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ROBUSTNESS, WEAK STABILITY, AND STABILITY IN
DISTRIBUTION OF ADAPTIVE FILTERING ALGORITHMS
UNDER MODEL MISMATCH*

BEN G. FITZPATRICK!, G. YIN}, AND LE YI WANG?

Abstract. This work is concerned with robustness, convergence, and stability of adaptive filtering
(AF) type algorithms in the presence of model mismatch. The algorithms under consideration are
recursive and have inherent multiscale structure. They can be considered as dynamic systems, in
which the “state” changes much more slowly than the perturbing noise. Beyond the existing results on
adaptive algorithms, model mismatch significantly affects convergence properties of AF algorithms,
raising issues of algorithm robustness. Weak convergence and weak stability (i.e., recurrence) under
model mismatch are derived. Based on the limiting stochastic differential equations of suitably scaled
iterates, stability in distribution is established. Then algorithms with decreasing step sizes and their
convergence properties are examined. When input signals are large, identification bias due to model
mismatch will become large and unacceptable. Methods for reducing such bias are introduced when
the identified models are used in regulation problems.
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1. Introduction. In control applications ranging from flight systems to noise
cancelation to laser beam pointing and tracking, adaptive estimation, filtering, and
control techniques play a crucial role. In particular, high-energy laser systems, free-
space optical communications, laser welding and cutting, optical data storage, and
scanning optical lithography rely on well-controlled beams operating with uncertain,
difficult-to-characterize disturbances. Moreover, the dynamic response of the control
system to laser steering inputs (such as fast steering mirrors) can be challenging to
determine a priori, and physical modeling (as in flight control systems) is often insuf-
ficient. In such cases, adaptive estimation techniques, typically implemented through
recursive stochastic algorithms, are crucial ingredients of the control design and imple-
mentation. Motivated by the laser beam pointing and tracking efforts of [7, 8, 28, 29],
this work examines adaptive filtering (AF) algorithms in the presence of model mis-
match. Applying AF algorithms, we often encounter model mismatch issues that in-
evitably lead to the problem of robustness under uncertainties of model function
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forms. Our goal is to derive conditions under which stability and robustness can be
guaranteed. Note that the algorithms under consideration are recursive and have in-
herent multiscale structure. They can be considered as dynamic systems, in which the
“state” changes much more slowly than the perturbing noise.

Recursive least squares (RLS), least mean squares, or general AF algorithms have
been examined extensively in the literature. Recursive AF algorithms employ param-
eterized models, whose parameters are constructed using stochastic parametric opti-
mization. In the literature, it has been established that under appropriate conditions
on noise, by using the technique of centering and interpolation, the estimation errors
can be expressed as a scaled or normalized error sequence whose weak limit is a dif-
fusion process. There are many important results available concerning convergence,
rates of convergence, and asymptotic efficiency; see, for instance, [1, 3, 6, 10, 11, 22,
23, 25, 26, 27, 36, 38, 41]. Emerging applications have also been reported in wireless
communications and multiuser detection; see [30, 31, 40], among others.

In practical applications, the parametric model is often an approximation of a non-
linear system, leading to model mismatch in the AF algorithms. Introduction of model
mismatch affects significantly the convergence properties of AF algorithms. Unlike ob-
servation noises or unmodeled dynamics (as referred to in the system identification
literature [32, 33, 34, 35]), model mismatch carries distinct features. Uncertainties due
to stochastic observation noises can be reduced by averaging. Unmodeled dynamics
mentioned above are linear multiplicative uncertainty, represent terms of remote past
which are independent of the model parameters, and can be reduced by time sepa-
ration {32, 33, 39]. Model mismatch, however, is a nonlinear and nonmultiplicative
uncertainty and is a function of the true model parameter and inputs. Consequently,
analysis of its impact on identification accuracy and convergence and methods of its
reduction require different approaches.

This paper establishes robustness of AF algorithms under model mismatch un-
certainty. We offer at least partial answers to some intriguing questions: Given an
AF algorithm and input signal, how many model mismatch errors can the system
tolerate before losing convergence? How much bias will model mismatch cause on
parameter estimation? What types of convergence are robust under model mismatch
uncertainty? How can identification bias from model mismatch be reduced?

This paper will establish asymptotic results that resolve these issues. Our results
show that robustness of an AF algorithm can be established quantitatively from the
covariance of its regressors. Explicit bounds on estimation bias due to model mismatch
are derived. Robustness of AF algorithms in the sense of weak convergence, weak
stability, and convergence in distribution is presented.

Traditional convergence analysis of AF algorithms often concentrates on strong or
mean square convergence of estimates, which is related to local asymptotic stability of
certain related limit systems. As noted in [20], in many applications a relaxed notion
of stability, called weak stability, is more useful. It is a recurrence property of the
estimates and similar to the notion of Lagrange stability (bounded inputs producing
bounded outputs) in deterministic dynamical systems. Weak stability establishes the
property of an estimate to return to a bounded region infinitely often (the property
known as recurrence). The work here follows the notion of recurrence in diffusion
theory in [14, 15, 37] and the very recent work on switching diffusion processes
[43, Chapter 3}; see also related references in [5, 16].

Stability in distribution under the framework of Lyapunov stability represents
the following scenario: if the initial probability distribution of the underlying process
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is close to the limit distribution, then the distribution of the process asymptotically
approaches that of the limit distribution. Consequently, the limit distribution can be
reliably used to study statistical properties of the estimates. In this paper, we inves-
tigate robustness of AF algorithms in terms of stability in distribution when model
mismatch is present. This is accomplished by using scaled and centered sequences and
by studying their convergence robustness.

The rest of the paper is organized as follows. We begin in section 2 with the setup
of AF problems. Also included are discussions on the associated limiting dynamical
systems, such as ordinary differential equations (ODEs) and stochastic differential
equations (SDEs) as well as a brief summary of related existing results on AF al-
gorithms. Robustness of AF algorithms in weak convergence under model mismatch
uncertainty is studied in section 3. Our results may be viewed as an expression of a
“stability margin” against model mismatch uncertainty. Section 4 concentrates on the
recurrence or weak stability of our recursive algorithms. First, criteria for recurrence
of the limit dynamics are obtained by a Lyapunov function approach. Then recurrence
of the recursive algorithms is obtained via a perturbed Lyapunov function method.
Section 5 continues our study on robust stability in distribution of AF algorithms.
The method of perturbed Lyapunov functions is used to develop robustness regions.
Section 6 concludes the paper with some discussions on extensions of the main re-
sults of this paper. Implications of unbounded signals and decreasing stepsizes are
discussed. When input signals are large, identification bias due to model mismatch
will become large and unacceptable. Methods for reducing such bias are introduced
when the identified models are used in regulation problems.

