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ON AXIOMATIC DEFINITIONS OF NON-DISCRETE

AFFINE BUILDINGS

CURTIS D. BENNETT AND PETRA N. SCHWER
WITH AN APPENDIX BY KOEN STRUYVE

Abstract. In this paper we prove equivalence of sets of axioms for non-
discrete affine buildings, by providing different types of metric, exchange
and atlas conditions. We apply our result to show that the definition of
a Euclidean building depends only on the topological equivalence class
of the metric on the model space. The sharpness of the axioms dealing
with metric conditions is illustrated in an appendix. There it is shown
that a space X defined over a model space with metric d is possibly a
building only if the induced distance function on X satisfies the triangle
inequality.

1. Introduction

One shortcoming of the definition of non-discrete buildings and affine Λ-
buildings is that often the axioms can be very hard to verify. This led
Parreau [Par00] to find equivalent axioms for Bruhat-Tits buildings. In our
work we undertake to generalize her work to Λ-buildings, as well as to present
new equivalent sets of axioms. While some of Parreau’s proofs carry over to
Λ-buildings, any argument that uses compactness, connectedness properties
of R or properties specific to the Euclidean metric must be reworked as Λ
and the Λ-metric need not have these properties.

A second complication arises in the case that Λ = R. Here the metric on
Rn that is used to define the Λ-building is different from the Euclidean
metric (which is used in the definition of simplicial or R-buildings). So what
importance does the choice of metric play? We prove that so long as the
metrics are equivalent and compatible with the Weyl structure of the model
space (in the sense made precise in 3.1), there will be no change in the
definition of a Λ-building. Moreover, in this case, the induced metric will
necessarily satisfy the triangle inequality.

Euclidean buildings, also referred to as non-discrete affine or R-buildings,
form one of the prime examples of CAT(0)-spaces and were defined by
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Bruhat and Tits in [BT72] and [Tit86] to study Lie-type groups over lo-
cal fields, as well as fields with non-discrete valuations.

The first author introduced the more general class of affine Λ-buildings in
[Ben90] and [Ben94], allowing for groups over Krull-valuated fields, that is
fields having a valuation taking its values in a totally ordered abelian group
Λ. Initially, the two main examples were the case of Lie-type groups over
the field F (x, y) of rational functions in two variables, with two possible
valuations, namely, one into Z×Z lexicographically ordered, and the second
onto the subgroup {x + yπ | x, y ∈ Z} of R. Care should be taken in
the latter case that while geometrically the building can be embedded in
a Euclidean building (by thinking of the valuation as landing in R), the
different topology of the underlying group can wreak havoc on many of
the properties of and standard proofs on Euclidean buildings. Thus the Λ-
building definition generalizes both the notion of non-discrete R-buildings
and that of Λ-trees.

All the combinatorial information about a simplicial tree is carried by an
integer-valued metric on its set of vertices. Generalizing this view a Λ–
tree, as introduced in [MS84], is a special kind of Λ-metric space, namely
(roughly) the geodesic 0-hyperbolic ones, where the subclass of Z-trees cor-
responds precisely to the simplicial trees. A lot of information about a group
may be derived from an action on a Λ-tree. Compare Chiswell’s book [Chi01]
or Morgan’s survey [Mor92] for excellent accounts on this topic.

Kramer and Tent made use of Λ-buildings in their study of asymptotic cones
and their proof of the Margulis conjecture [KT04], [KSTT05]. Recently in
[SnHS12] Λ-buildings have been shown to be functorial in the underlying
field. Functoriality easily implies that asymptotic cones of R-buildings are
again R-buildings, which was shown with completely different methods by
Kleiner and Leeb [KL97].

The present paper is organized as follows: In Section 2 we define affine
Λ-buildings and list the properties and axioms in consideration. After that
we will present our main results in Section 3 where we also give an outline of
their proofs. Detailed proofs are then given in Sections 4 through 9. In 9 we
prove the existence of the spherical building at infinity. Further explanation
concerning the content of these sections is given after the statement of the
main result in Section 3. In Section 10 we prove that the standard Λ-
metric (or the Minkowski metric) satisfies the Weyl compatibility condition,
a connectedness-like condition. Finally, the Appendix 11 is devoted to the
construction of examples of spaces emphasizing the sharpness of axiom (A5).

Thanks. We are greatly indebted to the anonymous referee for his or her
detailed report and valuable comments on the submitted version of this work
which lead to a correction and improvement of the main result.
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2. Definitions and axioms

The model apartment of an affine Λ-building is defined by means of a to-
tally ordered abelian group Λ and a (not necessarily crystallographic) spher-
ical root system R, where we use the definition of root system as given by
Humphreys [Hum90]. A root system is called crystallographic if all evalua-
tions of co-roots on roots are integers. This is in particular the case if there
exists a corresponding affine diagram. The root system I2(8) is for example
not crystallographic but may be used in our setting.

We will now proceed with the definition of the model space of a Λ-building
and continue with defining the Λ-buildings themselves. We will however
not give a detailed introduction to the subject. The reader interested in a
more detailed description of the geometric structure and other properties of
Λ-buildings may have a look at Bennett’s work [Ben94, Ben90], where these
objects were first defined, or at one of the following: [Hit09, SnHS12].

Just as apartments in the geometric realization of Euclidean buildings are
isomorphic copies of Rn, the model space A of an affine Λ-building can be
thought of as a copy of Λn.

We fix a root system R and define

A(R,Λ) = spanF (R)⊗F Λ,

where F is a sub-field of the real numbers containing all evaluations of co-
roots on roots and Λ is a totally ordered abelian group with an F -module
structure. For example, we could take F = Q[{α∨(β) |α, β roots }].
The spherical Weyl group W associated to R acts on A by naturally extend-
ing its action on R. An affine Weyl group WT acting on A, is the semi-direct
product of W by some W -invariant translation group T of the model space.
In the case that T is the entire space A, we will write W instead of WT .

Elements in WT that can be written as t◦ rα for some t ∈ T and a reflection
rα in W are called (affine) reflections if their fixed point set is non empty.
The fixed point set H = Ht,α of an affine reflection, which splits A into two
half-spaces, is called (affine) hyperplane. Here we assume the hyperplane
to be part of each of its two half-apartments making them closed subspaces
of A. We say that a hyperplane Hα,t separates two elements x, y ∈ A if x
and y are contained in different open halfspaces determined by Hα,t. Two
hyperplanes are parallel if they are translates of one another. In this case
they are of the form Hα,t, Hα,k for some t, k ∈ Λ and α ∈ R. It is shown in
[Ben94] that hyperplanes are parallel in our sense if and only if they are at
bounded distance. Associated to a basis B of the root system R there is a
fundamental Weyl chamber Cf . The chamber Cf is a fundamental domain

for the action of W on A. Its images in A under the affine Weyl group are
Weyl chambers (sometimes called sectors). If two Weyl chambers S and
T contain a common sub-Weyl chamber we call them parallel and write
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∂S = ∂T for their parallel class. A Weyl simplex is a face of a chamber.
The smallest face of dimension 0 is called basepoint, and a panel is a Weyl
simplex of co-dimension one.

A subset C of A is (closed) WT -convex (or just (closed) convex ) if it is
the intersection of finitely many half-apartments. The convex hull of a
set Y ⊂ A is the intersection of all half-apartments containing Y . Weyl
simplices, chambers and hyperplanes are all examples of closed convex sets.

One can endow A with a natural W -invariant metric taking its values in
Λ, and thus making A a Λ-metric space in the following sense: A map
d : X×X 7→ Λ on a space X is a Λ-metric if for all x, y, z in X the following
conditions are satisfied

(1) d(x, y) ≥ 0,∀x, y, and d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x) and
(3) the triangle inequality d(x, z) + d(z, y) ≥ d(x, y) holds.

While in principle there exist many different potential Λ-metrics for X,
depending on Λ, the definition of one may be somewhat complicated. In
the case where Λ = R, the standard Euclidean metric works, however, in
the case where square roots may not exist (Λ = Q or Z × Z for example)
things can be more difficult. One such solution for all Λ is to use a modified
Minkowski metric (see [Ben94] for details).

We now define generalized non-discrete affine buildings. Throughout the
following fix a model space A and an affine Weyl group WT .

Definition 2.1. Let X be a set and A, called the atlas of X, be a collection
of injective charts f : A ↪→ X. For each f in A, we call the images f(A)
apartments and define Weyl chambers, Weyl simplices, hyperplanes, half-
apartments, etc. of X to be images of such in A under any f in A. The
pair (X,A) is a (generalized) affine building (or Λ-building) if the following
conditions are satisfied

(A1) The atlas is invariant under pre-composition with elements of WT .
(A2) Given two charts f, g ∈ A with f(A) ∩ g(A) 6= ∅, then f−1(g(A)) is a

closed convex subset of A and there exists w ∈WT with f |f−1(g(A)) =
(g ◦ w)|f−1(g(A)).

(A3) For any pair of points in X there is an apartment containing both.

Given a WT -invariant Λ-metric dA on the model space, axioms (A1)–(A3)
imply the existence of a Λ-valued distance function on X, that is a function
d : X × X 7→ Λ satisfying all conditions of the definition of a Λ-metric
except possibly the triangle inequality. The distance between points x, y in
X is the distance between their pre-images under a chart f of an apartment
containing both.
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(A4) Given two Weyl chambers in X there exist sub-Weyl chambers of both
which are contained in a common apartment.

(A5) For any apartment A and all x ∈ A there exists a retraction rA,x :

X → A such that rA,x does not increase distances and r−1A,x(x) = {x}.
(A6) Let f, g and h be charts such that the associated apartments pairwise

intersect in half-apartments. Then f(A) ∩ g(A) ∩ h(A) 6= ∅.

By (A5) the well-defined distance function d on X satisfies the triangle
inequality.

One problem raised by the definition is that condition (A5) relies on the
choice of a Λ-metric dA. However, as alluded to earlier, there are potentially
many possible metrics to choose from. To keep our notation manageable,
we will assume the metric on A is given as part of A.

The main goal of the present paper is to prove equivalence of certain sets
of axioms. Let us therefore collect all properties which are necessary to
state the main result. These properties break into three categories: metric
conditions, exchange conditions, and atlas conditions.

