unplanned urbanization often leads to the large scale land use 

changes altering the landscape structure affecting the ecological integrity with degradation of the 

environment, enormous consumption of resources, creation of urban heat islands, changes in 

local climate, soil erosion, changes in hydrological cycle impairing surface water and ground 

water regime (Sudhira et al. 2004; Bharath H.A. 2012).  

 

Human migration from the rural to the urban areas leads to the increase in urban pockets 

(United Nations 2011). The process of urbanization gained impetus with the industrial revolution 

200 years ago and accelerated in many parts of India due to globalization and opening up of 

markets in 1990’s. Unplanned urbanization affected the quality and sustenance of natural 

resources creating a major problem in most parts of the world (Martinuzzi et al. 2007; Verzosa et 

al. 2010). Current global population is approximately 7.06 billion and urban populations 

constitute more than 50% (United Nations 2007; Population Reference Bureau 2012). Urban 

population has been increasing three times faster than the rural population, mainly due to 

migration to cities and towns (Girardet 1996; Massay et al. 1999; Griffiths et al. 2010). 

Urbanization could be planned (in the form of townships) or unplanned (organic). Unplanned 

urbanization leads to urban sprawl or haphazard, uncontrolled growth of urban pockets with the 

reduction of natural spaces such as vegetation, water bodies and isolated or vacant tracts (Yeh 

and Li 1999; Verzosa et al. 2010; Ramachandra et al. 2012a, b; Bharath H.A. et al. 2012; 

Bharath S. et al. 2012). The phenomena of urban sprawl are widespread in India (Sudhira et al. 

2004; Nath et al. 2007; Bhatta 2009; Bhatta 2010; Taurbocock 2009; Ramachandra et al. 2012a) 

and this uncontrolled expansion occurs at periphery in a non-contiguous way (Martinuzzi et al. 

2007). Sprawl is often accompanied with drastic land use and land cover (LULC) changes 

leading to improper allocation of basic amenities and infrastructure, increased energy 

consumption, depletion of natural resources (Peiser 2001; Ji et al. 2006; Verzosa et al. 2010), 

deteriorating water quality, loss of open and green space, increased water and air pollution 

(Ramachandra and Kumar 2009). Alterations in the ecosystem structure, impacts its functional 

abilities threatening the sustainable development (Yeh and Li, 1999; Ji et al. 2001; Weng 2001; 

Li and Yeh 2004; Chen et al. 2005; Xiao et al. 2006; Liu et al. 2007; Vinay et al. 2013). 

 

Urban expansion is one of the most direct forms of land use change, involving changes in 

land use pattern and urban space distributions due to the social and economic pressures (Pathan 

et al. 1989, 1991; Gillies et al. 2003; Alphan et al. 2009; Bhatta 2009; Ramachandra et al. 

2012b). Urbanization processes are evolving and emerging in unforeseen ways (example 

sprawl), these kinds of developments are also referred to as “geography of nowhere” (Paul 2006, 

Kunstler 1993). Sprawl is considered to be serious issue since it involves direct costs for 

providing infrastructure and services, lack of air quality, water availability, increased travel cost 

and time (Paul 2006). Sprawl occurs with space, geography and time, due to which 

understanding sprawl over time becomes necessary to plan and set the policies. Urban sprawl is 

characterized through three key parameters i.e., (i) disperse population in low-density 

developments, (ii) disconnected, widely separated constructions and buildings, and (iii) Fresh 
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developments beyond the urban core within the city outskirts (Ewing et al. 2002; Moghadam and 

Helbich 2012). These can be analyzed in two ways namely land cover and land use analyses. 

Land Cover (LC) refers to the observed (bio) physical cover on the Earth’s surface (Di Gregorio 

and Jansen 1997; Jansen and Di Gregorio 1998; Codjoe 2004) that currently covers the ground, 

particularly vegetation, permanent snow and ice fields, water bodies or structures (USDA Forest 

Service 1989) and the ecological state and physical appearance of the land surface, (Turner and 

Meyer 1994; Clapham 2003; Codjoe 2004). Thus, land cover analysis helps in distinguishing the 

regions under vegetation and non-vegetation. Land Use (LU) refers to the socio-economic use of 

land (for example, agriculture, forestry, recreation or residential use) or deploying the area for 

predominant purposes (USDA Forest Service 1989; Ramachandra et al. 2012a, c), activities and 

inputs humans undertake in a certain land cover type to produce changes or maintain it (Di 

Gregorio and Jansen 1997; Jansen and Di Gregorio 1998). Understanding LULC dynamics 

provides a detailed explanation to the changes that the region has experienced.  