2. Preliminary considerations.

2.1. The basic problem structure. AF algorithms have been used quite fre-
quently in various applications such as estimation, adaptive control, signal processing,
and related fields. The most commonly used (and best understood) AF algorithms
start with the linear regression observation structure

(2'1) Yn = (P;ﬁ* + ¢n,

where y, is a one-dimensional output, ¢, € R” is known as the regressor, 8, is
an r-dimensional parameter, and {(,} is a scalar sequence of random noise. This
formulation will be used throughout the paper.

In using this structure, one aims to estimate the unknown parameter vector 6,
from observation sequences {(yn,¥rn)}. In principle, an estimate can be derived by
minimizing a cost function L(0) such as L(8) = E|yn — ¢, 0]%.

For computational efficiency, we prefer estimation algorithms that recursively
update the parameter estimates as new data are collected over “batch” optimization
approaches. For example, a gradient-based recursive algorithm takes the form

(2.2) On+1 = bn + anpn(Yn — ¢nbn),

in which {a,} is a sequence of positive scalars, known as stepsizes, satisfying Yo On =
0o, and a, — 0 as n — oo. Alternatively, we may use a constant stepsize algorithm

(2.3) Ony1 =00 + 5‘pn(yn - (P;’lgn)7

where € > 0 is a small constant stepsize. There is a wide variety of applications
that are formulated or can be recast using the observation structure (2.1) and the
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form of AF problems. As observed in [22, Chapter 1], the traditional least squares
algorithm can be approximated by the AF algorithms. Furthermore, in Chapter 3 of
the aforementioned reference, a number of problems are presented, including pattern
classification, autoregressive and moving average systems (see also [25, 26] and ref-
erences therein), adaptive noise cancelation and disturbance rejection, antenna array
processing, adaptive equalizers, and adaptive echo cancelation, among others. One of
the noise cancelation methods is the application in [12, 36] to the problem of getting
a good measurement of the heartbeat of a fetus, which is quite faint in comparison
with the power of the beat of the mother’s heart. References on wireless commu-
nications, multiuser detection, and spread code optimizations can also be found in
[17, 41], among others. All of these use mean squares type criteria and utilize AF type
algorithms.

Note that the above algorithms do not rely on knowledge of the statistics of y,
and ¢,. If the observation sequence {{yn,®n)} is stationary and independent of (,
and

Epng, =R>0, Eopyn =g,

where R > 0 is meant to be a symmetric positive definite matrix [13], then 6., the
minimizer of L(8) = E|y, — ¢},0|?, is, in fact, the unique solution to the Wiener—Hopf
equation RO, = q or 8, = R™!q. In the following subsection, we review some of the
relevant results for these algorithms. The interested reader may consult any number
of excellent expositions, such as [1, 3, 10, 21, 22, 23, 26, 27, 36, 38, 40, 41], for more
information.

Departing from the traditional AF problem setting, we are interested in systems
with model mismatch

(2.4) Yn = @ 0u + Dy(bu, o) + G,

where En(ﬁ*, ¢n) represents the model mismatch term. Model mismatch is a distinct
type of uncertainty from typical consideration of additive measurement noise and
reduced-order model approximation. Many practical systems are nonlinear and infinite
dimensional, and the finite dimensional linear structure (2.1) is an approximation. In
the literature of system identification {32, 33, 34|, a system is often parameterized as

Yn = D200 + Fo0u + s

where the regressor @, represents the signals of remote past and 0, are different
parameters from 6,, which is unknown but known only to be bounded. That is, for
infinite dimensional linear systems, their finite dimensional representation introduces a
specific type of uncertainty. Such uncertainty in the literature of system identification
is referred to as unmodeled dynamics. This form of unmodeled dynamics is linear and
multiplicative (namely, its size is proportional to the input magnitude) uncertainty. In
this paper, the model mismatch on which we concentrate can be a nonlinear function
on the modeled parameter 6. and recent input. While unmodeled linear dynamics
have been extensively treated in the literature, studies of impact of model mismatch,
especially nonlinear mismatch, on adaptive filters are relatively new and will be the
focus of this paper.

Now suppose the true system is really given by (2.4), but we actually used y, =
@10« + ¢, in the formulation instead. Then an error is introduced. The question is
this: how much will this mismodeling error impact the estimation? Such a question is
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an important issue in the robustness consideration. The desired results give us a sense
of insurance on the tolerance level we can endure. Understanding this robustness is
our main concern in this paper.

Ezample 2.1. Consider a nonlinear system y, = (un + Mu2)0, + (= w6, +
Mu2 0, +(n, where X is a small positive constant. Here u,, is the input and ln = 26,
is the model mismatch term. It is noted that this term depends on the input and the
unknown parameter. In this case, @, = u,. N

It is tempting to include the model mismatch A, in the disturbance  term ¢, and
to treat them as a new combined disturbance term. However, unlike ¢,, A,, is usually
a function of 6, and ¢, and cannot be reduced by averaging. As a result, it can
potentially cause estimation bias. Thus, separating these two sources of uncertainties
is crucial to understanding the impact of model mismatch on the adaptive filter, which
is the focus of this paper. We first summarize some basic results and approaches that
we will extend to analyze the model mismatch problem.

2.2. A brief review of existing results. Recursive algorithms of AF type
are dynamical systems, whose asymptotic behavior is of key interest. To study the
asymptotic properties of (2.3), we use weak convergence methods (see, e.g., [22]). We
assume that the observation y, is given by (2.3), where {{,} is a stationary sequence
with 0 mean. Furthermore, we assume that the following conditions hold.

(A1) The sequence {¢), o} and {¢n(,} is stationary and uniformly ¢-mixing (see
(2, p. 166] as well as [4]) such that
(a) Epny, = R a symmetric positive definite matrix;
(b) Epnn =0; B _
(c) the mixing measure of the above processes, 1,,, satisfies >on ’l/hl/ ? < .

Note that the term “uniform mixing” is taken from [4]. Such a process is simply
called ¢-mixing in [2]. The essence of a mixing process is that the remote past and
distant future of the process are asymptotically independent. This property also re-
quires the signals be bounded. We address the issue of unbounded signals in the last

section of the paper.
By (2.3),

Ont1 = Op + epnCn — E(Pn(P;l(en —8.).

By virtue of (A1), the sequences {¢nyl} and {@n(,} are strongly ergodic. It follows
that, for each m > 0,

1 n4+m-—1 X 1 n+m-—1
(2.5) - Z wi¥; = R, - Z ©;¢; — 0 with probability one (w.p.1).
j=m j=m

In fact, for the weak convergence analysis, we need only the limits in (2.5) to hold in
the sense of convergence in probability. In addition, the mixing condition implies that

[t/e]-1

(2.6) NG Z v;j¢; converges weakly to ow(t),
j=0
where
o o0
(2.7) oo’ = Eqgp + ZECjCé + Z Ecogj, < =¢;G-

j=1 j=1
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Here |z| denotes the integer part of z, and w(-) is a standard Brownian motion.
To apply the weak convergence theory of [22], we extend the estimator sequence to
continuous time by taking a piecewise constant interpolation, defined by

(2.8) 6°(t) =0, for te [en,en +e).

