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Abstract

We consider the formulation of entropic gravity in two spaoe dimensions. The usual gravita-
tional force law is derived even in the absence of area, amnalty required by the holographic
principle. A special feature of this perspective concehesrature of temperature and entropy
defined at a point. We argue that the constancy of the grenitforce in one spatial dimen-
sion implies the information contained at each point in spaan internal degree of freedom on
the manifold, and furthermore is a universal constant,reonto previous assertions that entropic
gravity in one spatial dimension is ill-defined. We give sdneeiristic arguments for gravitation
and information transfer constraints within this framekydhus adding weight to the contention
that spacetime and gravitation might be emergent phenomena
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1 Introduction

The duality between gravitation and thermodynamics is ‘ketwn, stemming from the origi-
nal considerations of Beckenstein and Hawking to black keabgporation[[1], 2]. These pioneer-
ing investigations demonstrated that the entropy of a bled& is described completely in terms
of its horizon area, and hence its temperature as a funcfisgheoSchwarzschild radius. The
frame-dependence of temperature was noted in the celdbteieih dfect [4], which implies a
uniformly accelerated detector in a vacuum experiencesranél bath of radiation. The gravity-
thermodynamics connection was further elucidated/in [Bre it was pointed out that the Einstein
field equations may be understood as a collective equatictaté. The most striking instantia-
tion of gravitational duality is the AJEFT correspondence conjecture [6], which associates a
d—dimensional conformal field theory with a gravitationaldhgein one higher dimension. The
generalization of this duality is embodied by the hologreghinciple [5,/7], which posits that the
entropy content of any region of space is defined by the bawgnaliea of the region.

Recently, a new perspective on gravitational holograplop@sing that the laws of gravitation
are no longer fundamental, but rather emerge naturally tfremsecond law of thermodynamics as
an “entropic force”[[8, 9], has received much attention.sfhamework has since been extended to
numerous situations, ranging from quantum gravity [10/1P] and quantum information [13, 14,
15] to cosmological implications [16], including implieans for black hole temperature ]17,/18,
19,[20], dark energy [21, 44, P2,123,24] 25], and inflation ZB[28/ 29]. Beyond Newtonian and
relativistic gravity, the entropic formalism has been stddn the context of MOND [30, 31} (R)
theories([33], and even potential connections to Lifshrevgy [34], non-commutative geometry
and unparticle physics$ [35]. An interesting consequencappiications arises in the quantum
regime, where uncertainty principle constraints appledftormation transfer between the test

mass and holographic screens necessitate a lower-boumel hoass of the photon afod graviton



[36]. While the predicted mass is within experimental coaists, this provides a robust test of
the proposed mechanism. Additionally, a potential entrdpimulation for circular motion has
recently been proposed [37].

Being fundamentally based on the holographic principle, expects that entropic gravity can
be generalized to any spatial dimension [9]. A problematazgtion potentially arises fat = 1,
in which there is no concept of area and hence no intuitiveresibn (or rather subtension) of the
area-entropy law. We consider here the problem of formudggintropic gravity in one spatial di-
mension and demonstrate that its resultant physics isdedihed, despite the non-existence of the
prerequisite bounding area. Due also in part to the resaegi@importance of (£1)-dimensional
physics in high energy physice.§ in models such as causal dynamical triangulations [38]; non
commutative geometry [39], or evolving dimensions|[40,)44] complete description from the
entropic view may provide additional insights on emergdrdrmnema.

Sectior 2 provides a review of the entropic gravity frameéwfor a general number of dimen-
sionsd. In Sectiori B we consider thk= 1 case, in which the information (and entropy) become
intrinsic degrees of freedom of the space itself, and controerthe implications of this new in-
terpretation. We comment on the feasibility of this framekwyaonjecture potential relativistic

extensions of the model, and outline conclusions and fudirestions in Sectiohl4.