Implementation of appropriate management strategies require the cost effective spatial 

monitoring of urbanization process (Bhatta et al. 2010; Kong et al. 2012). Data acquired 

remotely at regular intervals through space borne sensors provides a birds-eye view of the region 

that helps in the inventory of spatial and temporal urban land-uses and mapping of urban 

expansions. Integration of the analysis of temporal remote sensing (RS) data with geographic 

information system (GIS), aids in the monitoring of earth resources (Batty 1992; Barnes et al. 

2001; Longley 2002; Ramachandra et al. 2012a; Helmer and Ruefenacht 2005; Seto and Liu 

2003; Lopez et al. 2001; Martinuzzi et al. 2007), urban sprawl (Clapman 2003; Sutton 2003; 

Gillies et al. 2003; Milesi et al. 2003) and other environmental implications (Ramachandra et al. 

2012a). Analysis of spatial patterns of urbanization through landscape ecology techniques help in 

quantifying and monitoring the urbanization process (Sudhira et al. 2004), including issues such 

as energy, land use land cover (LULC) dynamics and climate (Roth et al. 1989; Jothimani 1997; 

Grimm et. al 2000; Lata et al. 2001; Grimmond and Oke 2002; Voogt and Oke 2003; Sudhira et 

al. 2003, 2004; Griffiths et al. 2010; Ramachandra et al. 2012a) across various parts of the world.  

Temporal LULC analyses with spatial metrics are useful to quantify spatial patterns of 

landscape dynamics (Cheng and Masser 2003; Herold et al. 2003; Jat et al. 2008; Ramachandra 

et al. 2012c; Bharath S. et al. 2012) to understand the urban phenomena through attributes such 

as patch, shape, contagion, epoch, edge, etc. (McGarigal and Marks 1995), which provides 

valuable insights to the inherent spatial structures over time (Wu et al. 2011) with growth 

patterns.  

Further, simulation and modeling of urban growth, helps in understanding the future 

impacts of land use policies, developments (Jose and Luca 2003). The model outputs can be used 

in the decision support system which helps in understanding various aspects of “what if 

situations, evaluation of likely scenarios, evaluation of alternatives, etc.”. Over the last few 

decades, various agent based (actor based) and non-agent based (pattern) models (Perez et al 

2012; Castella and Verburg 2007; Verburg 2006; Bharath H.A. et al. 2013a) have been used in 

order to simulate the LULC. Some of the models commonly used are Cellular Automata, Land 

Change Modeler, DINAMICA, GEOMOD (Geo-Modeler), CLUES, SLUETH which are/can be 

integrated with various aspects of assessment namely Artificial Neural Networks, Multi Criteria 

Evaluation, Markov Chains, Fuzzy Logic, Analytical Hierarchical Process, Boolean algebra, Ant 

Colony Optimisation (Zhou et al. 2012; Ramachandra et al. 2016). This paper integrates aspects 
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of fuzzy logic, analytical hierarchical process, multi criteria evaluation, Boolean algebra, Markov 

chains and cellular automata to simulate future land use considering various aspects of change 

(growth factors and constraints).  

Fuzzy Logic (Zadeh 1965) is used to standardize criteria for agents of growth (Gorsevski 

et al. 2012) due to its good capability to mimic human control logic (Kaehler 2015). 

Standardization process transforms and rescales (considering variable values, while allowing 

intermediate values) criteria into comparable units (Gorsevski et al. 2012; Sui 1992). Process of 

standardization (Fuzzy) is based on simple rules, which takes into account the rate of change 

along with significant values in a membership function (Dernoncourt 2013). The membership 

functions can be monotonically increasing or decreasing; sigmoidal, etc. these membership 

functions represent the magnitude of participation of each criterion (Hellmann 2001; Eastman 

2001).  

Similar to Fuzzy, Boolean algebra is used to standardize the constraints of growth. 

Boolean, unlike Fuzzy doesn’t consider variable values, it considers either 0(false) or 1(true), 

true for all the possible pixels of change and false where there is no change.  In modeling 

“continuous factors of multi-criteria decision making are fuzzy membership functions, whereas 

Boolean constraints are crisp set membership functions” (Eastmann 2001). 

Analytical Hierarchical Process is a multi-criteria decision making approach which uses a 

pairwise comparison approach for decision making (Satty 1990), where in the factors are 

organized in hierarchical structure (Triantaphyllou and Mann 1995). Decision making involves 

various criteria’s, which are used to rank the agents of change (Satty 2008). Weightages of 

criteria’s in AHP depend on the expert’s opinion in order to derive the priorities/ranks i.e., 

normalized principal vectors (Tecknomo 2005) are the factors compared by scaling one’s 

importance over the other. The weights once assigned are subjected to validation by calculating 

the consistency ratio.  