We suppose, for simplicity, the initial iterate 8y is independent of . Below we give
some results for this AF algorithm. The proof can be constructed using the idea in
[21]; see also the general results on stochastic approximation [22].

First, under (A1), 6°(-) converges weakly to 6(-), which is a solution of the differ-
ential equation

(2.9) 6=—-RO+q, 6(0)=0,

where ¢ = R0,.

Note that the significance of (2.9) is that its stationary point 8, is precisely the
quantity we seek: the limiting process is deterministic, and it converges in time to the
desired “true” parameter. It is also interesting to note that the long time nature of
this “two-layer” asymptotic result can be reduced. That is, let t. be a sequence such
that t. — 0o as € — 0. Then it can be shown that 8°(- 4 t.) converges weakly to 6,
(or in probability) as e — 0.

Next we define X,, = (6,, — 6.)/ €. We can further show that there is an N, such
that {X,, : n > N} is tight. Similar to 6%(-), define

(2.10) Xe(t) =Xy, for t€le(n— Ng),e(n+1-N,)).

Then we can show that X¢(-) converges weakly to X (-), which is a solution of the
SDE

(2.11) dX = —RXdt + odw,

where g0’ is symmetric and nonnegative definite and w(-) is a standard Brownian
motion. The first result (2.9) is consistency, while this second result (2.11) is a form
of asymptotic normality.

This paper differs from the existing references in several aspects. This work fo-
cuses on weak stability (recurrence, positive recurrence, and ergodicity; see [37]) and
stability in distribution. In accordance with [24], a deterministic system @ = g(t, z),
which satisfies appropriate conditions, is Lagrange stable if the solutions are ultimately
uniformly bounded. When stochastic systems (such as diffusions) are considered, al-
most sure boundedness excludes many systems. Thus, in lieu of such boundedness,
one seeks stability in a certain weak sense [37]. In this paper we will establish general
criteria for positive recurrence and weak stability by employing Lyapunov function
and perturbed Lyapunov function methods.

3. Consistency and asymptotic normality under model mismatch. The
AF algorithm of (2.3) is designed for the specific dynamics of (2.1). In this section, we
seek extensions of the standard results of the previous section to the model mismatch
case. To begin, we discuss the nature of mismatches we will consider.

We assume that the model mismatch is represented by an error on the output
observations

(3'1) Yn =<P;,9* +2Sn+Cm
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where ﬁn represents the model mismatch and ¢, and (,, are as in the previous
section satisfying (Al). The recursive AF algorithm remains the same as (2.3). For
convergence analysis, we rewrite the algorithm as

(3.2) Ont1 = On + €n(@nbs — 0100 + G) + €Ay,

The last term in (3.2) is the model mismatch with A, = @nln.

Remark 3.1. Note that the model mismatch A,, (respectively, ﬁn) depends on 6,
as well as . Since A, is unknown, it cannot be used for parameter updating. That is,
(2.3) is still the algorithm we use: parameter estimates are computed directly from the
observed data. However, for convergence analysis, the effect of A,, must be included,
and hence (3.2) is a suitable form to have an explicit term on model mismatch.

(A2) The model mismatch A, is parameterized by a smooth function of the pa-
rameter and regressor A, = f~(9*,<pn) so that there is a smooth function
F() : R™ — R" satisfying for each positive integer m, and we have

1 +m—
- E (B4, 9;) = f(6+) in probability as n — oo,
n

=m

where E,, denotes the conditional expectation with respect to the o-algebra
generated by {¢;,(; : j < m}.

Under conditions (Al) and (A2), define 6°(t) = 6, for t € [ne,ne + €) with 6,

given by (3.2). We can show by the weak convergence analysis (see [22, Chapter 8])

that 6°(-) converges weakly to 6(-), which can be characterized by the solution of the

ODE
(3.3) (t) = —RO(t) + f(6.) + g,

where ¢ = R#,. The convergence to the ODE limit (3.3) is valid when ¢ — 0, n — o0,
but en remains to be bounded. Because the dynamic system (3.3) is linear in 6, it has
a unique equilibrium point 8y,

(3.4) —Rby+ f(6x) +q=0 or 8, =R7'(f(6.) +q).

As a result, the identification bias due to the model mismatch is B! f(6.).

Ezample 3.2. Consider the system in Example 2.1. Here A, = AuZf. and ¢, =
Uy. Then f(&n,cpn) = unﬁn = Au36.. Suppose that u, and ¢, are stationary and
that Bu = R, Bud =6, Eynun = q1, Eun(, = 0. Then f(6.) = Ad6,. Using (3.2)
with the above specifications, we obtain the limit ODE given by

f(t) = —RO(t) + RO, + A6,

Thus the 6, is given by 8, = 8, + R~1\66,. Compared to the result without model
mismatch, the model mismatch causes a bias in estimation, and the bias is given by
R=1)\46..

The behavior of (3.2) when ¢ — 0 and en — oo is of considerable additional
interest. The next claim establishes such a result.

THEOREM 3.3. Suppose that (A1) and (A2) hold. Then, for any sequence t = oo
as € — 0, 6%(te + ) converges weakly to 6.

Proof. For any T' < oo, define ©%(t) = 6°(tc + ) and ©%.(t) = 6°(t. + - = T).
Consider the process {©°(-), ©%(-)}, and denote the limit by (0(-), O7(-)). It is easily
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seen that ©(0) = ©¢(T). We then have

T
Or(T) = exp(~RT)Or(0) + / exp{—R(T - )}(/(6.) + g)dt

0
— R7Yf(6.) +q) =0, as T — oo,

where 6, is defined in (3.4). 0

Ezample 3.4. Consider the system in Example 3.2 with A = 0.05. The true
parameter 8, = 10. The input u, is an independently and identically distributed
(i.i.d.) uniformly distributed process on [0,6]. Then R = Eu? = 12, ¢ = Rf, = 120,
§ = Eu} = 54, and f(f.) = A0, = 27. The model mismatch causes a bias in
estimation, and the bias is given theoretically by R=1Aé6, = 27/12 = 2.25.

We now run the recursive algorithm (2.3). The noise {(¢,} is an i.i.d. sequence
of normal random variables with mean 0 and variance 0? = 25. The initial estimate
8, = 40.

Case 1. en is bounded. Suppose that the stepsize € is selected as € = 1/n, where
n is the total data window for simulation. For the cases of n; = 50,e; = 1/50;
ny = 100,e2 = 1/100; ng = 200,e3 = 1/200; and ny = 500,£4 = 1/500, the simulation
results are shown in Figure 1. The final values of the estimates are 12.087 (bias
2.087), 12.357 (bias 2.357), 12.143 (bias 2.143), and 12.446 (bias 2.446) for the four
data windows, all with an estimation bias close to the theoretical value 2.25.