We begin with the metric conditions. Axiom (A5) is one such condition
since it implies that the global distance function is a metric on the space
X. In [Ben94], this condition is used to prove the existence of a building
at infinity ∂AX whose simplices are parallel classes of Weyl-simplices in X
as defined in 9.4. However, in [Par00] (for Λ = R) a proof of the existence
of the building at infinity was given that did not require the full power of
condition (A5) but only the triangle inequality, (TI) and properties of the
Euclidean distance function. We generalize her proof to the general case
in Section 9, although doing so requires identifying the special conditions
on the Λ-metric d inherent in the proof in [Ben94]. Consequently, there is
benefit to having the weaker condition necessary, namely that the induced
distance function on X is a metric.

(TI) (Triangle inequality) The distance function d on X, which exists
assuming (A1)–(A3), is a metric, i.e. satisfies the triangle inequality.

Alternatively one could directly assume that the space under consideration
has a spherical building at infinity.

(BI) (Building at infinity) The set ∂X of parallel classes of Weyl sim-
plices is a spherical building with apartments the boundaries ∂A of
apartments A in X.

We next move to the exchange type conditions. One difficulty with gener-
alizing the definition of an R-building to the Λ-building case was that the
totally ordered group Λ might not be topologically connected. In the case
of trees (the lowest dimension affine buildings), the move from R-trees to
Λ-trees required the introduction of a Y -condition, which is essentially a
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condition that says that when two paths diverge, the symmetric difference
of those paths together with the point of divergence itself forms a path. For
the higher dimensional Λ-building context, this condition was encapsulated
in (A6). For our purposes, we have two other exchange conditions, each of
which is slightly stronger than (A6). The first is most naturally an exchange
condition, and hence we give it that name.

(EC) (Exchange condition) Given two charts f1, f2 ∈ A such that f1(A)∩
f2(A) is a half apartment, then there exists a chart f3 ∈ A such that
f3(A)∩fj(A) is a half apartment for j = 1, 2. Moreover, f3(A) is the
symmetric difference of f1(A) and f2(A) together with the boundary
wall of f1(A) ∩ f2(A).

Note that the exchange condition can be restated in “apartment language”
as: Given two apartments A and B intersecting in a half-apartment M with
boundary wall H, then the set (A⊕B) ∪H is also an apartment, where ⊕
denotes the symmetric difference of A and B.1

We will also consider the following even stronger exchange condition for
which Linus Kramer suggested the name sundial configuration.

(SC) (Sundial configuration) Suppose f1 ∈ A and S is a Weyl chamber
of (X,A) such that P = S ∩ f1(A) is a panel of S. Let M be the
wall of f1(A) containing P . Then there exist f2 6= f3 ∈ A such that
f1(A)∩fj(A) is a half-apartment and (M ∪S) ⊂ fj(A) (for j = 2, 3).

The sundial configuration can be restated as: Given an apartment A of X
and a chamber c in the building at infinity such that c shares a co-dimension
one face p (a panel) with ∂A (the boundary of A or the apartment at infinity
associated to A) but is not contained in ∂A, then there exist two apartments
A1 6= A2 such that c ∈ ∂Ai, i = 1, 2 and such that Ai∩A is a half apartment
with bounding wall spanned by a panel in p.

The last set of conditions are the atlas conditions. These conditions all state
properties of the atlas set A in terms of containing subsets of X. Thus con-
ditions (A3) and (A4) are atlas conditions. These atlas conditions typically
correspond to statements about objects (two points or Weyl chambers for
example) being contained in an apartment (with one exception). To be more
precise, we need some terminology.

We say that two Weyl simplices F and G share the same germ if both are
based at the same vertex and if F ∩ G is a neighborhood of x in F and in
G. It is easy to see that this is an equivalence relation on the set of Weyl
simplices based at a given vertex. The equivalence class of an x-based Weyl
simplex F is denoted by ∆xF and is called the germ of F at x. The germs
of Weyl simplices at a vertex x are partially ordered by inclusion: ∆xF1 is
contained in ∆xF2 if there exist x-based representatives F ′1, F

′
2 contained in

1By definition A⊕B = {x ∈ A \B} ∪ {x ∈ B \A}.
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a common apartment such that F ′1 is a face of F ′2. Let ∆xX be the set of
all germs of Weyl simplices based at x. We note that since the definition
of a germ is dependent on the definition of a neighborhood of a point, the
notion of germs are necessarily dependent on the (equivalence class of the)
metric on A with which we start.

A germ µ of a Weyl chamber S at x is contained in a set Y if there exists
ε ∈ Λ+ such that S∩Bε(x) is contained in Y where Bε(x) denotes the usual
ε-ball around x. We are now ready to state the first three of our new atlas
conditions.

(LA) (Large atlas) Any two germs of Weyl chambers are contained in a
common apartment.

(aLA) (Almost a large atlas) For all points x and all y-based Weyl chambers
S there exists an apartment containing both x and ∆yS.

(GG) (Locally a large atlas) Any two germs of Weyl chambers based at
the same vertex are contained in a common apartment.

Note that both (LA) and (aLA) imply (A3).

We say two x-based germs are opposite if they are contained in a common
apartment A and are images of one another under the longest element of
the spherical Weyl group (which acts on the set of (germs of) x-based Weyl
chambers in A).2 Two Weyl chambers are opposite at x, if their germs are
opposite. This leads us to our fourth new atlas condition,

(CO) (Opposite chambers) Two opposite x-based Weyl chambers S and T
are contained in a unique common apartment.

For our last atlas conditions, we need a metric notion of a “convex hull” like
object. Thus, we define the segment segM (x, y) of points x and y in a metric
space M to be the set of all points z ∈M such that d(x, y) = d(x, z)+d(z, y).

(FCa) (Finite cover of apartments) For an arbitrary point z in X every
apartment A is contained in a finite union of Weyl chambers based
at z.

(sFC) (Strong finite cover) For any pair of points x and y, all apartments
A containing x and y and an arbitrary germ µ based at z in X, the
segment segA(x, y) is contained in a finite union of Weyl chambers
based at z such that each of these Weyl chambers is contained in a
common apartment with µ.

(sFCa) (Strong finite cover of apartments) For an arbitrary germ µ at a
point z in X, every apartment A is contained in a finite union of
Weyl chambers based at z such that each of these Weyl chambers is
contained in a common apartment with µ.

2It is easy to see that in the case where we know that the germs at x form a spherical
building, then opposite germs are also opposite in the usual spherical building sense.
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It is clear that (sFCa) implies (sFC) and (FCa). From Lemma 4.6 we get
that (sFC) implies (LA) and hence (A3). Condition (sFC) is the one of
actual interest for our main theorem while the other two appear during the
proof. We would have liked to replace all these conditions by a weaker finite
cover condition which is implied by all the above and reads as follows:

(FC) (Finite cover) For all triples of points x, y and z in X and all apart-
ments A containing x and y the segment segA(x, y) is contained in
a finite union of Weyl chambers based at z.

But this would imply that we (at least) had to add (aLA) in equivalence
(10) of Theorem 3.3 and to the assumptions of Lemma 7.7 and Propositions
7.10 and 7.12 .

Remark 2.2. Both, the existence of a large atlas (LA) and its local analog
(GG) were introduced by Parreau [Par00]. Condition (LA) was called (A3’)
in [Par00] according to its proximity to axiom (A3) and the abbreviation
(GG) probably stood for “germe - germe”. The opposite chamber property
(CO) also appeared in [Par00], where (CO) stood for “chambres opposées”.
The condition (aLA) to almost have a large atlas is “in between” (A3) and
the existence of a large atlas and suffices for one of the implications in 3.3.

3. Main results

The purpose of this section is to state our main results.

Recall that we say that (X,A) is a space modeled on A if X is a set together
with a collection A of injective charts f : A ↪→ X such that X is covered
by its charts. That is X =

⋃
f∈A f(A). Throughout the remainder of the

paper we will assume that (X,A) satisfies conditions (A1)–(A3).

We will now introduce a metric condition we need to impose on the distance
function in our main result below.

Recall that a hyperplane H in A separates two elements x, y ∈ A if x and
y lie in different half-spaces determined by H. That is if H is the affine
hyperplane

H = Hα,λ = {x ∈ A | (α, α)

2
〈x, α∨〉 = λ},

then x and y are separated by H if either

(α, α)

2
〈x, α∨〉 < λ <

(α, α)

2
〈y, α∨〉

or the same equation holds with the roles of x and y interchanged. Here
( , ) stands for the scalar product on the vector space in the definition of
the defining root system R and 〈 , 〉 for the evaluation of co-roots on roots.

We define a type function on the translation classes of Weyl simplices in
A. As in [Ben94], we say that the sector panel P̃ of the fundamental Weyl
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chamber Cf with 〈x, α∨i 〉 = 0 for all x ∈ P̃ is the fundamental sector panel

of type i. For a general Weyl simplex F̃ in Cf , the type of F̃ is the union
of the types of the panels that contain it. Since any arbitrary Weyl simplex
F in A is the image of a unique Weyl simplex F̃ of Cf under some element

w ∈W , we define the type of a Weyl simplex F to be the type of F̃ .

Definition 3.1. A WT -invariant metric d on A is Weyl compatible if the
following two conditions hold:

(1) For all Weyl chambers S and all sector faces P1 and P2 of the same
type, if there exists λ ∈ Λ, such that for all sub-faces P ′1 ⊂ P1 there
exists a sub-face P ′2 ⊂ P2 such that for y ∈ P ′2 there exists a x ∈ P ′1
with |d(v, y)−d(v, x)| ≤ λ for all v ∈ S, then P1 and P2 are translates
of one another.

(2) Whenever a hyperplane H separates two points x and y in A, then
segA(x, y) ∩H 6= ∅.

Condition (1) is the property proved for the standard Λ-metric in Theo-
rem 2.20 in [Ben94]. This condition guarantees both that in an apartment
sector-faces being at bounded distance is equivalent to being translates of
one another (see Lemma 9.3) and that non-translate sector panels of the
same type can be distinguished by their distances from points of any sector.
This is used in Theorem 9.1 for the proof of the existence of a spherical
building at infinity.