Site Suitability / site selection (Dapueto et al. 2015) is one of the major aspects that need 

to be understood for identifying potential locations for development and a complicated spatial 

decision process since it has large number of alternatives and involves decision making 

(Kamruzzaman and Baker 2013; Krois and Schulte 2014). Integrating GIS with MCE allows 

solving spatially complex issues (Li 2013). Weights along with appropriate factors from the AHP 

and constrain maps from the Boolean are used to derive site suitability maps using Multi Criteria 

Evaluation (MCE) which depicts pixels indicating locations and levels (high to low) of change 

for various land use types.  These site suitability maps are used in the current study along with 

the CA Markov to derive future landscapes. 

CA-Markov process is one of the widely used models for understanding landscape 

dynamics across time and space (Zhou et al. 2012, Ramachandra et al. 2015a, Ramachandra et al. 

2015b). In Cellular Automata (CA), each cell represents a land use class, and the state of cells 

represents the different land uses across time. Current state of pixel undergoes change based on 

the previous state, and state of neighboring pixels, constraints and set of transition rules (White 

and Engelen 1993; White et al. 1997; Lagarias 2012). Markov chains gives the change 

probabilities of a pixel converting from class ‘a’ to class ‘b’ (Bharath H.A. et al. 2014a; Bharath 

H.A. et al. 2014b; Bharath H.A. 2013b; Samrat et al. 2011) and change in areas between land 

uses based on two time frames (t and t-1) to predict at the third time step t+1. In order to 
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eliminate differences of time steps for simulation, standard time intervals are applied (Pastor et 

al. 1993). 

The current study investigates land use patterns and quantifies the changes using various 

metrics through gradient and zonal approaches, and predicts future land use considering various 

agents of change and constraints of growth for Coimbatore an industrial capital of India.  

Study Area 

 

Coimbatore city lies between 10° 11' 27” N to 10° 11' 40” N and 76° 37' 24” N to 77° 31' 55” E 

on the banks of the river Noyyal in the rain shadow region of the Western Ghats. It is the second 

largest city in the state of Tamil Nadu, India, encompassing a total area of 246 sq. km and enjoys 

a pleasant climate throughout the year. The study has been carried out in the administrative 

region of Coimbatore city with a 10 km buffer accounting to 1078.56 sq. km (Figure 1). The rich 

black soil of the region has also contributed greatly to the agricultural industry especially in the 

successful growth of cotton that has served as a foundation for the establishment of textile 

industries in this region and is popularly known as the Manchester of Southern India due to the 

presence of numerous textile mills and engineering industries built over the last 100 years.  The 

industrial sector with the automobile and trade business has been playing a vital role in 

sustaining Coimbatore’s economy. The population of Coimbatore is about 2.1 million in 2011, 

which was 1.4 million in 2001 (Figure 2). Coimbatore city is governed by Coimbatore City 

Municipal Corporation (CCMC). 

 

 

 
 

 
Figure 1. Study area and its environs. 
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METHODS 

 

The spatial patterns of urban dynamics of Coimbatore have been assessed using temporal remote 

sensing data (of 1989 to 2013) through open source geospatial tools and spatial metrics. Figure 3 

outlines the analysis, which includes pre-processing, analysis of land cover and land use, and 

finally, computation of gradient and zone wise metrics to assess the urbanization patterns at local 

levels.  

 

 

 
           Figure 2. Population of Coimbatore from 1901-2011. 

 

Preprocessing  
 

Temporal remote sensing data (Landsat series) for Coimbatore, acquired for different time 

periods, were geo-referenced, geo-corrected, rectified and cropped pertaining to the study area. 

Geo-registration of remote sensing data (Landsat data) has been done using ground control 

points collected from the field using pre calibrated GPS (Global Positioning System) and also 

from known points (such as road intersections, etc.) collected from geo-referenced topographic 

maps published by the Survey of India. The Landsat satellite data of 1989, 1999, 2003 (30 m x 

30 m nominal resolution) were downloaded from the public domain http://glovis.org) and IRS 

LISS III data of spatial resolution 23.5 m x 23.5 m for the year 2013was procured from National 

Remote Sensing centre, Hyderabad (http://nrsc.gov.in). Further these were resampled to 30 m in 

order to maintain uniformity in spatial resolution across different time periods. The study has 

been carried out for the Coimbatore administrative area with 10 km buffer, which helps in 

evaluating the regions experiencing sprawl.  