2 Entropic Gravity
An entropic force may be defined in a purely classical and iggisense as [8) 9]

AE AS

FentropicE _E = _TE . (1)



By definition, Fenropic IS @ force resulting from the tendency of a system to incréasentropy.
SinceAS > 0, the sign of the force —whether it is repulsive or attractivis determined by how
one chooses the definition Ak as it relates to the system in queson

A mass distributionM induces a holographic scre@nat some distance that has encoded
on it gravitational information. Consider the situationdrspatial dimensions. According to the
holographic principle, the screen encodes all physicarmétion contained within its volume in

bits on the screen whose numidéis given by

N= BT @
where
2
As(r) = 8 r 3)

is the area of the hyperspherical screen &nig a fixed length scale whose aga' is the minimal
area containing a single bit. Assuming that the total enefgthe systemE = Mc? is evenly
distributed over the b]i

E= gka 4)

one can then eliminate the inferred temperafuia terms of the masl and areas(r), yielding
5)

A second test maga will begin to “transfer” its own information bits to the se®, a measure

3In the framework presented in|[9], this force is necessatilsactive, since by design the value/of is negative
(and of cours@sS > 0).

4We note assuming priori such an equipartition is not necessary. It has been shegvnthat an analogous
statistical interpretation of gravitation can be derivenlgly from black hole spacetimes, with equations of motion
resulting from extremization of the entropy [42]43].



of which is taken to be

AX h
AS_27rk57 , /T_R (6)

as the particle moves a distantrtoward the screen. Note that this yields an attractive fomoa
Equatiorl, since by constructidrx < 0. When the particle is within a distance equal to its own
Compton lengthAx = 4, the particle itself is “indistinguishable” from the screand their bits
merge.

Combining Equations {5, 6) with Equation]( 1), it is straigitvard to show that the entropic

force yields Newton’s law of gravitation

34t Mm Mm
I:entropic: —27r1‘%1"(9) P = G

2 A rd—l - rd—l (7)

in d spatial dimensions,

d—
d) c3¢at @)

Gqg = 27T [
d 2 (2 7

is thed-dimensional gravitational constant. In this context we t&at/r is the Planck length.

One can make further inferences regarding the nature ottieeis. The gravitational force law
was derived with the only constraint on temperature beiagiths a measure of the equipartition
of energy on the screen. An observer in the rest frame of 8tertassmwill infer the existence of

a temperature
_ na
B 27TkBC

(9)

due to the Unruhfect [4], whereais the acceleration of the test mass. This can be taken tceebe th

temperature of the screen, understood as the temperatyuiead forM to induce an acceleration



aon the test mass|[9]. From eq] (6), €d. (1) becomes

2rkgTme
I:entropic: BT =ma . (10)

or in other words the law of inertia. The entropy content @ $sreen can be inferred to be
Sscreen"’ N (11)

which by the holographic assumptidn (2) makes it propogtiomthe area of the screendrspatial

dimensions.

3 Applicationsto One-Dimensional Gravity

The preceding argument holds formally for all dimensidng 1, despite the fact that in one
spatial dimension a screen is only a point and so has no agdéheFfmore, the Einstein tensor
G,, is identically zero in two spacetime dimensions, making @neetion with relativistic gravity
somewhat problematic. These observations motivate usnsider the formulation of entropic in
d = 1 as a separate case, to see what insights for emergentygraght be gleaned.

The advent of lower-dimensional gravity yielded much ihsigto aspects of quantum gravity
and relativistic physics (see [45,147,/46] 52,48, 49] for s@xpository introductions). The rich-
ness of its content lies in the simplicity of the governingiaipns of motion. The action cannot
be that of the Einstein-Hilbert action, since the Ricci ac# a topological invariant. While it is
common to adopt some general form of dilatonic gravity f@ detion, this generally yields a set
of field equations whose metric dynamics are coupled withdhthe dilaton. It is possible, how-

ever, to obtain[53] what might be regarded as the most $itfaigvard exposition of the Einstein



equation in two-dimensional spacetime
R-A = 81G,T , (12)

from the action

Sig ] = [ X VEBUR - 5(V0) + L= 20) (13)

wherey is a scalar field and’,, is the matter Lagrangian. Requiring a vanishing trace of the
resulting stress-energy tensor decouples the dilaton fnenbackground and recovers the desired
vacuum spacetime structure. This theory has the uniquertetitat it reduces to Newtonian gravity
in 2 spacetime dimensions [50]. Such an action can also berglered to the case of a {11)-
dimensional non-commutative geomeilry|[51].