Condition (2) is a connectedness type condition, ensuring that if a segment
is split into a sequence of sub-segments by hyperplanes then each hyperplane
contains a point of the segment (see Lemma 7.9).

A metric d on a Λ-metric space M is geodesic if for all x, y ∈M there exists
an isometric embedding of the interval [0, d(x, y)] ⊂ Λ into (M,d). It is clear
that a geodesic real-valued metric satisfies condition 3.1 (2). Weyl compat-
ibility is easy to see for the Euclidean metric and shown in Section 10 for
the standard Λ-metric introduced in [Ben94]. We leave as an open question
whether geodesic Λ-metrics are necessarily Weyl compatible.

Using explicit constructions and combinatorial properties of links and the
building at infinity we prove in Proposition 5.1 that (A6) and the ex-
change condition (EC) are equivalent assuming (A1)–(A4) and (BI). By
Theorem 9.1, this follows in the case that (A1)-(A4) and (TI) is true (and
consequently also when (A5) is true). By similar arguments we obtain in
Proposition 5.2 that (EC) and (SC) are equivalent. Hence we have the
following proposition.

Proposition 3.2. Let (X,A) be a space modeled on A = A(R,Λ) such that
the metric is Weyl compatible, axioms (A1)–(A4) are satisfied and any one
of (A5), (TI), or (BI) is true. Then

(A6)⇔ (SC)⇔ (EC).
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We are ready to state the main theorem.

Theorem 3.3. Suppose A = A(R,Λ) is a model space equipped with a Weyl
compatible metric and (X,A) is modeled on A. Then the following are equiv-
alent:

(1) (X,A) is an affine Λ-building, that is axioms (A4), (A5) and (A6)
are satisfied.

(2) (X,A) satisfies (A4), (A5) and (EC).
(3) (X,A) satisfies (A4), (A5) and (SC).
(4) (X,A) satisfies (A4), (TI) and (A6).
(5) (X,A) satisfies (A4), (TI) and (EC).
(6) (X,A) satisfies (A4), (TI) and (SC).
(7) (X,A) satisfies (TI), (GG) and (CO).
(8) (X,A) satisfies (GG) and (CO).
(9) (X,A) satisfies (LA) and (CO).

(10) (X,A) satisfies (A4), (sFC) and (EC).
(11) (X,A) satisfies (A4), (BI) and (A6).

By Proposition 3.2 we can replace (A6) with either (SC) or (EC) in item (11)
and by the same proposition combined with 7.10 in item (10) condition (EC)
might be replaced by either (A6) or (SC).

Before discussing the proof, it is worth saying a few words about the relation-
ship of the various conditions. In particular, statements (4)–(6) and (11)
correspond to various options on metric and exchange conditions. State-
ments (7), (8) and (9) are the stronger versions of the atlas conditions (each
having one on germs and one on Weyl chambers) that imply (X,A) is an
affine Λ-building, allowing us to ignore both metric and exchange conditions.
Finally, statement (10) lets us use the weakest of the atlas conditions (in
that (A4) is often easier to show than (CO)) at the cost of a finite cover
condition. Also recall that conditions (LA), (aLA) and (sFC) imply axiom
(A3).

It is also worth mentioning the role that Weyl compatibility of the metric
plays. The first condition shows up whenever we need to work with the
building at infinity and are given (TI). The second condition is used in only
two places, that is in proving (10) implies (2) and in proving (6) implies (1)
(where only the first one is necessary to prove). In both cases we need to
prove (A5), i.e. apply Proposition 7.12 or 7.11. So it would be interesting
to see whether one can avoid the Weyl compatibility condition (2).

Propositions 6.5 and 6.3 in Section 6 indicate that starting with (11) even
further equivalences could be shown.

We will show the following implications:



ON AXIOMATIC DEFINITIONS OF NON-DISCRETE AFFINE BUILDINGS 11

(1)
9A

3.2

y�

KS

3.2
��

ks 7.11 +3 (6)
:B

3.2

z�

]e
3.2

�%
(3) ks

3.2 +3 (2)
KS

7.10

(5) ks
3.2 +3

KS

5.4, 8.1

(4)

6.2, 6.8
rz

9.1

��

(7)

��
(10) ks

8.2
(8)
KS

4.5
��

ks 6.2, 6.7
(11)

(9)
rz

6.3, 6.7

As you can see there is some kind of redundancy in these implications which
also clarifies why we included (7) in the list of equivalences even though (8)
is stronger: One can deduce (5) from (7) which may or may not give room
for a possible simplification of the proof of the theorem. In addition, we
have only included Theorem 9.1 where it is explicitly used. However, it is
implicitly used in 3.2 as well as in 4.1, 6.8 and 7.11.

Proof of Theorem 3.3. By Proposition 3.2 we have that (1), (2) and (3) are
equivalent as well as equivalence of (4), (5) and (6). Equivalence of (1) and
(6) is shown in Proposition 7.11. That (1) implies (4) is obvious.

Assuming (4) we may deduce (BI) from Theorem 9.1. Therefore (4) implies
(11). Further we obtain (GG) and (CO) as discussed in Corollaries 6.2, 6.7
and 6.8. Hence (4) implies (7) and item (8) follows from (11). That (7)
implies (8) is clear.

In Section 4 we prove Proposition 4.5, which implies that (9) follows from
(8). The converse is obvious.

Theorem 8.2 proves that (8) implies (10).

Axiom (A5) is verified in Proposition 7.10 using (A1), (A2) and condition
(sFC). Therefore item (10) implies (2).

Finally combining Propositions 5.4 and 8.1 we obtain that item (7) implies
(5) which completes the proof of our main result. �

Part of the power of statements (8) through (11) is that they avoid any
explicit mention of the distance function on the whole space, which often
makes them easier to use. However, this begs the question of why we might
heuristically expect them to be equivalent. It seems that a key issue is con-
dition (CO) in that by requiring that sectors whose germs are opposite are
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in an apartment (which is automatically unique by axiom (A2)). Together
with (GG) or (LA) it enables us to have a sufficiently large set of apartments
where we know the triangle inequality is satisfied. This in turn allows us
to work (via Weyl-compatibility) to deduce the triangle inequality on the
whole space.

Remark 3.4. The original axiomatic definition of affine R-buildings is due
to Jaques Tits, who defined the “système d’appartements” in [Tit86] by
listing five axioms. The first four of these are precisely axioms (A1)–(A4)
as presented above. His fifth axiom originally reads different from ours but
was later replaced with what is now axiom (A5) as written in Definition 2.1.
One can show that in case of R-buildings axioms (A6) follows from (A1)–
(A5). In appendix 3 of [Ron89] it is stated that (A5) and (A6) may be
used alternatively. The actual definition of an R-building Mark Ronan gives
is (4) of Theorem 3.3 with condition (TI) dropped. It is however possible
to construct examples of spaces satisfying (A1)–(A4) that vacuously satisfy
(A6) but satisfy neither (A5) nor (TI). See Section 11 for details. Ronan
[Ron89] implicitly seems to assume condition (TI) in addition to (A1)–(A4)
and (A6).
Anne Parreau shows [Par00] that in case of R-buildings the conditions of
Theorem 3.3 are also equivalent to (A1)–(A4) and (LA). It is not clear to us
whether this may hold in the general setting. One might also ask whether
for R-buildings the weaker assumption (A4) and (aLA) might suffice.
Guy Rousseau takes (A1),(A2) and (LA) as definition of R-buildings3 in
[Rou09]. This definition seems to be equivalent for the underlying metric
space but may allow for more general apartment systems.

3.1. An application. One can view Euclidean buildings as the subclass of
affine Λ-buildings where Λ = R and where the translational part T of the
affine Weyl group equals the co-root-lattice spanned by a crystallographic
root system, or is the full translation group of an apartment in the non-
crystallographic case. Concerning the metric structure however the following
difficulty arises when doing so. The metric used on the model space of a
Euclidean buildings is usually the Euclidean one. Compare for example
[Par00] or Kleiner and Leeb [KL97]. The natural metric on the model space
of an affine Λ-building is however defined in terms of the defining root system
R (see [Ben94, Hit09]) and is a generalization of the length of translations in
apartments of simplicial affine buildings. This length function on the set of
translational elements of the affine Weyl group is defined with respect to the
length of certain minimal galleries and differs from the Euclidean metric.

The question arising is the following: Let us assume that X is an affine
building with metric d, which is induced by a metric dA on the model space.
Let d′A be another metric on the model space which induces a second distance
function d′ on X. Does d′ satisfy the triangle inequality? And is (X, d′) an

3He calls them Euclidean buildings.
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affine building? In order to answer these questions one has to understand
whether for d′ the retractions appearing in (A5) do exist and are distance
diminishing. It turns out that the answer is “yes”, so long as the metrics
involved are Weyl compatible and topologically equivalent on A.

Theorem 3.5. Let (X,A) be an affine Λ-building with Weyl compatible
metric d. Then every Weyl compatible metric d′ on A that is topologically
equivalent to d on A extends to a metric on X. In particular “being a build-
ing” only depends on the equivalence class (in the class of Weyl compatible
metrics) of d, not on the metric itself.

Proof. For any Weyl compatible metric d′, that is topologically equivalent
to d, axioms (A6) and (A1) to (A4) are still satisfied, since these axioms
do not contain conditions on the metric. In addition, since the metrics d
and d′ are topologically equivalent on the model space, they define the same
germs of Weyl chambers. In particular, conditions (GG), (LA), and (aLA)
are all satisfied for d′ if they are satisfied for d. Since condition (CO) is
independent of the metric, it follows that both statements (8) and (9) of 3.3
are true for d′ also. Consequently (X,A, d′) is a Λ-building and the metric
induced by d′ satisfies (TI). �

4. Having a large atlas (LA)

Suppose that (X,A) is a pair satisfying axioms (A1) to (A3). Recall that
the germs of Weyl simplices based at a vertex x are partially ordered by
inclusion. A germ ∆xS1 of a Weyl simplex S1 is contained in the germ
∆xS2 of a different Weyl simplex S2 if there exist x-based representatives
S′i of ∂Si, i = 1, 2 contained in a common apartment such that S′1 is a face
of S′2. The residue ∆xX of X at x is the set of all germs of Weyl simplices
based at x.