N=50, e=1/50
40 ! ! ; ! ! ! ! ! '
20|t (TP T e SRR PP e U 4
0 ] I 1 1] i l L J ]
0 5 10 15 20 25 30 35 40 45 50
N=100, £=1/100
40 ! ! ! F ! ! ! ! !

0 20 40 60 80 100 120 140 160 180 200
N=500, £=1/500
40 I l T T T T T T T
ook ~ L L L L L L L L 4
0 l 1 1 1 1 1 1 Il 1
0 50 100 150 200 250 300 350 400 450 500

F1G. 1. Estimation results under recursive algorithms with bounded en.

Case 2. en is unbounded. Suppose that the stepsize ¢ is selected as ¢ = 1/n%3,
where N is the total data window for simulation. For the cases of n; = 50,61 =1/ 5008,
ng = 100,69 = 1/100%%; n3 = 200,63 = 1/200%8; and ny = 500,e4 = 1/500%8, the
simulation results are shown in Figure 2. The final values of the estimates are 10.941
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(bias 0.941), 11.371 (bias 1.371), 12.050 (bias 2.05), and 12.293 (bias 2.293) for the
four data windows. Since the stepsize is larger than in Case 1, the convergence speeds
are lower here. As a result, ny = 500 represents an asymptotical bias of 2.293 which
is close to the theoretical value 2.25.

N=50, e=1/50%%

100 120
N=500, e=1/500"8

250 300

F1G. 2. Estimation results under recursive algorithms with unbounded en.

To proceed, define

(3.5) Tn = Onln + (@ndly = B)(Ox — 05) + [f(Bur 0n) — F(0.)].

The mixing assumption implies that the {m,} is a mixing process. Define

3rx1
ERTX,

‘ = Pnln,
= (pnin, — R)(0x — 6p),
= f(O,0n) — f(0.).

That is, we pile up the three r-dimensional random vectors 7}, 7r,2l, and 73, respec-

tively. The three vectors represent the random mixing sequence due to noise, bias, and

mismatch, respectively. Then the well-known functional central limit theorem enables
ai at . lt/e]l-1~ . . ; :

us to obtain t.hat as € = 0, \/EZFO. m; converges weakly to a 3r-dimensional

Brownian motion with covariance matrix

oo o
S = Efomy + y_ E7jwp + Y Efory.
j=1 j=1
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Using the notation of partitioned vectors, we can write 7, as
Tp = (IraIr,Ir) I’y

where I, is an r-dimensional identity matrix. Using the weak convergence to the
Brownian motion mentioned above, together with Slutsky’s theorem, we arrive at the
following lemma.

LEMMA 3.5. \/EZ;/;O— lﬂ'j converges weakly to a Brownian motion w(-) with
covariance Xt, where

I
S= L, | L
I,

Equivalently, we can write w(t) as $1/24(t), where w(-) is a standard Brownian
motion. For simplicity of exposition, we assume the tightness of the sequence {(8,, —
65)/+/€ : m > N.} in the next result. This tightness will be established in Theorem 4.2.

THEOREM 3.6. Assume conditions (A1)—(A2) hold. Define X, = (6, — 6y)/VE,
where the iteration (3.2) defines 6,,. Assume that there is an No > 0 such that {X, :
n > N} is tight. Define X¢(-) by X¢(t) = X,, fort € [e(n— N¢),e(n— N +1)). Then
X¢(-) converges weakly to X (-), which is the solution of

~1/2
(3.6) dX = —=RXdt+X¥  dw.
Proof. Then
(37) Xny1=Xn — 5‘P'rL<P;1Xn + \/Eﬂ'n-
It follows that
(t+s)/e—1 (t+s)/e—1
(3.8) Xe(t+s)— Xe(t) = —¢ Z ;i Xj+ Ve Z 5.
j=t/e j=t/e

In the above and what follows, for example, t/e is meant to be |t/e], the integer part of
t/e, similarly for (¢t + s)/e. However, for notational simplicity, we will not use the floor
function notation henceforth. The rest of the argument can be done as in [22, Chapter
10]. The main idea is that by the martingale averaging approach, we can show that
the first term on the right of the equality sign of (3.8) tends to — tt“ RX(5)ds and
the second term goes to ftH's Ry 2dw(3). A few details are omitted for brevity. ]

Define ¥* = R'liR‘l, which can be considered as an optimal one in the sense
discussed in [22, Chapter 11]. To illustrate the optimality, we may consider a sequence
of decreasing stepsizes {€,} and the associated algorithm

Ont1 =0 + E'n.(Pn(SO;lg* - ‘P;le-n + Cn) +enAp.

Taking €, = O(1/n?), it can be shown [42] that n7/2(8,,—8,) is asymptotically normal.
The scaling factor n7/2, together with the associated covariance, give us the rate of
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convergence. Among the different €, = O(1/n"), v = 1 gives us the best scaling. Next
we consider

r r
Ong1 =0, + E‘Pn(‘/’%e* - ‘P'In‘gn + Cn) + ﬁAn

Treating I' as a matrix-valued parameter, we may carry out an optimization task to
find the optimal covariance £* and show that n!/ (6, — 6) is asymptotically normal
with asymptotic covariance R~'SR-!.

_ Aswas observed, in addition to the noise effect because of ¢, ¢y, the diffusion term
Y is caused by the bias (¢}, — R)(6x —05) and the model mismatch f(.,¢n) — f(64).
A natural question is: can we reduce the variation due to these factors? An effective
way of resolving the problem is to take an iterate averaging as in [22, Chapter 11]
with a minimal window of averaging. To proceed, let m. be a sequence of integers
satisfying me — oo as € — 0. Define

Mme+n—1

> O
j=me
me+(t/e)~-1

Xt =L > (6-6).

Jj=me

LEMMA 3.7. For each fized t, as € — 0, Ys(t) converges in distribution
to N(0,Z*/t + O(1/t?)), a normal random variable with mean 0 and covariance
T/t + O(1/t2), where £* = RTISR-1.

Proof. The proof is essentially in [22, section 11.1.2]. We omit the details for
brevity. 0

As in the case of a typical estimation problem, the quality of approximation is
judged by precision (bias) and variability (variance). By means of (3.3), if we fix the
parametrization, there will be a term contributing to the bias and a term contribut-
ing to the model mismatch. From the definition of 7, in evaluating the quality of
approximation, we are able to reduce the variation or variance. An effective way is to
use an iterate averaging; see [22, Chapter 11}. Lemma 3.7 says essentially that. As a
consequence, we have 8, ~ N (8, 5*/(t/¢)). That is, 8, is distributed asymptotically
normally with a mean 6, and a covariance £* /number of iterates with the window of
averaging.