For a vacuumT = 0) showsR completely determines the Riemann tensor. The surprising
implication is that even a spacetime devoid of matter may @hissess curvature provided the
cosmological constant is nonzero [45]. In the presence efggn(matter), a number of black hole
and event horizon solutions are possible [48, 49], whichp@ssess either attractive or repulsive

properties. For arbitrary cosmological constAnthe vacuum solution to Equatiénl12[is [49]

dx?
(¥3IA12 - 2G;M|X - C)

1
ds® = —(¢§|A|x2—261M|x|—C)dt2+ (14)
where the parametevl corresponds to the ADM mass, a@d< 0 is a arbitrary constant whose
value determines the causal structure of the spacetime [B#g sign convention is deSitter)
and anti-deSitter«). For M > 0 the above metric describes the 2-dimensional analogue of
a Schwarzschild black holé [49]. A two-dimensional Riesdderdstrom spacetime with point

chargeQ can be shown to mimic the above metric with the equivalénte Q?/4 [55].



In the absence of a cosmological constant, two point maksesid m will experience an
attractive gravitational force, where the mass separatasia function of proper timeis governed

by the familiar inertial equation [49]
M 2
X(r) = 57T €(X) + VoT + Xo , €(X) = 6(X) — 6(—X) (15)

Note that this expression is manifestly position independas the functior(x) reflects only the
relative position oimto M (Vo and X, are constants of integration). Unlike classical Newtonian
gravity in three spatial dimensions, the+{l)-gravitational acceleration between masses is con-
stant, and therefore so is the force law. This is furtherevidrom the form of[(14), whosgy
component is linear itx, and thus by association so is the gravitational potea{igl = G, M|Xx|.

Another key novelty of two-dimensional black hole solugas the existence of a gravitational
temperature [49], whose value can be calculated via a Wigkion (14),

2
ds? = a(X) dr? + & }(X) dX* — a(X(r)) dr? +dr? | a(X) = (3—?) (16)

The periodicity ofe yields the standard temperature at the horizgn

hoo A
_ 2_c2
= M C2 (17)

where the latter equality follows upon using14). In costri® (3+1)- and higher dimensional

@' (Xn)

T =
2

1
" 2r

gravity, it has been shown [49] that the temperature of thések holes scales with its mass.
It follows from foundational principles that if these satuts exhibit a Hawking temparture, an
associated Beckenstein-Hawking entropy must also be aréeat 1+1-dimensional models. It is

thus natural to extend (or subtend) the-{3-formalism of entropic gravity to lower dimensional



spacetimes, since as noted(in [9], the formalism may be dgtéto any higher-dimensional space
(i.e. d = 3+ ndimensions) thanks to the generalizability of the hologreprinciple,S ~ A..3/4.
While the Newtonian potential varies spatially g(&) ~ r~™%b for n > 0, and thus the force as
F(r) ~ r=@2) their characteristics are notablyffgirent wherd < 3.

As demonstrated above the one-dimensional spatial patestiinear inx, thus it should be
possible to derive an associated entropic force. The dervdor such is identical to that of
Verlinde, except that it is halted short of invoking the telaship between bit density and area
A (and implicitly spatial separatior) due to dimensional limitations. The general entropic éorc
expression is thus

Fentropic = —Ti—i = —-mM (45—;3) . (18)
upon using eqs[{4) andl(6), with= Mc? = %ka. Note that the expression (18) does not require
the use of[(R) and is valid iany number of dimensions.