Theorem 4.1. If (X,A) satisfies (A1)–(A3) and property (GG), then ∆xX
is a spherical building of type R for all x in X.

Proof. We verify the axioms of the definition of a simplicial building, which
can be found on page 76 in [Bro89]. It is easy to see that ∆xX is a simplicial
complex with the partial order defined above. It is a pure simplicial complex,
since each germ of a face is contained in a germ of a Weyl chamber. The set
of equivalence classes determined by a given apartment of X containing x
is a sub-complex of ∆xX which is a Coxeter complex of type R. Hence we
define those to be the apartments of ∆xX. Therefore, by definition, each
apartment is a Coxeter complex. Two apartments of ∆xX are isomorphic via
an isomorphism fixing the intersection of the corresponding apartments ofX,
hence fixing the intersection of the apartments of ∆xX as well. Finally due
to property (GG) any two chambers are contained in a common apartment
and we can conclude that ∆xX is a spherical building of type R. �



ON AXIOMATIC DEFINITIONS OF NON-DISCRETE AFFINE BUILDINGS 14

Corollary 4.2. Suppose (X,A) is an affine Λ-building. Then ∆xX is in-
dependent of A.

Proof. Let A′ be a different system of apartments of X. We will denote by ∆
the spherical building of germs at x with respect to A and by ∆′ the building
at x with respect to A′. Since spherical buildings have a unique apartment
system the buildings ∆ and ∆′ are equal if they contain the same chambers.
Let c ∈ ∆′ be a chamber; we will show c ∈ ∆. Let d be a chamber opposite c
in ∆′ and a′ the unique apartment containing both. Then a′ corresponds to
an apartment A′ of X having a chart in A′ and there exist A′-Weyl chambers
Sc, Sd contained in A′ representing c and d, respectively. Choose a point y
in the interior of Sc and let z be contained in the interior of Sd. By (A3)
there exists a chart f ∈ A such that the image A of f contains y and z. By
[Hit11, Prop. 6.2] the point x is contained in A. And by construction the
unique x-based Weyl chamber in A which contains y has germ c and the
unique x-based Weyl chamber in A containing z has germ d. Thus c ∈ ∆.
Interchanging the roles of ∆ and ∆′ above we have that they contain the
same chambers. Hence ∆ = ∆′. �

It is possible to weaken the assumptions of this corollary a bit. However
in order to apply [Hit11, Proposition 6.2] in its proof we need to assume at
least (A1)–(A3), (A5) and (SC).

Lemma 4.3. Assume in addition to (A1)–(A3) that (X,A) satisfies (GG)
and (CO) or, alternatively, that (A4), (TI), and (SC) are satisfied. Let
S and T be two x-based Weyl chambers. Then there exists an apartment
containing T and a germ of S at x.

Proof. In case that (GG) and (CO) are satisfied, the proof is as in [Par00,
Prop 1.15]. Suppose now that (A4), (TI), and (SC) hold, and obtain from
Theorem 9.1 that these axioms are enough to see that ∂AX is a spheri-
cal building. We write d(S, T ) for the Weyl group-valued Weyl chamber-
distance of ∂S and ∂T in the building ∂AX at infinity. Taking ` to be the
usual length function on Coxeter groups, we use `(d(S, T )) to denote the
length of a minimal gallery connecting the chambers ∂S and ∂T .

Starting with an apartment A0 containing S we will now construct an apart-
ment containing T and a germ of S at x.

By axiom (A4) there exists an apartment A containing sub-Weyl chambers
S′ of S and T ′ of T with `(d(S′, T ′)) = `(d(S, T )). Replace S′ and T ′ by Weyl
chambers in A based at a common vertex x′ ∈ S, consider a minimal-length
sequence

S′ = S0, . . . , Sn = T ′,

of x′-based Weyl chambers.

By construction A0 contains S′. Let j ∈ {0, 1, . . . , n − 1} be minimal such
that A0 does not contain a sub-Weyl chamber of Sj+1. If such a j does not
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exist T ′ has a sub-Weyl chamber T ′′ contained in A0. But then, as x ∈ A0,
by convexity (i.e. axiom (A2)) it follows that T ⊂ A0 and there is nothing
to prove.

Suppose Sj ⊂ A0 but Sj+1 has no sub-Weyl chamber contained in A0 for
some j ≤ n − 1. Then by construction there exists a Weyl chamber S′j+1

parallel to Sj+1 in A such that S′j+1∩A0 is a panel P . Moreover P is parallel

to a panel of Sj (and Sj+1). Let M be the hyperplane of the apartment A0

that is spanned by P .

From (SC) we deduce the existence of an apartment Aj+1 containing the
Weyl chamber S′j+1 and the germ ∆xS (since the germ ∆xS must lie in one

of the half-apartments of A0 determined by the hyperplane spanned by P )
such that Aj+1 ∩A0 is a half-apartment.

There are two possible cases for S: (1) All of S lies on the same side of the
hyperplane M as does the germ ∆xS, in which case S is contained in Aj+1.
In this case we replace A0 by Aj+1. (2) The interior of the Weyl chamber S
intersects the wall M (i.e. S does not, in particular, have a panel contained
in that wall), in which case there is a sub-sector S′′ of S lying entirely on
the opposite side of the wall M from ∆xS inside A0. We further denote
by S̃ the unique Weyl chamber in Aj+1 with germ ∆xS̃ = ∆xS. Since
Aj+1 and A0 agree on a half-apartment, there is a isomorphism g from A0

to Aj+1 preserving the intersection A0 ∩ Aj+1, which necessarily preserves

the sector germ ∆xS = ∆xS̃. Moreover, as Sj+1 is not in A0, Sj+1 has a
sub-Weyl chamber that lies on the opposite side of the wall M = g(M) from

∆xS in Aj+1. But since g is an isomorphism, it follows that g(S) = S̃ (as

g(∆xS) = ∆xS̃. Similarly, since g(P ) = P and `(d(S, Sj)) < `(d(S, Sj+1)),
the Weyl chamber Sj has a sub-Weyl chamber that lies on the same side of
the wall M as S′′ inside A0. Let H denote the half apartment of A0 defined
by the wall M that does not contain ∆x(S). Then g−1(S′j+1) lies in H and
as it has panel P , it must intersect Sj in a subsector. Consequently,

`(d(S̃, S′j+1)) = `(d(g−1(S̃), g−1(S′j+1)))

= `(d(S, Sj))

< `(d(S, Sj+1)).

Hence a minimal gallery connecting ∂S̃ and ∂T is shorter than n. Replace
in case (2) the Weyl chamber S by S̃ ⊂ Aj+1 (which satisfies ∆xS = ∆xS̃)
and the apartment A0 by Aj+1.

Inductively repeating the same argument with S̃ replacing S we may finally
find an apartment An containing ∆xS and Sn = T . If in each step Aj+1

contains S then An contains both S and T .

The Weyl valued distance δ(∆xS,∆xT ) is d(S̄, T ) for some Weyl cham-
ber S̄ obtained inductively from S by the above procedure. In particular
`(δ(∆xS,∆xT )) ≤ `(d(S, T )) by the above inequality. �
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Corollary 4.4. Let (X,A) be a pair satisfying axioms (A1)–(A4), (TI),
and (SC). If S and T are Weyl chambers of X based at y, and δ(∆yS,∆yT )
is maximal, then S and T are contained in a common apartment.

Proof. Since δ(∆yS,∆yT ) is maximal, the proof of Lemma 4.3 implies that
`(δ(∆yS,∆yT )) = `(d(S, T )). However, in this case the lemma implies the
existence of an apartment A containing S and T . �

See also [Hit09, 5.23] for the above corollary and [Hit09, 5.15] for the fol-
lowing proposition.

Proposition 4.5. Assume that in addition to (A1)–(A3) the pair (X,A)
satisfies either (GG) and (CO) or, alternatively, axioms (A4), (TI) and
(SC). Then (LA) is satisfied as well.

Proof. Let ∆xS and ∆yT be two germs of Weyl chambers S and T . We
begin by showing that ∆xS and y are contained in a common apartment.
By (A2), there exists an apartment A containing x and y. Let C be a
Weyl chamber of A based at x containing y. By Lemma 4.3 there exists an
apartment A′ of X containing ∆xS and C. Take S′ to be the Weyl chamber
of A′ based at y containing ∆xS. Again by Lemma 4.3, there exists an
apartment A′′ containing ∆yT and S′. Since ∆xS ⊂ S′, it follows that A′′

contains ∆yT and ∆xS as desired. �

Another implication worth stating is the following:

Lemma 4.6. Suppose (X,A) satisfies axioms (A1)–(A3). Then (sFC) im-
plies (LA).

Proof. Let µ and η be two germs of Weyl chambers based at z and x re-
spectively. Let F be a Weyl chamber based at x that has germ η and let
A be an apartment containing F . Pick y in the interior of F , which im-
plies η ⊆ segA(x, y). Then from (sFC) we may conclude that the segment
segA(x, y) is covered by a finite number of Weyl chambers based at z all of
which are contained in a common apartment with µ. But then one of these
Weyl chambers, call it S, must contain η and there exists an apartment B
containing S and µ. Hence (LA). �

5. Exchange axioms

In this section, we prove equivalence of the sundial configuration (SC), the
exchange condition (EC) and axiom (A6) given that (A1)–(A4) and (BI)
are satisfied. Recall that if a pair (X,A) satisfies (A1)–(A5) then (TI) is
satisfied and that then by 9.1 condition (BI) is satisfied. So Propositions 5.1
and 5.2 hold true if (BI) is replaced by either (A5) or (TI) . Given an
apartment A we let ∂A denote the associated apartment at infinity. For
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notational convenience we will also use lower case letters for apartments in
the building at infinity when not using the ∂-notation.

Proposition 5.1. Let (X,A) be a pair satisfying conditions (A1)–(A4) and
(BI) and suppose that the metric on A is Weyl compatible, then condi-
tion (A6) and the exchange condition (EC) are equivalent.

Proof. First assume (X,A) satisfies (A6). Suppose A1 = f1(A) and A2 =
f2(A) are two apartments of X with A1 ∩ A2 = F a half-apartment. Then
∂A1 and ∂A2 are apartments of ∂X that intersect in a half-apartment with
bounding wall h. By spherical building theory, it follows that there exists an
apartment a3 whose chambers are the chambers of (∂A1⊕∂A2)∪ h, further
there exists an apartment A3 of X with ∂A3 = a3.