4. Weak stability. We now turn to the results of interest: the stability of the
estimation process with respect to perturbation. In this section, we show that the
scaled sequence of errors is recurrent or weakly stable. To proceed, let us first recall
the definition of recurrence for diffusion process. For simplicity, we deal only with
time-homogeneous processes. Consider a diffusion process Y () given by

(4.1) dY (t) = g1(Y (£))dt + g2(Y (t))dw,

where w(-) is an R"-valued standard Brownian motion and g¢;(-) : R” ~ R” and
g2(*) : R" = R"™" are functions satisfying suitable conditions. Denote by Y¥(.) the
solution satisfying initial condition Y (0) = y. The process Y¥(t) is said to be reqular
if, for any 0 < T < o0,

(4.2) P{ sup |Y¥(t)] =00} =0.
0<t<T
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That is, a process is regular if it has no finite explosion time. Let 3, be the first exit
time of the process Y¥(t) from the bounded set {y : [y < n} x M, that is,

(4.3) Bn = inf{t: |YY(t)| = n}.

Then the sequence {83, } is monotonically increasing and hence has a (finite or infinite)
limit. It is not difficult to see that the process Y¥(t) is regular if and only if

(4.4) Brn — 0o w.p.l as n — co.

Let U be an open subset of R” with compact closure, and let 7} be the first
hitting time of the set U. That is, 75, = inf{t : Y¥(t) € U}. A regular process Y¥(:)
is recurrent with respect to U if P(7}; < oo) =1 for any y € U¢, where U° denotes
the complement of U. A recurrent process with finite mean recurrence time for some
set U (U C R" being a bounded open set with compact closure) is said to be positive
recurrent with respect to U; otherwise, the process is null recurrent with respect to
U. Thus, recurrence means that if the process starts somewhere outside an open set,
it will return to this set. If not only the process returns to the compact set but also
the expected return time is finite, the process is positive recurrent. As demonstrated
in {14], the property of recurrence, in fact, is independent of the open set U chosen.
That is, if Y¥(-) is recurrent (respectively, positive recurrent) with respect to U, then,
for any U (open subset of R” with compact closure), Y'¥(-) is recurrent (respectively,
positive recurrent) with respect to U. Thus, from now on, we will only say a process
Y¥(-) is recurrent or positive recurrent without specifying the set chosen. In what
follows, we first establish recurrence of the limit SDE and then use such recurrence
to study the recurrence of the algorithm.

4.1. Regularity and recurrence of associated SDE. Associated with the
SDE (3.6), there is a differential operator, known as the generator of the diffusion
process, given by :

(4.5) Lg{z) = %tr (fJVQg(m)) - V¢'(z)Rz

for any real-valued function g(-) that is twice continuously differentiable with respect
to x, where iu and —(Rz); denote the ijth entry and ith component, respectively,
of the matrix oo’ and the vector —Rz. The following lemma is a simple application
of the general results for diffusion processes in [14].

THEOREM 4.1. Assume that (Al) and (A2) hold. Consider the diffusion given in
(3.6). The following assertions hold:

(a) The process X*(-) is regular.

(b) The process X*(-) is positive recurrent.

Proof. To prove (a), we first note that since the SDE is linear, the Lipschitz
condition and the linear growth condition are automatically satisfied. In accordance
with [14], we need to consider only a function V : R" + R V(x) = |z|. Note that
V() is twice continuously differentiable in R" — Ns,(0), where N;,(0) is a deleted
neighborhood of the origin. On this set,

Tk,

V(x) a 0*V(x) dijlel — 71

dr; |z Owimy; ||
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Then it is fairly easily to show that, for some ¢ > 0,

LV (y) < cV(y)
(4.6) inf V(y) > oo as Ky — oo.
lyl> Ko
The general criterion for regularity of diffusion processes [14] then yields the desired
regularity.
Define the Lyapunov function

4.7) V(z) = %z’:c.
This quadratic function is radially unbounded, and condition (4.6) is satisfied. We
omit the details here since a finer estimate similar to this will be used in the proof of
part (b).

To prove (b), we again use the Lyapunov function given by (4.7). It is readily
checked that

(4.8) Ve(z) =2, Vie(x) =1
Thus,
(4.9) LV(z) = —z'Rz + —;—tr (f)) .

By noting the positive definiteness of R,
(4.10) —2' Rz < —Amin(R)|z|?.
Then for all z € {z : |z|®> > (/\max(i)//\min(R))},

(4.11) LV(z) < <—)\mi,,(R)|ac|2 + %tr (f))) < —a

for some o > 0. The desired positive recurrence follows. O

4.2. Regularity and recurrence of the adaptive algorithm. In this section,
we study the recurrence of the iterates given by (3.2). In a way, this presents an effort
to assess properties of the approximation errors as a centered and scaled sequence. We
define the § neighborhood of 8y by Njs(6y) = {6 : |6 — 6| < &}. Denoting 0, = 8,, — 0,
we have the following theorem.

THEOREM 4.2. Suppose that (A1)-(A2) hold. Then

EV(0np+1) =O0(e) for n sufficiently large.
Proof. We first note that

T

= B — BBy + £{nCa + (Puly = )0 = 06) + [ (6, 0n) - £(6.)])
To proceed, use F, to denote the c-algebra generated by {¢;,{; : 7 < n}, and
denote the conditional expectation with respect to F,, by E,. Using V(6) = 6'6/2,
straightforward calculation yields

EnV (Bng1) = V(6n) _
(4.13) = —el, ROy, + €0,mn + €%| — RO, + my |2
= —eb, ROy, + €8m0, + O(eD)(V (8,) + 1)).
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To complete the proof, we need to get order of magnitude estimates of the terms

above. Toward that end, we introduce some perturbations, a process which will lead
to the result of interest. Define

VEB,n) =€ > Enbl0;¢,

Jj=n
(414) V2E(§7 ’I'L) =¢ Z Engl(cpjcp; - R)(a* - 91)))
j=n
Vi@,n) = S Bl (F(0.,05) - £(6)]
j=n

By virtue of the well-known mixing inequalities (see [2, p. 166]) and the familiar
inequality 2ab < (a? + b?) for any two real numbers a and b, we see that there is a
constant K > 0 such that

VE@m)l S ety Eallois| <€ Bl By

j=n Jj=n

< Ke(|8]2 +1) < Ke(V(8) +1).
Likewise, it is easily verified that

(4.16) 1% (g n)| < Ke(1 + V (@),

Vs (
Next, note that
EoVEOpgr,n+ 1) = VE(Bn,m) ~
= Ep V Ongr,n+1) — E;VE(On,n+ 1) + E, Vi (6n,n + 1) — V(6p,n)

(4.17) ~
=€ Z (Brns1 — On) 03¢5 — €0 onin
j=n+1

= 0(52)(V(§n) +1) — €0 0nln.
Similarly, we obtain

EnV25(§n+1,~n -+ 1) - V;(gn,n) _ ~
(418) = BuVs (G, n+ 1) = BuVs (B, +1) 4+ EnV5 (B + 1) = V5 (Br)
= O(e2)(V(0n) + 1) — €6,y (0n}, — R)(6x — 6)

and
EnVE(gn 1,n+1) = V(8 n,n)
19 3 ‘+ 3
(4.19) = O@)(V(Bn) +1) - BolFBeripn) — 162)).
Define
(4.20) VB, n) = V(n) + VE@n,n) + VE(Brn, 1) + V5 O, n).