The spatial dependence of the entropic force is introduogdicitly though the dependence of
N onA(r) via eq. (2), which at first suggests that the method cannishplemented in linear space.
The above relation suggests, however, that the fundamguaaltity of interest is the bit-coum,

and not the bounding area. As a result, in one spatial diroenge have
F1=GimM , (19)

which is in agreement with the well-known result that thevgedional force in one dimension is

constant, provided the coupling itself is defined as

G = (4|:§—;3) . (20)



implying that
N = 47¢3/G1h (21)

expressing the number of bits in terms of the speed of liglandk’s constant, an®G. Using

Eg. (8) thed = 1 coupling isG; = 2xc3/#, one can obtain a numerical value for the number of bits
N that reside at each point in the spacetime. SincelEq. (25 giw@lue ofA = 2 in this case — I.e.
both antipodal points«x, X) comprising the boundary of the 1-volume — we divide the Itesy
calculation by two and conclude that

N=1. (22)

That is, there is one bit of information at every point in th@{dimensional spacetime. We note
that the relation betwee® and the generalized Planck area iffelient dimensions has also been
considered in References [58] and|[59]. The case ef {}-dimensions was not considered, how-
ever, so our result may be compared for consistency to thergetases discussed therein.

The implications for entropic gravity are profound. Sinbe tight-hand-side of eq[(R2) is
a constant, the immediate implication is tiétitself is also constant. That is, unlike in higher
dimensional spaces, the number of bits contained at a po(&tD) space is constant, irrespective
of the distance from the mas4 that generates the screen.

This is a novel result that is specific to the«1l) framework, albeit one that contains several
subtleties that merit discussion. First, the original Mehé argument relies on temperature, a
guantity that traditionally is associated in the Maxwaellgense with vibrational modes of a system.
A similar argument could be extended to the temperature dack mnole horizon. In our context,
the temperature is that associated with the degrees ofdneéatated at a point, which henceforth
must be considered as internal degrees of freedom. A redageeinent pertains to the applicability

of energy equipartition at a point.



An additional point to highlight is the dependence of theplmg on bit density. The result of
equation[(2D) is applicable in arbitrary dimensions, infpdyN ~ G=1. This yields the potentially
counter-intuitive conclusion that more information ingsdiweaker gravity, and vise versa. In the
generalized model, however, the bit density depends onrtee & the screenN ~ A. Larger
screen areas imply largél, and consequently this leads to a system with weak gramitailhe
two points can be reconciled, nevertheless, by interggeghatN implies the possible number of
total states that may result. From this perspective, systemslavigeN are very “disordered”, a
characteristic one would anticipate from a theory with wgedvity. Likewise, a large value @&
stems from a smal\, which simply implies a very strongly-coupled system wigwfdegrees of
freedom.

This conclusion is in general agreement with tthat of Refeeg56], which through construct-
ing a holographic-function that applies to black holes solutions as well ammnalization group
flow backgrounds, derives a relation between the numbergreds of freedom and Wald entropy
N = Swaia/Q. In this caseQ is a measure of the holographic phase space voluneethe number
of states — which in our formulation corresponds$\toFrom this relationship, Verlinde’s entropic
gravity can be rigorously derived from Einstein’s equasio®ur above interpretation &f as a
state count and the argument [of|[56] are thus equivalent.

A recent pedagogical analysis of the entropic gravity fdisna[57] suggested that the frame-
work is applicable in spaces of any dimenstbfwhich is of course true), except the “pathological”
case ofd = 1. The reason given is that area is not defineddfer 2. As we have demonstrated,
however, this point can be rendered moot if one stops sh@ssdciating the number of bits with
an area.