Since ∂A1 ∩ a3 is a half-apartment and A1 ∩ A3 is closed convex by (A2),
it follows that A1 ∩ A3 is a half-apartment. Similarly A2 ∩ A3 is a half-
apartment. Condition (A6) now implies that A1 ∩ A2 ∩ A3 contains some
element x ∈ X. Since x ∈ F and a3 contains the chambers of ∂A1 that
are not in ∂A2, it follows that A3 contains A1 \ F . Similarly A2 \ F ⊂ A3.
By convexity the bounding wall H of F is contained in A3. But now the
convexity of A3 implies that x ∈ H as otherwise the wall parallel to H
through x would not separate points of A1 ∩ A3 and A2 ∩ A3. This implies
that the exchange condition (EC) holds.

Now assume that (A1)–(A4), (BI) and (EC) are satisfied, and let A1, A2,
and A3 be apartments of X such that any two intersect in a half-apartment.
By way of contradiction, suppose A1 ∩ A2 ∩ A3 = ∅. Let Fi,j = Ai ∩ Aj for
i, j ∈ {1, 2, 3}. Since F1,2∩F1,3 = ∅, it follows that if F is a half-apartment of
A1 with F1,2∩F contained in the boundary H of F , then F1,3∩F is again a
half-apartment. Now the exchange condition (EC) implies that there exists
an apartment A4 such that A4 = (A1 ⊕ A2) ∪ H1,2, where H1,2 stands for
the bounding wall of F1,2. Note that F1,3 ⊆ A4, so that ∂A4 consists of the
same Weyl chambers as ∂A3. However, the apartments of X are in one-to-
one correspondence with the apartments of ∂X. Therefore, A3 = A4. �

Proposition 5.2. Suppose (X,A) is a pair satisfying conditions (A1)–(A4)
and (BI) and suppose that the metric on A is Weyl compatible, then (EC)
and (SC) are equivalent.

Proof. Suppose (X,A) satisfies conditions (A1)–(A4) and (EC). Let A1 be
an apartment and S a Weyl chamber such that S∩A1 is a panel of S. Then
∂A1∩∂S is a panel in ∂AX. Therefore there is an apartment a2 of ∂AX such
that ∂S ∈ a2, and ∂A1 ∩ a2 is a half-apartment. Let A2 be the apartment
of X with ∂A2 = a2. Since ∂A1 ∩ a2 is a half-apartment the intersection
A1 ∩A2 is a half-apartment. We now apply condition (EC) to obtain (SC).

Conversely, suppose (X,A) satisfies conditions (A1)–(A4) and (SC), and let
A1 and A2 be apartments of X intersecting in a half-apartment. Let S be a
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Weyl chamber of A2 such that S ∩ A1 is a panel P of S, and let M be the
wall of A1 containing P . By (SC), there exists an apartment A3 containing
M such that A1 ∩ A3 is a half-apartment and A2 ∩ A3 is a half-apartment
containing M ∪ S. By convexity, it follows that A3 = (A1 ⊕ A2) ∪M as
desired. �

From the previous two propositions we deduce:

Corollary 5.3. Every building (X,A) satisfies (EC) and (SC).

The following proposition is used in the proof of Theorem 3.3 in order to
show that item (8) implies item (10).

Proposition 5.4. Let (X,A) be a pair satisfying axioms (A1)–(A3) and
(CO) and assume that the germs at each vertex form a spherical building4.
Then the exchange condition (EC) is satisfied.

Proof. Let A and B be apartments intersecting in an half-apartment F . Let
x be a point contained in the bounding wall H of F . By assumption ∆xX
is a spherical building. Therefore the union of ∆x(A \ F ), ∆x(B \ F ) and
∆xH is an apartment in ∆xX, which we denote by ∆xA

′.

We choose two opposite germs µ and σ at x that are contained in ∆x((A \
F )∪H) and ∆x((B \F )∪H), respectively, and that both have a panel germ
contained in H. Let T be the unique Weyl chamber in A having germ µ and
let S be the unique Weyl chamber in B with germ σ. By construction S and
T are opposite and both have panels contained inH. Condition (CO) implies
that S and T are contained in a common apartment A′′. Since two opposite
Weyl chambers contained in the same apartment determine this apartment
uniquely we can conclude that ∆xA

′′ = ∆xA
′. Also, by convexity, A′′ needs

to contain H. We conclude that A′′ ∩ ((A⊕B) ∪H) contains S, T , H and
∆xA

′. From axiom (A2), that is convexity of intersection of apartments, we
deduce A′′ ∩ (B \ F ) = B \ F and A′′ ∩ (A \ F ) = A \ F which implies that
A′′ ∩ ((A⊕B) ∪H) = A′′. �

6. Local structure

Suppose (X,A) is a pair equipped with a Weyl compatible metric d that
satisfies (A1)–(A4), (BI) and (A6) as in Condition (11) of Theorem 3.3.
Recall that a germ µ of a Weyl chamber S at x is contained in a set Y if
there exists ε ∈ Λ+ such that S ∩Bε(x) is contained in Y .

Proposition 6.1. Let c be a chamber in ∂AX and S an x-based Weyl cham-
ber in X. Then there exists an apartment A such that ∆xS is contained in
A and such that c is a chamber of ∂A.

4By Theorem 4.1 this is true assuming (GG), for example.
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The proof of the proposition above is as in [Par00, Prop. 1.8]. It uses axioms
(A1)–(A4) and (A6). Be warned (in case you want to look up Parreau’s
proof) that axiom (A5) in [Par00] is called (A6) in our list of axioms. As a
direct consequence of 6.1 we obtain the following corollary.

Corollary 6.2. Any such pair (X,A) satisfying Condition (11) of Theo-
rem 3.3 has property (GG).

Proof. For a pair of germs µ and ν at x pick Weyl chambers S and T both
based at x with germs µ respectively ν. By Proposition 6.1 there exists then
apartment A of X containing S (but then also µ) and ν. �

By the previous corollary the pair (X,A) satisfies the assertion of Theo-
rem 4.1, i.e. the germs at a fixed vertex form a spherical building.

Proposition 6.3. Given (X,A) as above, then (X,A) has a large atlas,
i.e., has property (LA).

Proof. We need to prove that if S and T are Weyl chambers based at x and
y, respectively, then there exists an apartment containing a germ of S at x
and a germ of T at y.

By axiom (A3) there exists an apartment A containing x and y. We choose
an x-based Weyl chamber Sxy in A that contains y and denote by Syx the
Weyl chamber based at y such that ∂Sxy and ∂Syx are opposite in ∂A. Then
x is contained in Syx. If ∆yT is not contained in A apply Proposition 6.1
to obtain an apartment A′ containing a germ of T at y and containing ∂Syx
at infinity. But then x is also contained in A′.

Let us denote by S′xy the unique Weyl chamber contained in A′ having the
same germ as Sxy at x. Without loss of generality we may assume that the
germ ∆yT is contained in S′xy. Otherwise y is contained in a face of S′xy
and we can replace S′xy by an adjacent Weyl chamber in A′ satisfying this
condition. A second application of 6.1 to ∂S′xy and the germ of S at x yields
an apartment A′′ containing ∆xS and S′xy and therefore ∆yT . �

Propositions 6.4 to 6.6 below are due to Linus Kramer. A proof of 6.4 can
be found in [Hit09, Prop. 5.20].

Proposition 6.4. Suppose (X,A) satisfies condition (11) of Theorem 3.3.
Let Ai with i = 1, 2, 3 be three apartments of X pairwise intersecting in half-
apartments. Then A1 ∩A2 ∩A3 is either a half-apartment or a hyperplane.

Proposition 6.5. Given (X,A) as above, then it satisfies (SC).

Proof. Let A be an apartment in X and c a chamber not contained in ∂A
but containing a panel of ∂A. Then c is opposite two uniquely determined
chambers d1 and d2 in ∂A. Since any pair of opposite chambers is contained
in a common apartment, there exist apartments A1 and A2 of X such that
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∂Ai contains di and c with i = 1, 2. The three apartments ∂A1, ∂A2 and ∂A
pairwise intersect in half-apartments. �

Axiom (A6) together with the proposition above implies that the three
apartments of the sundial configuration intersect in a hyperplane.

For any point x ∈ X one can define a natural projection π : ∂AX → ∆xX
from the building at infinity to the residue at x as follows. Let c be a
chamber at infinity. Then there exists a unique Weyl chamber S based at x
such that ∂S = c. Let π(c) = ∆xS.

Proposition 6.6. Suppose the pair (X,A) satisfies condition (11) of The-
orem 3.3. Let (c0, . . . , ck) be a minimal gallery in the building at infinity,
x a point in X and for all i denote by Si the x-based representative of ci.
If (πx(c0), . . . , πx(ck)) is a minimal gallery in ∆xX, then there exists an

apartment containing
⋃k
i=0 Si.

This follows by induction on k and from repetitive use of Proposition 6.5,
compare [Hit09, Prop. 5.22].

Corollary 6.7. Suppose (X,A) satisfies condition (11) of Theorem 3.3.
Then (X,A) satisfies (CO).

Proof. Let S and T be Weyl simplices opposite at x. Choose a minimal
gallery (c0, c1, . . . , cn) from c0 = ∂S to cn = ∂T and consider the represen-
tatives Si of ci based at x. With S0 = S and Sn = T Proposition 6.6 implies
the assertion. �

Corollary 6.8. If (X,A) satisfies (A1)-(A4), (TI) and (A6), then it satis-
fies (CO) and (GG). I.e. Condition (4) implies both conditions (7) and (8)
of Theorem 3.3.

Proof. By Theorem 9.1, (X,A) satisfies (BI), and now we apply Corollary 6.7
and Corollary 6.2, �

7. Retractions based at germs

Let (X,A) be a pair satisfying (A1) and (A2) and assume A is an almost
large atlas (aLA) (implying (A3)). Further fix an apartment A in X with
chart f ∈ A.