 

Land Cover Analysis 
 

Land cover analysis was performed to understand the changes in the vegetation cover through 

the computation of Normalised Difference Vegetation Index (NDVI). NDVI values range from -

1 to +1 and typically very low values of NDVI (-0.1 and below) correspond to soil or barren 

areas of rock, sand, or urban built up. Zero indicates water cover. Moderate values represent low 

density vegetation (0.1 to 0.3), while high values indicate thick canopied vegetation (0.6 to 0.8). 
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Land Use Analysis  
 

The method involves i) generation of False Colour Composite (FCC) of remote sensing data 

(bands – green, red and NIR). This helped in locating heterogeneous patches in the landscape ii) 

selection of training polygons (these correspond to heterogeneous patches in FCC) covering 15% 

of the study area and uniformly distributed over the entire study area, iii) loading these training 

polygons co-ordinates into pre-calibrated GPS, iv) collection of the corresponding attribute data 

(land use types) for these polygons from the field. GPS helped in locating respective training 

polygons in the field, v) supplementing this information with Google Earth 

(http://googleearth.com) and Bhuvan (http://bhuvan.nrsc.gov.in), vi) 60% of the training data has 

been used for classification, while the balance is used for validation or accuracy assessment. 

 

Land use analysis was carried out using supervised pattern classifier - Gaussian 

Maximum Likelihood Classifier (GMLC) algorithm through GRASS (open source GIS, 

http://ces.iisc.ernet.in/grass). Remote sensing data was classified using signatures from training 

sites that include all the land use types detailed in Table 1. Mean and covariance matrix are 

computed using estimate of maximum likelihood estimator.  This technique has proven to be a 

superior classifier as it (Duda et al. 2000; Ramachandra et al. 2012a).  

 
Table 1. Land use classification categories used to understand temporal land use change. 

 

 

Land Use Class 

 

 

Land Uses Included in the Class 

 

Urban 

 

 

This category includes residential area, industrial area, and all 

paved surfaces and mixed pixels having built up area. 

 

 

Water bodies 

 

 

Tanks, Lakes, Reservoirs 

 

Vegetation 

 

 

Forest, Cropland, Nurseries 

 

Others 

 

 

Rocks, Quarry Pits, Open Ground (at building sites),  

Kaccha Roads 

 

 

Gaussian Maximum likelihood classifier (GMLC) is then used to classify the data using 

these signatures generated. Mean and covariance matrix were computed using estimate of 

maximum likelihood estimator. Land use was computed using the temporal data through the 

open source program GRASS - Geographic Resource Analysis Support System 

(http://ces.iisc.ernet.in/foss). Signatures were collected from field visits and with the help of 

Google Earth (http://earth.google.com). Classes of the resulting image were re-classed and 

recoded to form four land-use classes 
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Statistical assessment of classifier performance is done based on the performance of 

spectral classification considering reference pixels (Mitrakis et al. 2008), through computation of 

Kappa coefficients (Congalton et al. 1983; Congalton and Green 2009) and overall (producer's 

and user's) accuracy with confusion matrix. Accuracy assessment and Kappa coefficient are 

common measurements used to demonstrate the effectiveness of the classifications (Congalton 

1991; Lillesand et al. 2003). Recent remote sensing data (2013) was classified using the training 

data collected from field. Classification of earlier time remote sensing data is done through the 

training polygons (with attribute details) compiled from the previously published topographic 

maps, vegetation maps, revenue maps, etc. 

 

Zonal Analysis 
 

City boundary along with the buffer region was divided into 4 zones: Northeast (NE), Southwest 

(SW), Northwest (NW), Southeast (SE) to account spatial patterns of urbanization in all 

directions. As most of the definitions of a city or its growth are defined in terms of directions, it 

was considered more appropriate to divide the region in four zones based on direction.  The 

growth of the urban areas along with the agents of changes is understood in each zone separately 

through the computation of urban density for different periods.  

 

Division of these zones to concentric circles (Gradient Analysis): All of the zones were 

divided into concentric circles with a consecutive circle of 1 km incremental radius from the 

central pixel (Central Business District). This analysis helps in visualising the urbanization 

process at local levels and understanding the role of agents responsible for changes. This helps in 

identifying the causal factors and locations experiencing various levels (sprawl, compact growth, 

etc.) of urbanization in response to the economic, social and political forces. This approach 

(zones, concentric circles) also helps in visualizing the forms of urban sprawl (low density, 

ribbon, leaf-frog development). The built up density in each circle is monitored overtime using 

time series analysis. This helps the city administration in understanding the urbanization 

dynamics to provide appropriate infrastructure and basic amenities.  
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Figure 3. Procedure followed to analyze urban sprawl. 

 

Shannon’s Entropy  
 

Urbanization process in each zone is assessed as compact or divergent through Shannon’s 

entropy (Lata et al. 2001; Ramachandra et al. 2012a) calculated as given in equation 1.   