Indeed, the thrust of our conclusions lies in the interpletyeen entropy, area, number of bits,

and gravitation, as exemplified in Equatiénl(20). This imiplielationship betweef, N, and A



is also highlighted in[[57], where it is noted therein thatcg A ~ GN, the number of bits may
actually be excluded from the calculation singes determined by the values éfandG. We
note that this relationship breaks down in one dimensiowgver, sinceA; — 0, suggesting that
entropic gravity is ill-defined for this manifold. In the genal formulation for entropic gravity, the
appearance oA emerges fronN = N(r) = A(r)/¢%2. Our definition [2D) does not necessitate the
introduction of an area, if one accepts the notion tas an internal parameter.

Furthermore, one may use this fact to reinterpret the vetipnof area. Sincé does not enter
the entropic gravity formulation directly except by sutbgion for the bit countN(r) — A(r), one
may regard there to be no formaligirence betweed = 1 andd > 1. That is, each case depends
fundamentally orN, and not on area. In this sense, area is an emergent qualityoinformation
permeates a space. In-1D, it concentrates at a point, but th> 1 spaces it evenly distributes

itself in space and thus defines the “area’Ag§) = N{’g‘l.

4 Concluding Remarksand Future Consider ations

We have provided a comprehensive treatment &f (3—dimensional entropic gravity in the clas-
sical limit. The formalism correctly reproduces the expéatonstant gravitational law, which has
the profound implication that the information density ay aoint along the line must be constant.
Furthermore, we have introduced a new interpretation &f asea uniform distribution of entropy

in d—dimensions. This allows for a natural extension of the gutrgravity mechanism to one

spatial dimension, where “area” does not exist.

Based on these conclusions, it is tempting to postulateadivistic extension to this mecha-
nism. Area — and hence entropy — is a natural characterissipacetime foliations. The union of

such objects thus defines the complete manifold, from whioktEin’s equations may be extracted



in the same spirit as Newton'’s laws. Geodesics are then theneal flow lines of entropy. Future

work on these ideas, and thus a model of emergent entropergewrlativity, is thus warranted.

Acknowledgments

We thank Prasanna Bhogale for interesting discussions. RB8financially supported by NSERC
and JRM by the Research Corporation for Science AdvancerdBM would additionally like to
acknowledge the generous hospitality of the University @it&loo Department of Physics and
Astronomy and the Perimeter Institute for Theoretical Risjsat which this research was con-

ducted.

References

[1] J. D. Bekenstein, Phys. Rev.D) 2333 (1973).

[2] S. W. Hawking, Commun. Math. Phy43, 199 (1975) [Erratum-ibid46, 206 (1976)].
[3] T.Jacobson, Phys. Rev. Leth, 1260 (1995)|[arXiv:gr-g©504004].

[4] W. G. Unruh, Phys. Rev. 4, 870 (1976).

[5] L. Susskind, J. Math. Phy86, 6377 (1995) [arXiv:hep-#19409089].

[6] J. M. Maldacena, Adv. Theor. Math. Phys231 (1998) [Int. J. Theor. Phy38, 1113 (1999)]
[arXiv:hep-th9711200].

[7] R. Bousso, Rev. Mod. Phyg4, 825 (2002) [arXiv:hep-ti©203101].

[8] T. Padmanabhan, Rept. Prog. Ph§3.046901 (2010) [arXiv:0911.5004 [gr-qc]].


http://arxiv.org/abs/gr-qc/9504004
http://arxiv.org/abs/hep-th/9409089
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/0203101
http://arxiv.org/abs/0911.5004

[9] E. Verlinde, JHEPL104, 029 (2011)/[arXiv:1001.0785 [hep-th]].
[10] L. Smolin, arXiv:1001.3668 [gr-qc].
[11] L. Modesto and A. Randonp, arXiv:1003.1998 [hep-th].
[12] Y. Zhao, arXiv:1002.4039 [hep-th].
[13] Y. S. Myung and Y. W. Kim, Phys. Red 81, 105012 (2010) [arXiv:1002.2292 [hep-th]].
[14] J. W. Lee, H. C. Kim and J. Lee, arXiv:1001.5445 [hep-th]
[15] J. W. Lee, H. C. Kim and J. Lee, arXiv:1002.4568 [hep-th]
[16] T. S. Koivisto, D. F. Mota, M. Zumalacarregui, JCAR02, 027 (2011).
[17] K. Ropotenko, Phys. Reld 82, 044037 (2010) [arXiv:0911.5635 [gr-qc]].