Definition 7.1. Let µ be a germ of a Weyl chamber in A and y a point in X,
then, by (aLA), there exists a chart g ∈ A such that y and µ are contained
in g(A). By axiom (A2) there exists w ∈ WT such that g|g−1(f(A)) = (f ◦
w)|g−1(f(A)). Hence we can define

rA,µ(y) = (f ◦ w ◦ g−1)(y).

The map rA,µ is called retraction onto A centered at µ.
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Proposition 7.2. With (X,A), A, f and µ as above the retraction rA,µ is
well defined and the restriction of rA,µ to any apartment A′ containing µ is
an isomorphism onto A.

Proof. By (A2) the map rA,µ is well defined. Since each map w ∈ W pre-
serves distances in the model space A we have that

d(y, z) = d(rA,µ(y), rA,µ(z))

for all y, z ∈ X such that y, z, and µ are contained in a common apartment.
�

We now verify finite covering properties that will allow us to prove under
certain conditions that the defined retractions based at germs are distance
diminishing.

Proposition 7.3. Assume (X,A) is a pair satisfying (A1)–(A3) and prop-
erties (GG) and (CO). Then (sFCa) and (aLA) are satisfied.

Proof. We first prove (FCa). Let z ∈ X and A ∈ A be given. We need to
show there exists a finite cover of A by Weyl Chambers based at z. In the
case where z is contained in A this is obvious. Hence we assume that z is
not contained in A. By (A3), for all p ∈ A there exists an apartment A′

containing z and p. Let S+ ⊂ A′ be a p-based Weyl chamber containing z.
We denote by σ+ its germ at p. By condition (GG) and Theorem 4.1 the link
of p is a spherical building. Hence there exists a p-based Weyl chamber S−
in A such that its germ σ− is opposite σ+ at p. By property (CO) the Weyl
chambers S− and S+ are contained in a common apartment A′′. Let T be
the unique z-based translate of S− in A′′. Since z ∈ S+ and σ+ and σ− are
opposite we have that S− ⊂ T . As there are only finitely many chambers in
∂A there are only finitely many Weyl chambers based at z with boundary
in ∂A. Thus (FCa) follows.

In order to see that (sFCa) holds true we argue as follows. Fix a germ µ
at z. Let I be the (finite) index set of the z-based Weyl chambers Si with
equivalence class in ∂A. By (FCa) we may conclude that A ⊆

⋃
i∈I Si, where

each Si is based at z. Fixing i, (GG) implies there exists an apartment Ai
containing µ and ∆zSi. Let Sopi be a Weyl chamber in Ai whose germ is
opposite ∆zSi (such a Weyl chamber may be chosen as the link of z is a
spherical building). Then (CO) implies that there is a unique apartment A′i
containing the union of Si and Sopi . By construction the induced apartment
∆zA

′
i = ∆zAi as they both contain the same pair of opposite chambers.

Thus ∆zA
′
i contains µ, ∆zS

op
i and ∆zSi. Since A ⊆

⋃
i∈I Si and each Si is

contained in a common apartment, A′i with µ, we have shown (sFCa). As
(sFCa) implies (aLA) we have the assertion. �

Next we establish a local version of the sundial configuration.
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Property 7.4. Recall that (X,A) satisfies condition (6) of Theorem 3.3 if
it satisfies conditions (A1)–(A4), (TI) and the sundial configuration (SC).
For the remainder of this section, we will just refer to this as condition (6).

Lemma 7.5. With (X,A) as in condition (6) let A be an apartment of X
and ∆xS a germ of a Weyl chamber such that ∆xS ∩ A is a panel-germ
∆xP . Then there exist apartments A′ and A′′ such that ∆xS ∈ A′ ∩A′′ and
A ⊂ A′ ∪A′′.

Proof. By (SC) it suffices to show that there is a Weyl chamber S′ of X
intersecting A in a panel such that ∆xS

′ = ∆xS. Let T be a Weyl chamber
of A based at x having a panel P ′ containing the panel-germ ∆xP . By
Lemma 4.3 there exists an apartment B containing T and ∆xS. Let S′ be
the Weyl chamber of B having the panel-germ ∆xS. Then S′ has P ′ as
a panel. Moreover, by convexity, if S′ ∩ A 6= P ′, then ∆xS = ∆xS

′ ⊂ A
contrary to our hypothesis. Therefore S′ ∩A = P ′ and by (SC) there exists
apartments A′ and A′′ such that S′ ⊂ A′ ∩A′′ and A ⊂ A′ ∪A′′. �

This exchange condition allows us to work with germs based at a common
point, much as in the simplicial buildings case one works with chambers in
a spherical residue.

The following proposition shows that condition (6) is enough to conclude
(sFCa). Note that the assumptions made in 7.3 differ from the ones here.

Proposition 7.6. Suppose (X,A) satisfies condition (6). Then (sFCa) is
satisfied. In particular given an apartment B of X and ∆xS a germ of a
Weyl chamber, then for every point y ∈ B there exists a Weyl chamber T of
B such that

(1) the x-based Weyl chamber T ′ parallel to T contains y, and
(2) there exists an apartment A of X containing T and ∆xS.

Proof. By Proposition 4.5, for every Weyl chamber T of B based at y,
there exists an apartment B′ of X containing ∆yT and ∆xS. Let S′ be
a Weyl chamber of B′ based at y containing ∆xS. Choose T such that
`(δ(∆yT,∆yS

′)) is maximal.

If ∆yT and ∆yS
′ are not opposite (that is δ(∆yT,∆yS

′) is not the longest

element of W ) then let ∆yP be a panel germ of ∆yT such that the wall
M of B′ through ∆yP does not separate ∆yT and S′. In the apartment B
there exists a Weyl chamber R such that ∆yR shares ∆yP with ∆yT and
such that ∆yR 6= ∆yT .

Lemma 7.5 implies, that there exists an apartment B′′ containing S′ and
∆yR. Hence, since ∆yT and S′ lie on the same side of M , by convexity the
apartment B′′ also contains ∆yT . In B′′, we then have `(δ(∆yR,∆yS

′)) =
`(δ(∆yT,∆yS

′)) + 1, contradicting the choice of T .
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Hence we may assume that ∆yT and ∆yS
′ are opposite. By Corollary 4.4,

there exists an apartment A of X containing S′ and T . But ∆xS ⊂ S′,
so that ∆xS ⊂ A. Moreover, since A contains T , take T ′ to be the Weyl
chamber based at x parallel to T (in A). Since T and S′ are opposite Weyl
chambers and x ∈ T , it follows that y ∈ T ′. As there are only finitely many
Weyl chambers in B we get (sFCa), completing the proof of the proposition.

�

Corollary 7.7. Suppose that either (X,A) is as in condition (6) or is a
pair satisfying (A1), (A2), and (sFC). Let A be an apartment of X and µ a
germ of a Weyl chamber. Then for each pair of points x, y ∈ A there exist
closed convex sets C1, . . . , Cn in A such that

(1) segA(x, y) ⊂ C1 ∪ · · · ∪ Cn and
(2) for each i there is an apartment containing Ci and µ.

Assume (sFCa) in place of condition (sFC) then there exist closed convex
Ci ⊂ A which satisfy (2) and are such that A = C1 ∪ · · · ∪ Cn.

Proof. In the first case Proposition 7.6 implies (sFCa). Let thus S1, . . . Sn
be the Weyl chambers provided by the finite cover condition (sFCa) (respec-
tively (sFC)), set Ci = Si ∩A and the corollary follows. �

Lemma 7.8. Let x, y be two points in the model space A and suppose p is
a point in segA(x, y). Then

(1) segA(p, y) ⊂ segA(x, y) and
(2) p ∈ segA(q, r) for all q ∈ segA(x, p) and all r ∈ segA(p, y).

Proof. The first claim is a direct consequence of the following computation

d(x, y) ≤ d(x, q) + d(q, y)

≤ d(x, p) + d(p, q) + d(q, y)

= d(x, p) + d(p, y) = d(x, y),

where q is an arbitrary point in segA(p, y).

To show (2) observe first that

d(x, y) ≤ d(x, q) + d(q, y)

≤ d(x, q) + d(q, p) + d(p, y)

= d(x, p) + d(p, y) = d(x, y),

where we use for the last two equalities that q ∈ segA(x, p) and p ∈ segA(x, y).
This implies that p ∈ seg(q, y). Similarly obtain p ∈ seg(r, x).

Directly from (1) we get that r ∈ segA(x, y). Further we may apply (1)
to r in segA(p, y) and use the fact that p ∈ segA(q, y) to conclude that
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r ∈ segA(q, y). Combining all this we may conclude

d(p, q) + d(p, r) = d(x, r)− d(x, p) + d(q, y)− d(p, y)

= d(x, y)− d(r, y) + d(q, y)− d(x, p)− d(p, y)

= d(q, y)− d(r, y) = d(q, r).

Hence the lemma. �

Lemma 7.9. Suppose (X,A) satisfies condition (6) or is a pair satisfying
(A1), (A2) and (sFC). Suppose further that d is a Weyl compatible metric.
Let x, y be points in an apartment A and suppose C is a collection of closed
convex sets satisfying the conditions of Corollary 7.7. There exists then a
sequence of points x = x0, x1, . . . , xn = y such that

(1) xi ∈ segA(xi−1, xi+1) for all 1 ≤ i ≤ n− 1 and
(2) there exists C ∈ C with xi−1, xi ∈ C for all 1 ≤ i ≤ n.

Proof. Identify A with the model space A and denote by H the finite set of
all hyperplanes that support panels of the sets in C and that separate x and
y. Put k := |H|. If k = 0 then segA(x, y) is contained in one of the sets
C ∈ C and we can put n = 1, x = x0 and y = x1 to be the desired sequence.
So suppose without loss of generality that k ≥ 1.

We will recursively define a sequence of points p{si}i in the segment of x and
y that satisfies conditions 1 and 2. We order these points lexicographically
by their indexing sequences {si}k+1

i=1 , with si ∈ {0, 1}. Put x = p000...0 and
y = p100...0. Now by k-step recursion we will introduce an additional point
in each segment of subsequent points in the sequence. We will do this in
such a way that the points added in step i all satisfy si+1 = 1 and sj = 0
for all i+ 2 ≤ j ≤ k + 1.

For the first step start with an arbitrary H ∈ H. Weyl compatibility then
gives us a point p = p010...0 in segA(x, y)∩H which allows us to consider the
two segments segA(x, p) and segA(p, y) in place of segA(x, y).