It is easily seen that

VE(On,n) = V(6,) + O()(1 + V(6y)).
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Then upon cancelation, we obtain

E, V¢ (0n+1,n+ 1) - VE(Gn,n)
< —eAV(8,) + OEX)(V () + 1).

Note that there is a x; > 1 such that we can make

(4.21)

—eAV (6,) + O(€2)V (8,) < —kiAeV (Bn).
Furthermore, using the bounds in (4.15) and (4.16), we obtain

EpVE(Bngr,n+1) = VE(Bn,n)

(4.22) < KAV (B, n) + O(e2)(1 + V(Gn)).

Iterating on (4.22), we finally arrive at

EVE(Bpp1,n+1) < (1 — k1de)"EVE(80,0) + 3 (1 ~ k1 Xe) O(e?).

=0

Since
Z (1 —Kihe) = O(1/e),

we arrive at that, for sufficiently large n,
EVE(pi1,n+1) < O(e).
Using (4.15) and (4.16) again, we also obtain
EV(8 n+1) < O(e) for sufficiently large n.

The desired result thus follows. a

Similar to the definition of regularity for the continuous-time processes, we say
that the sequence of recursively defined iterates {Z,} is regular if, for any 0 < N < oo,

P( sup |Z,| =) =0.
0<n<N

It is again a notion of no finite explosion time. As a direct consequence of Theorem 4.2,
by using Chebyshev’s inequality, we obtain the following corollary.

COROLLARY 4.3. Under the conditions of Theorem 4.2, the sequences {6}, {6},
and {X, :n>N.} ={0,//e:n>N <} are regular.

Note that Theorem 4.2 is more or less a tightness result for the centered and scaled
sequence {60, — 6. }. To proceed, we obtain another lemma, which is in the direction of

the recurrence of {(8, —6.)/e}. The proof is based on a perturbed Lyapunov function
method.

To proceed, we use the idea in [14]; see also the treatment in [19]. Let
U={z:V(z) L w},

where @w > 0. Let N, be such that, for all n > N,, we have EV¢(n) = O(¢) and
EV(6,) = O(g). Denote by

(4.23) 7° = inf{n > N, : 6, € U},
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i.e., 79 is the exit time after N, i.e., the first time the iterate is not in U. Let
(4.24) T=inf{n>71°: 5,1 eU}.

That is, 7 is the first return time after 7°.
THEOREM 4.4. Under the conditions of Theorem 4.2,

(4.25) E(r - 7°) < 0.

Proof. Define the Lyapunov function V() and the perturbations VF(-), V5(-},
V£(+), and V*(-) as in Theorem 4.2. To simplify the notation, we adopt the conventions

V#(n) and V£(n) to denote V(8,n), V,f(g, n), and Ve(n) = Ve(gn,n), respectively.

Note that, for all n with 7° < n < 7, V(6,) > w. Then by virtue of (4.22), for some
ag > 0,

E[VE(T);1 Ve(r?)]
<E Y Er[-eaoV(8;) + O(?)
(4.26) j=r°
< [~ecow + O(e?)| E(7 — 7°)
< _aaowE(T - 7°).

In the last step above, we have used that, for £ > 0 small enough, we can make
—apew + O(e?) € —apew /2.

Clearly the nonnegativity of V(-) and the order estimates on V7(n) imply that
EVe(t1) > 0. Thus, we obtain

2 2
EVE(r°) < ——0(1).
[Xe 11X QoW

E(r-7°) <

In the last step above, we have used the fact that EV¢(7°) = O(e). This implies that
E(r — 1°) < o0 as desired. 0

Remark 4.5. Consider now the iterates returning to a bounded set repeatedly,
a situation which is inspired by [18]; see also the similar ideas in treating diffusion
processes in [14]. Denote I; = {5 V(g) < w;} for i = 1,2 with wy > wy, and
let 70 be the first exit time of the iterates from K1, ie., 70 = inf{n : 6, ¢ K;}.
71 = min{n : n > 79, 5,2 € K1}. Note that by virtue of the estimates (4.15) and
(4.16) and owing to the fact V(8,) > 0, we have that, for each 6,

(4.27) VE(l,n) = —0(e), i =1,2,
and hence,
(4.28) VEm)| > |V (8a)] - Oe) 2 ~Ofe).

In addition, {VE(nAT)} is a supermartingale, and (4.22) implies that, for some x > 0,

(4.29) E,VE(n+1) = Ve(n) < —keVe(n) + O(e?)
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for sufficiently large n. This, together with (4.28) and (4.29), leads to that, for any n
satisfying 77 <n+1 < 7o,

@30)  EqVn+1)-Ve(rD) < —me S V(@) + 0() < O)

k=’ri‘
for some a; > 0. By using the lower bound (4.27), we finally obtain
E.VE(n+1) <O(€) + O(e?) = O(e).

Furthermore, we also obtain ET{'V(gnH) = O(e). That is, 6, € K, with probability
one.
To summarize the results obtained, we have the following:
(i) The iterates 8, are positive recurrent in the sense of Theorem 4.4.
(i) Let K;, 77, and 7; be defined as above with ¢ = 1,2. Then eventually 8,
remains in (o w.p.1 for any wy > wy > 0.

4.3. Remarks on path excursion. The results obtained in Theorem 4.4 (in
particular the first return time to the set U) can be readily extended to treat returning
to the given set in subsequent instances. To be more specific, we can define the set U
as in the last section. Define

77 = inf{n > N, : gn e Uc}.

That is, 77 is the exit time after N, i.e., the first time the iterate is not in U. Let
7 =inf{n>70:0, € U}.

That is, 7 is the first return time after 70. Next define inductively

72 = inf{n > 741 : 6, € Uc},
T =inf{n>77:0, € U}.

Following exactly the same approach as in the last section, we obtain
(4.31) E(r, — 1) < 00.

Thus, the iterates will return to the set U infinitely often.

5. Stability in distribution. In the previous section, we obtained results on
weak stability or recurrence of the sequences associated with (3.2). In this section,
we consider stability in distribution. As can be seen that in the limit SDE (3.6), &
is nonnegative definite and the diffusion matrix does not depend on z. Thus, it does
not admit trivial solution. The usual notion of stability frequently used is roughly
the convergence of the nontrivial solution to that of the trivial one for large time .
However, at this point, due to the nondegeneracy, such a notion is not appropriate. We
will need to consider the probability distributions. We aim to compare the sequence of
probability distributions of the recursive algorithm and invariant distribution of limit
of the suitably scaled sequence. First we recall the definition of stability; then we find
the sufficient conditions that guarantee the stability in distribution for the recursive
algorithm. This section is motivated by the work on asymptotic distribution of [19,
pp- 153-156).
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5.1. Stability in distribution of associated SDE. First let us recall the
definition of stability in distribution for a diffusion process.