[18] Y. X. Liu, Y. Q. Wang and S. W. Wei, Class. Quant. Gra®7, 185002 (2010)
[arXiv:1002.1062 [hep-th]].

[19] Y. Tian and X. Wu, Phys. Re® 81, 104013 (2010) [arXiv:1002.1275 [hep-th]].

[20] R. G. Cai, L. M. Cao and N. Ohta, Phys. Rev8D (2010) 084012 [arXiv:1002.1136 [hep-
th]].

[21] D. A. Easson, P. H. Frampton and G. F. Smoot, Phys. L®t696, 273-277 (2011)
[arXiv:1002.4278 [hep-th]].

[22] J. W. Lee| arXiv:1003.1878 [hep-th].

[23] U. H. Danielsson, arXiv:1003.0668 [hep-th].


http://arxiv.org/abs/1001.0785
http://arxiv.org/abs/1001.3668
http://arxiv.org/abs/1003.1998
http://arxiv.org/abs/1002.4039
http://arxiv.org/abs/1002.2292
http://arxiv.org/abs/1001.5445
http://arxiv.org/abs/1002.4568
http://arxiv.org/abs/0911.5635
http://arxiv.org/abs/1002.1062
http://arxiv.org/abs/1002.1275
http://arxiv.org/abs/1002.1136
http://arxiv.org/abs/1002.4278
http://arxiv.org/abs/1003.1878
http://arxiv.org/abs/1003.0668

[24] M. Liand Y. Wang, Phys. Lett. B87, 243 (2010)/[arXiv:1001.4466 [hep-th]].

[25] R. G. Cai, L. M. Cao and N. Ohta, Phys. Rev8D (2010) 061501 [arXiv:1001.3470 [hep-
th]].

[26] D. A. Easson, P. H. Frampton and G. F. Smoot, arXiv:10838 [hep-th].

[27] Y. F. Cai, J. Liu and H. Li, Phys. LetB 690, 213-219 (2010)![arXiv:1003.4526 [astro-
ph.CQl]].

[28] M. Liand Y. Pang, Phys. Refd 82, 027501 (2010) [arXiv:1004.0877 [hep-th]].

[29] Y. Wang, arXiv:1001.47&6 [hep-th].

[30] V. V. Kiselevand S. A. Timofeev, arXiv:1104.3654 [gc]q

[31] F. R. Klinkhamer and M. Kopp, arXiv:1104.2022 [hep-th]

[32] J. A. Neto/ arXiv:1009.4944 [hep-th].

[33] R. X. Miao, J. Meng and M. Li, arXiv:1102.1166 [hep-th].

[34] P. Horava arXiv:1101.1081 [hep-th].

[35] P. Nicolini, Phys. RevD 82, 044030 (2010) [arXiv:1005.2996 [gr-qc]].

[36] J. R. Mureika and R. B. Mann, Mod. Phys. L&itt26, 171 (2011)/[arXiv:1005.2214 [gr-gc]].
[37] M. Duncan, R. Myrzakulov and D. Singleton, arXiv:110313 [gr-qc].

[38] R. Loll, Nucl. Phys. Proc. Suppb4, 96-107 (2001); J. Ambjorn, J. Jurkiewicz, R. Loll,
Phys. RevD72, 064014 (2005); J. Ambjorn, J. Jurkiewicz, R. Loll, “TitlQuantum Grav-
ity, or The Art of Building Spacetime,” ilApproaches to Quantum Gravity, ed. D. Oiriti,

Cambridge University Press (2006).


http://arxiv.org/abs/1001.4466
http://arxiv.org/abs/1001.3470
http://arxiv.org/abs/1003.1528
http://arxiv.org/abs/1003.4526
http://arxiv.org/abs/1004.0877
http://arxiv.org/abs/1001.4786
http://arxiv.org/abs/1104.3654
http://arxiv.org/abs/1104.2022
http://arxiv.org/abs/1009.4944
http://arxiv.org/abs/1102.1166
http://arxiv.org/abs/1101.1081
http://arxiv.org/abs/1005.2996
http://arxiv.org/abs/1005.2214
http://arxiv.org/abs/1103.1713

[39] L. Modesto and P. Nicolini, Phys. Rew.81, 104040 (2010) [arXiv:0912.0220 [hep-th]].