 

Hn = −∑ Pi logn
i=1 (Pi)                  ….. (1) 

 

Where, Pi is the proportion of the built-up in the ith concentric circle. Shannon’s Entropy (Hn) 

explains the urbanization and its characteristics. Hn will be zero, if the distribution is maximally 

concentrated and will have maximum of log n, if evenly distributed across the concentric circles. 
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Computation of Spatial Metrics 
 

Spatial metrics are helpful in quantifying spatial characteristics of the landscape. Select spatial 

metrics given in Table 2 (with characteristics of each metrics) were used to analyse and 

understand the urban dynamics. This is computed zone wise for each gradient through 

FRAGSTATS (McGarigal and Marks 1995) at three levels: patch, class and landscape  

 
Table 2. Landscape Metrics calculated to understand the landscape configuration. 

 

Indicator 

 

 

Formula 

 

Number of Patches (Built-up) 

(NP) 

 

 

N = ni; Range: NP≥ 1 

 

Patch Density (PD) 

 

 

PD =
 ni

A
 (10,000)(100);   Range: PD> 0 

 

Normalized Landscape Shape 

Index (NLSI) 

 

NLSI =  
ei−minei 

max ei−minei
 ; Range: 0 to 1 

 

Total edge 

 

TE=E, E=no of edges, TE ≥ 0, without limit. 

Clumpiness Index (Clumpy) 

Gi = [
gii

(∑ gik
m
k=1 ) − min ei

] 

CLUMPY = 

(

 
[
Gi – Pi
Pi

]  for Gi  <  Pi  Pi  < 5; 𝑒𝑙𝑠𝑒

Gi – Pi
1 − Pi )

  

Range:  Clumpiness ranges from -1 to 1 

Percentage of Land 

Adjacencies (Pladj) 

 

𝑃𝐿𝐴𝐷𝐽 = (𝑔𝑖𝑖 ∑ 𝑔𝑖𝑘
𝑚

𝑘=1
⁄ ) (100) 

gii =    number of like adjacencies (joins) between pixels of 

patch type (class) i based on the double-count method. 

gik =    number of adjacencies (joins) between pixels of patch 

types (classes) i and k based on the double-count method. 

0<=PLADJ<=100 

Cohesion Index 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 = [1 − (
∑ 𝑃𝑖𝑗
𝑛
𝑗=1

∑ 𝑃𝑖𝑗√𝑎𝑖𝑗
𝑛
𝑗=1 

⁄  )] [1 −
1

√𝐴
]
−1

∗ 100 
Range:0≤cohesion<100 
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Agent-Based Modeling and Simulation of Land Use  

Agents contributing to urban dynamics namely road network, bus and railway stations, industrial 

areas, educational institutes, hospitals and other socio economic features were delineated from 

the virtual earth databases such as Google Earth (http://earth.google.com), Bhuvan 

(http://bhuvan.nrsc.gov.in), open street maps and the Survey of India topographic maps. 

Influence of these features were determined using the fuzzy approach considering the sigmoidal 

increase or decrease with respect to the land use category, for example if roads are considered as 

factor for influencing the dynamics, farer the distance from the roads, vegetation and agriculture 

have higher tendency to prevail, whereas near to the roads, built-up area have higher tendency to 

prevail, thus urban landscape is considered to decrease as we move away from the road where as 

vegetation shall tend to increase away from the road. Analytical Hierarchical Process (AHP) was 

used in order to determine the weightage of each of the factors on the dynamics. Factors with 

higher weightages had higher influence on the landscape dynamics. Multi criteria evaluation was 

further used to derive the site suitability maps considering various factors and their weightages, 

and constraints of development for each land use category. The derived site suitability maps 

were further used for simulating known land use using Markov Chain and Cellular Automata.  

Markov chain considers the transition between two time periods i.e., 1999 and 2003, to 

determine transition probabilities for the year 2003 to 2013. The transition probabilities along 

with the site suitability maps and a kernel (filter) are used as input to Cellular automata to 

simulate land use of 2013. Comparison of the simulated and the actual landscape for the year 

2013 were made. The model was subjected to calibration by altering the weightage of each 

factor; recreating site suitability maps and simulating the land use for the year 2013 until the 

model simulated land use were near accurate. Overall accuracy of the model was obtained to be 

89.03% with Kappa coefficient of 0.863 showing good agreement between the simulated and 

actual land use. The calibrated model, using the transition between 2003 and 2013 was used to 

predict the landscape for the years 2025.          

RESULTS AND DISCUSSION 

 

Land Cover Analysis  

Spatial extent of vegetation analyzed through NDVI are listed in Table 3, which indicates the 

decline of vegetative cover from 29.63 (1989) to 18.61% (2013). NDVI based on the reflectivity 

of vegetation in red and near infrared, enables classifying the region under vegetation and non-

vegetation. Figure 4 depicts the temporal changes of vegetation in the study area. 