DEFINITION 5.1. The process Y (t) given in (4.1) is said to be stable in distribution
if there exists a probability measure [(-) such that the distribution u(t,dz) of (4.1)
converges weakly to i(dx) as t — oo for each initial data y € R".

Remark 5.2. Note that for a diffusion process, the distribution u(t,dz) turns
out to the transition probability P(t,y,dz) with the initial data y. The definition of
stability in distribution essentially says that if the initial “distribution” is not too
far away from the stationary distribution, then the difference of time t-dependent
distribution will not be far away from the stationary one. To be more precise, this
property can be stated as if, for each § > 0 and arbitrary integer ng, there exist
an n = () > 0 and ny such that, for any p; € Co(R") (continuous functions with
compact support) with j < max(ng,no),

H—[/p; (0, dy) — ﬁ/m

implies that

’:ljl/pj(y)u(t,dy) —:]jl/pj( )ﬁ(dy)‘ < 6.

LEMMA 5.3. Assume that the conditions of Theorem 4.1 hold. The limit diffusion
process (3.6) obtained from (3.2) is stable in distribution.

Proof. We note that by virtue of Theorem 4.1, the limit diffusion process is positive
recurrent. It then follows from [14] that the process is ergodic. That is, there is a unique
invariant distribution. In fact, this limit distribution f(z) can be written as

Ao = [ vy,

where v(-) is the so-called invariant density of the limit distribution that can be
obtained by solving the Kolmogorov forward equation

5.1) LYy =0, /I/(T)d:L =1,

where £* is the adjoint of £. Thus the lemma is obtained. a

LEMMA 5.4. Assume the conditions of Lemma 5.3. Then the process X*(t), with
initial data X (0) = z, given by (3.6) is a Feller process. That is, for any bounded and
continuous function h(-), u(z) = E;h(X(t)) is continuous.

Proof. The proof is standard: see, eg., [9]. We thus omit the detailed
argument. 0

Remark 5.5. A set C C Cp(R") is said to be convergence determining if [ fdu, —
J fdit as n — oo for each f € C implies that pu, converges to 7z weakly. Denote by
Cyp(R"™) the space of real-valued bounded and continuous functions defined on R".
Then Cy(R") is convergence determining. For a proof of this result, see [4, p. 112].

In what follows, to highlight that the dynamics start at X (0), by abusing notation
slightly, we often write

[ otz as Bup(x(o).
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LEMMA 5.6. Let KT be a set of R"-valued random variables, which is tight (the
letter T signals the tightness). Under the conditions of Theorem 4.1, for any positive
integer ng, 0 = Ay < Ag < -+ < Ay, and any p;(+) € Cp(R"), 5 < ng,

(5.2) Ex) [[ps(X(t+25)) = Bu [ o (X ()
Jj=1 j=1
uniformly in X(0) € Ky ast — oo.

Proof. We prove the assertion by induction on n. First, for no = 1, Ex(g)p1(X (t))

is bounded and continuous for each t > 0 since p1(-) € Cp(R"). Suppose that X (0) €

K7 and the distribution with initial condition X (0) is denoted by u(0,-). Then the
tightness of X (0) yields that

Ex@m(X(t) = / (0, dz) Epr (X (8))

(0, dz)E,p1 (X (0))
1 P1 (X(0))

since [ 1(0,dz) = 1. Moreover, the convergence is uniform in X (0) since it belongs to
a tight set.

Suppose that the assertion is true for ng = £ — 1. We prove that it is also true for
ng = £. In view of Lemmas 5.3 and 5.4, as t = oo, u(t + A_1,dz) converges weakly
to u(dz), and Ezpe(X(t + A¢)) — E.pe(X(Ag)). By noting the measurability of
Hﬁ;i pi(X (t+A;)) with respect to the o-algebra generated by {W(u) : u < t+A,_1},
we have

(5.3)

Exqt+a,_1)pe(X(t+ Ag))
(5.4) = p(t + Ag—1,dz) Ezpe(X (t + Ag))

M(Ag_l,dI)Eupg(X(Ag)) as t — oo.

Thus, using the induction hypothesis, we arrive at

A(O)Hp] t+A

e 1
= Exo) [ ] ps(X(t + 85)) Exera,_pe(X(t + As))
(5.5) =
[ HHp] ] Eupe(X(Ag)) as t — 00
= Lu H pi(X(A;))
j=1
Thus the proof of the lemma is concluded. g

5.2. Stability in distribution of the recursive algorithm.

THEOREM 5.7. Consider algorithm (3.2). Assume the conditions of Theorem 4.1
are fulfilled. For arbitrary positive integer ng, p; € C(R"), j < ng, and for any A > 0,
there ezist tg < oo and positive integer €9 > 0 such that, for allt >ty and € < &g,

o 0

(5.6) 'EHp] S(t+A) HEM <A.
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Moreover, for any sequence s — oo as € — 0, the distribution of ((X*(s. +
A1)y (XE5(se + Ap,)) converges weakly to the stationary distribution of
(X(Al)’ ce ?X(Anu))'

Proof. Suppose that (5.6) were not true. There would exist a subsequence {n(e)}
of {€} and a sequence s,y — oo such that

) T

(5.7) |ET] 23X (s + A9)) = B T] os(X (5] 2 8 > 0.
j=1 j=1

Fix T > 0 and choose a further subsequence {d(n)} = {(n(¢))} of {n(e)}, and the
corresponding sequence (X% (-)) such that (X°" (ss.,) — T')) converges weakly to a
random variable X (0). Lemma 3.6 implies that X°(ss,) — T + -) converges weakly
to (X{(-)) with initial condition X(0). Moreover,

ET] pi(X°M (s50y — T+ T + 4A;))

=1
8

— EEx() [[ ps(X(T + 8;) as 6(n) — 0.
j=1

Owing to the tightness of the limit diffusion, the collection of all possible X(0) over
all T > 0 and weakly convergent subsequence is tight. Thus, by Lemma 5.6, there
exists Ty > 0 such that, for all T > Ty,

) o

EBx [1m(X(@+25) - B, [ osX(2))] < 72,

j=1 j=1

which contradicts (5.7).
Using Lemma 5.6 again, part (i) of the theorem implies that (X¢(sc+-)) converges

weakly to the random variable with the invariant distribution 7(-) as s¢ — oo. Thus
part (ii) of the assertion also follows. O

6. Ramifications and further remarks. In this section, we discuss some gen-
eralizations, adjustments to the algorithm (2.3), and some observations concerning
the results of the paper. This paper introduces the notion of model mismatch; one of
the important parts of this section is devoted to mismatch and bias reduction.