[40] L. Anchordoqui, D. C. Dai, M. Fairbairn, G. Landsbergdad. Stojkovic, arXiv:1003.5914
[hep-ph].

[41] J. R. Mureika and D. Stojkovic, Phys. Rev. Ldt®6, 101101 (2011).
[42] R. Banerjee, B. R. Majhi, Phys. Rdv.81, 124006 (2010) [arXiv:1003.2312 [gr-qc]].

[43] R. Banerjee, B. R. Majhi, S. K. Modak, S. Samanta, Phyav.® 82, 124002 (2010)
[arXiv:1007.5204 [gr-gc]].

[44] G. F. Smoot, Int. J. Mod. PhyB19, 2247-2258 (2010) [arXiv:1003.5952 [hep-th]].
[45] P. Collas, Am. J. Phydl5 (9), 833-837 (1977).

[46] M .Henneaux, Phys. Rev. Lefi4, 959-962 (1985).

[47] J. D. Brown and M. Henneaux, Phys. RBEV33, 319-323 (1986).

[48] J. Gegenberg, P. F. Kelly, R. B. Mann, D. Vincent, Physv.® 37, 3463-3471 (1988).
[49] R. .B. Mann, A. Shiekh, L. Tarasov, Nucl. PhyB341, 134-154 (1990).

[50] R. .B. Mann and S. .F. Ross, Class. Quant. Gi&v1405-1408 (1993); J. .S. F. Chan and
R. .B. Mann, Class. Quant. Gra2 351-372 (1995); R. .B. Mann and T. Ohta, Class. Quant.
Grav.13 2585-2602 (1996).

[51] J. R. Mureika and P. Nicolini, arXiv:1104.4120 [gr-qgc]

[52] R..B. Mann and A Sikkemma, Class. Quant. G&\219 (1991).


http://arxiv.org/abs/0912.0220
http://arxiv.org/abs/1003.5914
http://arxiv.org/abs/1003.2312
http://arxiv.org/abs/1007.5204
http://arxiv.org/abs/1003.5952
http://arxiv.org/abs/1104.4120

[53] R. .B. Mann, S. M. Morsink, A. E. Sikkema, and T.G. Stedtays. RevD43, 3948-3957

(1991).

[54] J.D. Christensen and R. B. Mann, Class. Quant. &;al/769-1786 (1992).

[55] R. .B. Mann, D. Robbins, T. Ohta, and M. R. Trott, NuclyBhB590, 367-426 (2000).
[56] M. F. Paulos, JHER105, 043 (2011)/[arXiv:1101.5993 [hep-th]].

[57] S. Hossenfelder, arXiv:1003.1015 [gr-qc].

[58] F. R. Klinkhamer, Class. Quant. Gr&8, 125003 (2011).

[59] F. R. Klinkhamerto appear in Mod. Phys. Lett. A [arXiv:1101.5370 [hep-th]].


http://arxiv.org/abs/1101.5993
http://arxiv.org/abs/1003.1015
http://arxiv.org/abs/1101.5370

	Digital Commons@ Loyola Marymount University and Loyola Law School
	9-1-2011

	(1+1)-Dimensional Entropic Gravity
	R. B. Mann
	Jonas R. Mureika
	Repository Citation
	Recommended Citation


	1 Introduction
	2 Entropic Gravity
	3 Applications to One-Dimensional Gravity
	4 Concluding Remarks and Future Considerations