Land Use Analysis 

Land use analysis based on Gaussian Maximum likelihood algorithm was done considering the 

training data collected from the field, Google earth and SOI topo maps. Results of the 

classification are given in Figure 5 and statistics are tabulated in table 4. Results indicate that 

urban paved surface increased by 650 times from 2 (1989) to 13% (2013) with the decline of 

vegetation cover from 25.2 to 18.6%. Water bodies remained fairly constant and other class 

(which included open area, agricultural plots without crop) decreased overtime from 73% to 

67%. Overall accuracy and kappa was calculated for all classified data and are listed in Table 5. 

Urbanization is evident during the past 4 decades from figure 6.  
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      Table 3. Land covers statistics computed for the study region.  

 

Year  Vegetation  

(%) 

Non-Vegetation 

(%) 

1989 29.63 70.37 

1999 26.47 73.53 

2003 18.82 81.18 

2013 18.31 81.69 

 

 
 

Figure 4. Results of the analysis of land cover analysis of Coimbatore and buffer. 

       Table 4. Land use statistics computed for study region. 

  Year 
Urban 

in % 

Water 

in % 

Vegetation 

in % 

Others 

in % 

1989 1.87 0.32 25.21 72.61 

1999 6.81 0.45 24.87 67.87 

2003 11.12 0.17 18.55 70.15 

2013 21.26 0.29 17.79 60.66 
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          Table 5. Overall Accuracy (OA) and kappa statistics of classified images. 

 

1989 1999 2003 2013 

OA kappa OA kappa OA kappa OA kappa 

88.27 0.74 97.2 0.932 95.20 0.95 96.32 0.931 

 

 
 

 
Figure 5. Results of the analysis of land use of Coimbatore and buffer. 
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Figure 6. Temporal urban growth pattern for the study region. 

Shannon Entropy Analysis  

Shannon entropy analysis was performed zone wise based on cardinal directions with one km 

radius gradients. Computed value closer to log of the gradients indicates that the region is 

fragmented and value close to zero indicates of clumped growth. Figure 7 highlights the 

tendency of sprawl in SW and NE directions. 

 

  

Figure 7. Shannon entropy index calculated for study region from 1979-2013. 
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Spatial Metrics  

Spatial metrics were computed zone-wise for each gradient for all years. Each metric is 

explained below. 

a) Number of urban patches (NP) and patch density (PD): This metric explains the order of 

fragmentation or clumped growth in terms of urban area calculated as a patch. Patch 

density provides the number of urban patch units per unit area. NP calculated zone wise 

for each gradient shows that zones NE and SE are highly fragmented. Figure 8a indicates 

that buffer region with large number of patches distributed haphazardly and the core area 

having a clumped growth. Core area started to clump during 2003 and higher growth of 

patches to an order of 500 – 600 is noticed in buffer region post 2003.  Growth of patches 

in these regions highlights of spurt in urban growth and consequent sprawl. This 

phenomena of increasing number of patches (400-600 in circles 16-18) in SE, NE and 

NW directions in 2013 indicates that the buffer zones are experiencing severe outgrowth 

in terms of sprawl.  
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NE – Northeast; NW – Northwest; SE -Southeast; SW- Southwest 

  

Figure 8a. Number of urban patches calculated for study region from 1979-2013. 

b) Total edge and edge density: Total edge counts number of edges in the landscape, which 

in turn is also the indicator of fragmented or dispersed growth (Figure 8b). Higher 

number of edges show that the regions have a mix of land uses and while lower number 

indicates only a particular land use in the region. In 1989 edges counted are as less as 

50000 both in core and outskirts indicating that the regions are dominated by urban 

patches and edges are less indicative of homogenous transformation in each land use with 

less urban domination. During 1999 - 2003, edges in the landscape have increased at 

outskirts. in northeast and northwest directions (~150000 edges) indicating that land is 

fragmented and is under the influence of sprawl at outskirts, while the core regions are 

experiencing concentrated growth. This has further aggravated in 2013 with the gradients 

near the periphery (7-10) experiencing the effects of sprawl.  
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c) Normalized shape index (NLSI): NLSI is concerned with the shape and the value ranges 

from 0 (maximally compact patch) to 1 (disaggregated landscape). Figure 8c highlights 

NLSI values closer to 1 in all gradients of all zones during 1989. However, NLSI of 1999 

and 2003 shows a decreasing value for circles 1-5 confirming that these regions are 

transforming in to a compact patch of simple shape. Outskirts of the regions have a 

relatively high value of 0.6-0.8. NLSI values for 2013 in core gradients have values 

closer to 0 (0.3-0.4) indicating a complete clumped uniform shaped growth. Outskirts 

(Gradients 6-8) and buffer zones have higher values closer to 1 indicating that these 

regions have irregular shape and sprawl in the region. Most of the zones have the same 

patterns of growth in all years. 