6.1. Unbounded signals. So far, we have mainly considered the case that the
signals are correlated mixing type but are bounded up to this point. Next we elaborate
on how unbounded signals may be treated. Instead of (A1), we consider the following
assumption.

(A1") The sequence {¢n,yn} is stationary such that Ep,o), = R > 0 and Ep,(, =
0. In addition,

(6.1) E|¢n|'T2 < 00, Elya|*T® < oo for some A > 0.
— {pndl, — R} and {¢yn — ¢} are moving average sequences of order m,
ie.,
mao
(pn‘P:l -R= Z C’iff_ia
(62) my =0
“nln = Z Difz_i,

i=0
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where Cj, D;, 1 < my are matrices with appropriate dimension and {{f}
and {£2} are stationary martingale difference sequences.

Here the signals are allowed to be unbounded moving average type processes.
Using the approach provided in the previous sections, the conclusions of the results
developed thus far, including recurrence and stability in distribution, continue to hold
for this unbounded signal case.

6.2. Decreasing stepsize algorithms. Although the analysis has been de-
voted to constant stepsize algorithms, the results obtained carry over to decreasing
stepsize algorithms

(6.3) Ont1 = On + @nn(Ph0s — @00 + Cn) + anlp,

where a, > 0, ap = 0, ) a, = 00, and A, = cpnﬁn with ﬁn as in (3.2). Let us
briefly comment on the needed modification below.
To link the discrete time with continuous time, we define

n—1
tn = Z ax, m(t) = sup{n,t, <t}.
—

Here t, is a “connector” that bridges the connection naturally, whereas m(t) is an
“inverse” that takes a continuous time back to the discrete moment. The interpolation
sequences are defined as follows. Denoting X, = (6, — 6)/+/an, let 8°(t) and XO(t)
be the piecewise constant interpolations of 6, and X, on the interval t € [t,,t,41).

Define the shift sequence by
0"(t) = 6°(t + t,) and X™(t) = XO(t +t,).

Then we can proceed with the analysis as in the previous two sections. We obtain
the same limit ODE and the same limit SDE. We can also establish an analog of
Theorem 4.2. In this case, the statement will be changed to EV (6,41) = O(ay,). In
addition, we can also show that Theorem 4.4 is still true, as is the recurrence time
estimate (4.31). Furthermore, the results in Theorem 5.7 carry over to the decreasing
stepsize case.

6.3. Bias reduction. Recall the observation equation (3.1), in which the bound
on the model mismatch En dictates the model mismatch leading bias, as stated in
(3.4). Typically ¢, contains input uy for £ < n, and the above observation equation
represents a linearization effort in which the model mismatch term has less impact
on the linear term when the input signal u,, and hence ¢,, are “small.” However,
when uy, takes large values, the higher-order terms contained in A,, will dominate and
make the estimation bias unacceptably large for the identified model to be useful. In
general, bias correction to accommodate nonlinearity in A,, requires model structures
that capture more higher-order terms, leading to complicated nonlinear identification
problems. Here we show that if the identified model is intended for utility in a regula-
tion problem and when the system nonlinearity has some structures, bias correction
can be effectively achieved by a modified linear structure.

Assume in this subsection that the nonlinearity has the separation structure

(6.4) Ap = K (pn)bs
and that A(-) is twice continuously differentiable. Note that 8, € R” and

Gr = [Un, Un—1, .-, Un—rt1]-
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In a regulation problem in which the set point is a constant, control actions will
eventually lead to an asymptotically constant u,, = ¢. It is noted that if ¢ is not small,
identification bias may become very large. Apparently, when u, is a constant, it is
no longer persistently exciting, losing its capability in providing sufficient information
for system identification. Assume that a small dither is added to the input, resulting
in

(6.5) Up = €+ EVp,

where |v,| < 1 and will be selected for identification experiments. For any small
£ > 0, this dither will have diminishing effects on control performance and hence is
acceptable.

Under the input in (6.5), we have

on = clly + EQn,

where 1, is the m dimensional vector of all 1’s and @, = [vn, Un-1,. .., Un—r41] Which
is uniformly bounded for all n. Now by a truncated Taylor expansion of /i(y,) around
cll,., we have

hgn) = h(cll, + EZ,) = h(cl,) + EG(cl,)@n + £26(&n),

where h(cl,) and G(cl,) are unknown but constant vector and matrix, respectively,
and £26(€,) represents the second-order remainder term in the Taylor expansion. The
term 6(£,) is uniformly bounded since &, lies in a uniformly bounded neighborhood
of cl,. Consequently, the observation equation may be expressed as

Yn = (cl} +EF,)04 + (h(cl,) + EG(cl,)@n + Ezd(gn))e,. +Cn
= (cll’. + W' (c1,))0. + @, (I + G'(cL,))bs + E25(€0)0x + Cn-

Now define b, = (c1’. + h'(cL,))f, and 6° = (I + G'(cl,.))6,. Let &, = [b., (6°)]
be the new unknown but true system parameter vector and ¢;, = [1,€@},] be the new
regressor. Then the observation equation becomes

(6.6) Y = .0, + 228(6,)0 + Cn.

Since this observation structure is the same as (3.1), all the algorithms and analysis
in the previous sections are applicable to this modified linear structure with model
mismatch term £28(&,)0.. The main idea for bias correction is to design vy, such that
1, satisfies persistent excitation conditions and then to choose € sufficiently small for
bias reduction.

Define

R = Epnt,, §=E¢nd(£n)0..

By the same arguments as in (3.4), we conclude that the identification bias after the
bias correction scheme is R~1£2§. B

Ezample 6.1. Consider the system in Example 3.4. Since A,, = /\u'fﬁ*, it satisfies
the special structure condition imposed in this section with i(p,) = AuZ. When
Up = C + EUp,

h(pn) = Mc + Eup)? = A + EX2¢uy, + 2002,
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Suppose the dither is designed as a periodic signal with v; = 0 and v = 1. Since
A =0.05 and 6, = 10, from 9], = [1,&v,] we have

N EA AL

PO 2, [ 02582
59_€E[5un}*”n9*‘[0.25§3 ’

which implies that the bias is

S 1~ 4 [ &2 -E/2 0.2582
122
Feg=5 [ ~F/2 1 0.258%

0 -
—[5/2}—>0 as € = 0.

6.4. Concluding remarks. We have developed stability of recursive algorithms
with a constant stepsize and model mismatch. Sufficient conditions ensuring recur-
rence of the algorithm have been obtained. Stability in distribution of the algorithm
has also been examined.

This paper is devoted to AF algorithms. In future studies we will be interested in
extending the results to RLS algorithms. For the RLS algorithms, the main point is
to integrate the matrix gain sequence into the analysis. It seems that both stability
and recurrence will largely depend on certain matrix products. Another related ques-
tion involves algorithms that use forgetting factors. Further investigation for tracking
algorithms for time-varying parameters is of theoretical and practical value as well,
as are problems with hidden Markov models.
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