Now in step i (where 1 ≤ i ≤ k) we deal with at most 2i−1 segments of pairs
of subsequent points p{si}i < p{ti}i . Note that for each such pair sj = tj = 0
for all j > i. Fix such a pair s = p{si}i and t = p{ti}i .

If there is no hyperplane in H separating s and t we do not add a point in
this segment. If there exist hyperplanes in H separating s and t pick one of
them and call it H. Weyl compatibility implies that segA(s, t)∩H 6= ∅. Let
q be a point in this intersection and put rj = sj for all j 6= i + 1, ri+1 = 1
and p{ri}i = q. In particular s < q < t with respect to the lexicographical
ordering of the indices.

By construction the resulting sequence satisfies (2). Condition (1) follows
from Lemma 7.8.2. �
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We are now ready to prove that the retractions under consideration are
distance diminishing.

Proposition 7.10. Let (X,A) satisfy condition (6) or be a pair satisfying
axioms (A1), (A2), and (sFC) and suppose further that the metric on A is
Weyl compatible. Then for all apartments A and germs µ of Weyl chambers
contained in A the retraction rA,µ defined in 7.1 is distance non-increasing.
In particular (X,A) satisfies (A5).

Proof. Assuming X is as in condition (6) we may deduce from Proposi-
tion 4.5 that (LA) is satisfied and therefore retractions based at germs are
well defined. Hence using Proposition 7.2 in both cases we can conclude: if
B is an apartment containing µ, y and z then d(y, z) = d(rA,µ(y), rA,µ(z)), so
the result holds true. Now, suppose y and z are arbitrary. By (A2) there ex-
ists an apartment B containing y and z. By Corollary 7.7 there exist closed
convex sets X1, . . . , Xn such that segB(y, z) ⊂

⋃n
i=1Xi and each Xi is con-

tained in a common apartment with µ. Via Lemma 7.9, Weyl compatibility
condition (2) implies that there is a sequence of points y = y0, y1, . . . , yk = z
such that yi−1, yi ∈ Xji for some j1, . . . , jk and yi is in the segment of yi−1
and yi+1 for i = 1, . . . , k − 1. Then

d(y, z) =
k∑
i=1

d(yi−1, yi)

=
k∑
i=1

d(rA,µ(yi−1), rA,µ(yi))

≥ d(rA,µ(y0), rA,µ(yk)) = d(rA,µ(y), rA,µ(z)),

where we use the triangle inequality for d restricted to A in the next to the
last step. Thus, rA,µ is distance diminishing and hence a retraction with the
required properties of (A5). �

We now wish to show that conditions (TI) and (SC) can replace conditions
(A5) and (A6) in the definition of an affine Λ-building.

Proposition 7.11. Suppose (X,A) satisfies axioms (A1)–(A4) and d is
a Weyl compatible metric. Then conditions (A5) and (A6) together are
equivalent to (TI) and (SC) together. In other words: in Theorem 3.3 item
(1) is equivalent to (6).

Proof. We have shown in Corollary 5.3 that (SC) is satisfied by an affine
Λ-building. Combining 5.1 and 5.2 we deduce that (A6) and (SC) are equiv-
alent given (A1)–(A5). It remains hence to see that axioms (A1)–(A4), (TI)
and (SC) imply the retraction condition (A5), which follows from Proposi-
tions 7.2 and 7.10. This completes the proof. �
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Proposition 7.12. Suppose (X,A) satisfies (A1)-(A4), (sFC) and (EC)
and that d is a Weyl compatible metric. Then (X,A) satisfies (A5). In
other words: in Theorem 3.3 item (10) implies item (2).

Proof. This follows immediately from Proposition 7.10. �

8. Verifying (A4)

Suppose that (X,A) is a pair satisfying axioms (A1)–(A3) and properties
(GG) and (CO) and recall that by Theorem 4.1 these assumptions are
enough to conclude that the germs at a given vertex form a spherical build-
ing.

Proposition 8.1. The pair (X,A) satisfies (A4).

Proof. Let S and T be two Weyl chambers in X. We will show that by
passing to sub-Weyl chambers S′ and T ′ we can find an apartment containing
both S′ and T ′.

From the proof of 7.3 we may deduce that for any x ∈ T there exists an
apartment B containing x and a sub-Weyl chamber S̃ of S. Let Sx be the
unique x-based translate Sx of S̃ in B and write Tx for the unique x-based
sub-Weyl chamber of T .

We denote by δ(x) the length of a minimal gallery from ∆xS to ∆xT in
the spherical building ∆xX. Since the number of possible values for δ(x) is
finite we may without loss of generality assume that x ∈ T is chosen such
that δ(x) is maximal.

Now replace S by Sx and T by Tx. By Lemma 4.3 there exists an apartment
A containing T and a germ of S at x and we denote by S′ the x-based Weyl
chamber in A which is opposite S at x. Property (CO) implies that there
is an apartment A′ containing S and S′. By (A2) the intersection A′ ∩ T is
a convex subset of T . Let z be an arbitrary point in this intersection. The
unique z-based Weyl chambers Sz and S′z parallel to S and S′, respectively,
are both contained in A′. By construction the length of a minimal gallery
from ∆zSz to ∆zTz is not greater than δ(x). On the other hand, since T
and S′ are both contained in the apartment A, we can conclude

δz(Tz, S
′
z) = δx(T, S′) = d− δx(S, T ) = d− δ(x)

where d is the diameter of an apartment of ∆xX, that is the diameter of the
spherical Coxeter complex associated to the underlying root system R. The
function δx assigns to two x-based Weyl chambers the length of a minimal
gallery connecting their germs in ∆xX.

The germ ∆zTz lies on a minimal gallery connecting the opposite germs ∆zSz
and ∆zS

′
z. Such a minimal gallery is contained in the unique apartment

containing ∆zSz and ∆zS
′
z, which is ∆zA

′. Therefore ∆zTz is contained in
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∆zA
′ as well. This allows us to conclude that A′ ∩ T contains a germ of Tz.

One can observe that A′ ∩ T is a convex subset of T containing x which is
open relative to T . Hence the Weyl chamber T is contained in A′. Thus
(A4) follows. �

Theorem 8.2. Suppose (X,A) satisfies (A1)-(A3), (GG) and (CO) and
that d is a Weyl compatible metric. Then (X,A) satisfies (A4), (aLA),
(sFC) and (EC). In other words, in Theorem 3.3, item (8) implies item (10).

Proof. By Proposition 8.1, axiom (A4) holds. In addition, by Theorem 4.1,
for all x ∈ X, ∆xX is a spherical building. Thus Proposition 5.4 implies
(X,A) satisfies (EC). Proposition 7.3 implies that (X,A) satisfies (sFCa)
which in turn implies (sFC). Thus item (8) implies item (10). �

9. The building at infinity

It was known already to the first author [Ben90] that Λ-buildings (with
respect to the standard Λ-metric) posses a spherical building at infinity.
While his proof used the full power of axiom (A5) Parreau [Par00] later
gave a proof for R-buildings using (TI) only. We will give a proof here for
pairs (X,A) with Weyl compatible metrics and show:

Theorem 9.1. Let the model space A = A(R,Λ) be equipped with a Weyl
compatible metric d. If (X,A) is a pair modeled on A satisfying axioms
(A1)–(A4) and the triangle inequality (TI), then X has a spherical building
∂AX at infinity which is of type R.

Observe that translation invariance implies the following lemma.

Lemma 9.2. For all v ∈ A there exists λ > 0 such that for all x ∈ A we
have d(x, x+ v) ≤ λ.

From this and Weyl compatibility condition 3.1 (1) we may deduce:

Lemma 9.3. Two Weyl simplices contained in a common apartment are
translates of one another if and only if they are at bounded distance.

Definition 9.4. We say that two Weyl chambers S and T in X are parallel
if and only if they share a common sub-Weyl chamber. In this case write
S ∼ T . Two Weyl simplices P and Q are called parallel, denoted by P ∼ Q,
if and only if there exist a sequence of Weyl simplices P = P0, P1, . . . , Pn = Q
such that Pi and Pi+1 are translates of each other in some apartment of X
for i = 0, . . . , n− 1.

The parallel class of a Weyl simplex P is denoted by ∂P and we write ∂X
for the set of parallel classes of Weyl simplices in X.

Lemma 9.5. Parallelism is an equivalence relation.
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Proof. Symmetry and reflexivity are clear. Transitivity follows by concate-
nating sequences. �

Let P be a sector-panel of X, lying in an apartment f(A). We define the
type of P to be the type of f−1(P ) in A. The type map is well defined
by condition (A2). Moreover, since translation in A preserves the type of a
sector panel, the type of a parallel class of sector-panels is also well-defined.

Lemma 9.6. If (X,A) satisfies (A1)-(A4) and (TI), then Weyl simplices P
and Q are parallel if and only if P and Q are at bounded distance. Moreover,
if d(x,Q) ≤ λ for all x ∈ P , then for every sub-Weyl simplex P ′ of P , there
exists a sub-Weyl simplex Q′ of Q such that for all y ∈ Q′ there exists z ∈ P ′
with d(z, y) ≤ λ.

Proof. Suppose P and Q are parallel. Then there exists a sequence P =
P0, P1, . . . , Pn = Q of Weyl simplices such that Pi and Pi+1 are translates in
an apartment Ai. By Lemma 9.3, there exist λ1, . . . , λn in Λ such that for
all x ∈ Pi−1 and y ∈ Pi, we have d(x, y) ≤ λi. By the triangle inequality, it
follows for x ∈ P and z ∈ Q that d(x, z) ≤ λ1 + . . .+ λn, and consequently
P and Q are at bounded distance in X. Moreover, since in each apartment
the condition on sub-Weyl simplices holds, the triangle inequality ensures
that it holds in the concatenation.