 

 

 
 

NE – Northeast; NW – Northwest; SE -Southeast; SW- Southwest 
          

         Figure 8b. Total edge calculated for study region from 1979-2013. 
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NE – Northaast; NW – Northwest; SE -Southeast; SW- Southwest 
 

         Figure 8c. Normalized landscape shape index calculated for study region from 1979-2013. 

 

d)  Clumpiness index (Clumpy): CLUMPY indicates of aggregation (when clumpy = 1) or 

disaggregation (clumpy = 0) of the class in the landscape. Figure 8f shows that gradients 

reaching aggregation or single patch class in the landscape in core areas and sprawl in the 

buffer regions. Values closer to zero in 1989, indicates that growth is disaggregated. 

During 1999, NW and SW shows a huge aggregation in gradients close to the center (3-6) 

and core region shows aggregation, while buffer maintains the same disaggregation as in 

previous years. But in 2013, gradients (2-7) shows a value close to 1 indicating 

aggregation in NW, NE and SE.   
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NE – Northeast; NW – Northwest; SE -Southeast; SW- Southwest 
 

         Figure 8d. Clumpiness index calculated for study region from 1979-2013. 

All metrics highlight of sprawl, especially the periphery of the city and the buffer zones. This 

requires immediate attention by the city administrators and decision makers in providing basic 

amenities.  

Modeling and Simulation 
 

Model was built to simulate land use of 2013 based on consecutive datasets (1999 and 2003).  

Various criterion i.e., factors of development as shown in Figure 9 and constraints of 

development are as shown in Figure 10. In addition, water bodies in 2013 were considered under 

protected zone for prediction of 2025 land use. 
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Road network Major contributors 

 
Figure 9. Factors of Growth considered for study region. 

 

 

  
Slope Areas (Non-development)-CDP 

 

                    Figure 10. Examples of constraints of growth for study region. 

 

Factors were normalized using fuzzy logic (0 to 255, 255 representing higher influence and 0 

representing lower influence) and constraints using Boolean logic (0 and 1, 0 representing areas 

which shall not alter, 1 representing areas can alter). Slopes higher than 15% were considered as 

constraint for urban development. AHP based weightages for the factors are as depicted in Table 

6. Of all the factors of growth considered, road networks showed higher influence i.e., about 

44.96% for the landscape dynamics followed by industries, bus stations. 

 
Table 6. Weights generated under each factor was considered. 

 

Factor Weightage 

Road Network 0.4496 

Industries 0.2149 

Bus Station 0.1592 

Educational Institutes 0.0924 

Socio Economic Places 0.0531 

Hospital 0.0307 
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Figure 11 presents site suitability maps developed for various landscapes using both criterion i.e., 

factors and constraints. Site suitability essentially involves creating agent based interactive land 

maps to access most suitable and least suitable regions for further simulations. Agents are 

necessarily ranked based on its characteristics and influences and this would provide a weighted 

score to calculate the most suitable and least suitable areas for a class. Urban suitability map 

given in Figure 11 shows a high value where changes are prominent and most suited based on its 

neighborhood that is contributed by the agent’s behavior. Similarly, vegetation suitability map, 

with higher values indicate the most suitable regions to retain as vegetation, while low indicates 

the most impacted regions in this category of land use. 

 
 

   
Urban Vegetation Others 

Legend 
 

 

Figure 11. Site Suitability Maps. 

 

Markov chain was used to understand the landscape dynamics between 1999 and 2003, to 

simulate for the year 2013. Transition probability with an allowable error of 15% for the year 

2013 is tabulated in Table 8. The transition indicates that 46% of the vegetation area shall remain 

as vegetation and 46% converts to other land use category, whereas 19 % of the other land use 

category change to built up area (and 16% can change back to vegetation), 19% of water bodies 

can change to vegetation category and 10% of water can change to built up area.  

 
   Table 7. Markov transition probability 1999 - 2003 to 2013. 

 

 

Year 2013 

Year 

2003 

Land use Urban Water Vegetation Others 

Urban 0.85 0.05 0.05 0.05 

Water 0.10 0.64 0.19 0.07 

Vegetation 0.08 0.003 0.46 0.46 

Others 0.19 0.002 0.16 0.65 
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Simulated landscape for the year 2013 is depicted in Figure 12, and the land use statistics are 

listed in Table 8. Simulated output for the year 2013 was compared with 2013 land use (actual) 

to understand the efficiency of the model, the accuracy of the model is 89.03%, with Kappa 

(standard) of 0.83 and Kappa (location) of 0.84 respectively. Based on the outcome of higher 

agreement (simulated with actual land uses), the model was further used to predict the land use 

pattern in 2025. 
 

 

 
 

Figure 12. Simulated land use for the year 2013. 

  
Table 8. Simulated land use for the year 2013. 

 

 Built up 

in % 

Water 

in % 

Vegetation 

in % 

Others 

in % 

Simulated image of 2013 for validation 24.15 0.24 18.73 56.89 

 

Prediction 
 

The calibrated model along with Markov transition between 2003 and 2013 was used to predict 

land use for the year 2025. Figure 13 depict the predicted land use for the year 2025 and statistics 

of land use is as shown in Table 9.  
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Figure 13. Predicted land use 2025. 

   
            Table 9. Land use 2025. 

 

 Built up 

(%) 

Water 

(%) 

Vegetation 

(%) 

Others 

(%) 

Predicted land use for 2025 32.64 0.29 17.14 49.94 

 

In the next twelve years, urban area tends to increase at a rate of 53.5% i.e., 32.64% of the total 

area in 2025 (from 21.26% in 2013). The outskirts of the city show an increase in vegetation, 

whereas region towards the CBD vegetation area tends to decline due to the urban growth. The 

increase in vegetation in the outskirts in the northwest and southwest zones can be attributed to 

increase in horticulture activities such as coconut plantation that can be observed in regions of 

Nanjandapuram, Periyanaickenpalyam, along Palkad main road, Ettimada, Thekkupalyam, 

Muthukallur, etc. and also some of these regions have rich forest cover necessitating appropriate 

policy interventions to mitigate the impact. On prediction, urban concentration was observed to 

be prominent along the north, northeast and partially in the southern directions. Industrialization 

along Gundlupet highway in the northern direction of Coimbatore has led to current urbanization 

scenario, same trend would further lead intense developments by 2025. Airport associated real 

estate developments, followed by setting up of large scale industries were observed along Salem 

Highway and Trichy road which has led to intense urbanization in the northeastern and east 

directions, due to these developments, educational institutions and other socio economic 

structures have come up in the vicinity of the newly set up layouts and along the highways, 

hence boosting urban development. Presence of Industrial estates has led to new housing 

colonies in the southern direction along madukkarai road, NH 207. Based on the study, places 

namely Gadalur (N), Kovipalyam (N), Ondipudhar (E), Vallalore (E), Sulur (E), Marappalam 

(S), Echanari (S), KG Chavdi (SW), and Maruthimalai (W) in around their vicinity have higher 

potential for urban growth. 
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Figure 14. Possible locations of future growth. 

 

CONCLUSION 
 

Tier I cities (such as Coimbatore) in India are in the process of rapid urban transition. Spatial 

characterization and quantification highlight the urban expansion due to the enhanced economic 

activities. This necessitates prudent land use planning to ensure sustainable development with 

better policy alternatives. Land use analysis in Coimbatore city with 10 km buffer highlights an 

increase in urban area from 1.87 (1989) to 13.58 % (2013). Post 1990’s the city has experienced 

infilling/concentrated growth at the Centre, while peri-urban pockets and buffer region 

experiencing dispersed growth. Spatial metrics further confirm this phenomena of dispersed 

growth at city outskirts. Visualization of growth based on modeling, shows that core urban area 

densifies, whereas the fringes and along the arteries, urbanization is lateral. Main factors that 

contribute to the growth were due to Road network followed by Industrial areas and other 

amenities. Simulated results indicate urban areas grow to 32.6% of the total area by 2025. The 

outcome of the metrics aids in advance visualization of the patterns of urbanization, which help 

in planning sustainable cities in India.  

The study has attempted to understand LULC changes, the extent of urban expansion and 

urban sprawl in Coimbatore city, quantified by defining important metrics (Complexity, 

Patchiness, Density and contagion/dispersion) using gradients, zonal approach and modelling the 

land use for future prediction. Urban growth trends reveal of likely degradation of environmental 

conditions. Results of modelling demonstrate that the urban extent primarily consists of 

residential and commercial use. Different location conditions, such as road networks, business 

center, urban center, etc., were considered with various weights (transition probability) based on 

their relative significance. Agent Based Model (ABM) could also bring out the major regions of 

growth such as and that are in the influence of urbanization recently. These results will aid 

planners with prior visualization of growth for effective policy intervention. ABM approach is 

capable of estimating probable sites for urban planning which synchronize with real scenario. 

Thus agent based modelling approach is appropriate for developing future scenarios and would 

help in understanding the dynamics to plan towards providing basic amenities, infrastructure, etc. 
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