Conversely, suppose P and Q are at bounded distance. Let S1 and S2 be
Weyl chambers containing P and Q as faces respectively. By (A4), there
exist sub-Weyl chambers S′1 and S′2 of S1 and S2 such that S′1 and S′2 are in
a common apartment. Moreover, there exists translates P ′ and Q′ of P and
Q in S′1 and S′2 respectively. By the Lemma 9.3, P and P ′ and Q and Q′ are
at bounded distance, and hence by (TI) P ′ and Q′ are at bounded distance.
Applying Lemma 9.3 again, it follows that P ′ and Q′ are translates of each
other, implying that P, P ′, Q′, Q is a sequence of Weyl simplices showing
that P and Q are parallel. �

We note that in the proof we also showed that in the case where (X,A)
satisfies (A1)-(A4) and (TI), any two parallel Weyl simplices lie in a sequence
of length at most four of parallel simplices pairwise contained in apartments.

Proof of Theorem 9.1. We will prove that ∂X is a building at infinity of
X by applying 3.11 in [Ron89].

The set of parallel classes of Weyl simplices is ordered by inclusion and forms
a chamber complex with the chambers being equivalence classes of Weyl
sectors. It is easy to see that each apartment in X corresponds to a unique
sub-complex of ∂X isomorphic to a Coxeter complex of type R. Axiom
(A4) immediately implies that any pair of simplices in ∂X is contained in a
common apartment.



ON AXIOMATIC DEFINITIONS OF NON-DISCRETE AFFINE BUILDINGS 29

If a chamber c ∈ ∂X is contained in two apartments ∂A1 and ∂A2 of ∂X then
there are two Weyl chambers Si ⊂ Ai both having the same boundary c, i.e.
c = ∂Si, i = 1, 2. Hence S1 and S2 have a sub-Weyl chamber S in common.
From (A2) we obtain that there is thus an isomorphism f : A1 → A2 fixing
the intersection A1 ∩ A2 ⊃ S1 ∩ S2. The map ∂f induced by f on the
boundary is an isomorphism of Coxeter complexes fixing ∂A1∩∂A2, we now
use condition 3.1 (1). Suppose P1 ∈ A1 and P2 ∈ A2 are parallel Weyl
simplices (i.e., are such that ∂P1 = ∂P2). We must show f(∂P1) = ∂P2.
Note that for all x ∈ S1∩S2 and y ∈ P1, d(x, y) = d(f(x), f(y)) = d(x, f(y)).
Moreover, by Lemma 9.6, since P1 and P2 are parallel, there exists a λ ∈ Λ
such that for every sub-sector panel P ′1 ⊂ P1 there exists a sub-sector panel
P ′2 ⊂ P2 such that for all y ∈ P ′2, there exists an x ∈ P ′1 such that d(x, y) ≤ λ.
By (TI), this implies that

|d(v, y)− d(v, f(x))| = |d(v, y)− d(v, x)| ≤ λ
for all v ∈ S. Since P2 and f(P1) and S1 ∩ S2 all lie in A2 and are of the
same type, condition 3.1 (1) implies that f(P1) and P2 must be translates
and therefore are parallel, so that f(∂P1) = ∂(f(P1)) = ∂P2 as desired. �

10. Weyl compatibility

By the standard Λ-metric on the model space A = A(R,Λ) we mean the
Λ-valued metric as defined in [Hit09, Def. 4.16] which is essentially the one
introduced in the first author’s thesis [Ben90]. For arbitrary x and y in A
we put

d(x, y) =
∑
α∈R+

|〈y − x, α∨〉|

where R+ is the set of positive roots in the defining root system R.

Recall that the fundamental Weyl chamber Cf ⊂ A, where Cf = {x ∈
A | 〈x, α∨〉 ≥ 0 for all α ∈ R+} = {x ∈ A | 〈x, α∨〉 ≥ 0 for all α ∈ B} with
B a basis of the defining root system R. Observe that each bounding wall
of Cf is “perpendicular” to an element of B. For points x, y with y−x ∈ Cf
one can show that

d(x, y) = 2〈y − x, ρ∨〉,
where ρ∨ = 1

2

∑
α∨∈(R∨)+ α

∨ (see [Hit09, Section 1]).

Lemma 10.1. The standard Λ-metric on A is Weyl compatible.

Proof. Let us first verify condition 3.1 (2). Let x and y be the two points
separated by a wall M . By W -invariance of the metric, without loss of
generality, we may assume that x is at the origin and y ∈ Cf . Thus, the
convex hull of x, y is the set of all points such that the hyperplane coordinates
zi, where {α1, . . . , αn} is the basis for R, satisfy 0 ≤ zi ≤ yi for i = 1, . . . , n.
For the definition of hyperplane coordinates see [Ben94]. Let α ∈ R be the
root such that M is parallel to Hα,0. Let α =

∑
i piαi (where pi ∈ Q for all
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i). There exist λ such that M = {z ∈ A | zα = λ}, where zα =
∑

i pi · zi.
Now, consider the following “path” from x to y.

x = x0, x1, x2, . . . , xn = y,

where xij = 0 if j > i and xij = yi if i ≤ j. If any xj lies on M we are done
as each xj is in the segment from x to y. If not, then there exists a j such
that M separates xj−1 from xj . Let λj−1 =

∑
i<j pi · yi. Then xαj = λj so

that

λj−1 < λ < λj = λj−1 + pj · yj .
It follows that 0 < 1

pj
(λ − λj−1) < yj . Since Λ is a Q-module, it follows

that γ = 1
pj

(λ− λj) ∈ Λ. We now take z to be the point in Σ given by the

hyperplane coordinates zi = yi for i < j, zj = γ, and zi = 0 if i > j. By
construction z ∈ seg(x, y) ∩M .

We will give an outline of the proof of Condition 3.1 (1). Our outline follows
the detailed proof of [Ben94, Section 2.6]. Inside the model space A, we will
show that if there exists a λ such that for all sub-sector panels P ′1 ⊂ P1

there exist a sub-sector panel P ′2 ⊂ P2 with the property that for all y ∈ P ′2
there exists an x ∈ P ′1, such that for all v ∈ Cf we have the inequality

|d(x, v)− d(y, v)| ≤ λ
Then P1 and P2 are parallel, or P1 and P2 are parallel to Weyl-panels on
a common Weyl chamber. (Thus if they are the same type, they must be
parallel.)

Suppose P1, P2, and λ ∈ Λ are given as above. Without loss of generality,
we may assume that P1 and P2 are based at the origin. Hence there exist
Weyl-chambers S1 on −P1 and S2 on −P2 such that Cf ⊂ Pi + Si. Note
that if S1 is parallel to S2 (and in fact equal since everything is based at the
origin) then we have the result. Thus, assume S1 6= S2, in which case there
is a root α such that the wall Hα,0 separates S1 and S2.

Let v, q ∈ Cf be given such that

(1) q ∈ v + S1 (and note that v + S1 ⊂ P1 + S1),
(2) |(α, q − v)| ≥ 3λ for all α ∈ R.

(That such v and q exist is shown in 2.19 of [Ben94]).)

Let P ′1 be a sub-Weyl simplex of P1 contained in v − S1, and let P ′2 be
the associated sub-Weyl simplex guaranteed by our hypothesis. Then, let
P ′′2 ⊂ P ′2 ∩ (q − S2), and let y ∈ P ′′2 . From the triangle inequality, we have
d(y, q) ≤ d(y, v) + d(q, v). Since there exists at least one α that separates
S1 and S2, there is at least one α for which q and y lie on the same side of
the wall Mα,v through v parallel to Mα. Thus,

d(y, q) ≤ d(y, v) + d(q, v)− 3λ.

Let N ≥ 3λ be such that d(y, q) = d(y, v + d(q, v))−N .
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Let x ∈ P ′1 be the point such that |d(y, v) − d(x, v)| ≤ λ. Since x ∈ P ′1 ⊂
v − S′1 ⊂ q − S′1, we have d(x, q) = d(x, v) + d(v, q).

Putting these together we obtain

|d(y, q)− d(x, q)| = |(d(y, v) + d(q, v)−N)− (d(x, v) + d(v, q))|
= |d(y, v)− d(x, v)−N |
≥ N − |d(y, v)− d(x, v)|
≥ 3λ− λ > λ.

This contradicts the hypothesis, hence P1 and P2 must either be parallel or
lie on a common Weyl-chamber. Moreover, if they are of the same type,
then they must be parallel.

�

The proof for the Euclidean metric being Weyl compatible in the case Λ = R
is more straightforward.

Lemma 10.2. If Λ = R, the Euclidean metric is Weyl compatible.

Proof. We begin by noting that condition 3.1 (2) follows from Hilbert’s
axioms on R, given that a wall separates Rn. For condition 3.1 (1), we
note that given any ray r lying in Cf and any λ ∈ R+, the statement that
|d(v, y) − d(v, x)| ≤ λ implies that y lies between two planes perpendicular
to r, each lying distance λ from x (using the limit as v ∈ r goes to infinity).
Since Cf contains a basis for A, it follows that y lies in a parallelepiped about
x, with the distance between any opposite faces being 2r. This implies that
y is at bounded distance from x. Thus if P1 and P2 satisfy the hypothesis of
condition 3.1 (1), they must be parallel (and in fact, we did not need that
they were of the same type). �

Given the much easier proof in the Euclidean metric case, one might wonder
whether we need that P1 and P2 are of the same type in general. Unfor-
tunately, for the standard Λ-metric in the case of R being the root system
associated to the A2 Coxeter diagram, the sector-panels opposite the funda-
mental sector panels of Cf satisfy condition 3.1(1) except for the fact that
they are of different types.

We believe that it might be possible to replace condition 3.1 (2) with a more
natural concept of a geodesic metric. Recall that a Λ-metric d on a space
Y is geodesic if for all x, y ∈ Y there exists an isometric embedding of the
interval [0, d(x, y)] ⊂ Λ into (Y, d). It is clear that any geodesic R-metric on
A is Weyl compatible.

The standard Λ-metric is also geodesic.

Lemma 10.3. The standard Λ-metric on A is geodesic.
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Proof. Let d denote the standard Λ-metric and suppose without loss of gen-
erality that x = 0 and y is contained in the fundamental Weyl chamber
Cf ⊂ A, where Cf = {x ∈ A | 〈x, α∨〉 ≥ 0 for all α ∈ R+} = {x ∈
A | 〈x, α∨〉 ≥ 0 for all α ∈ B} with B a basis of the defining root sys-
tem R. Observe that each bounding wall of Cf is “perpendicular” to an
element of B.

For points x, y with y − x ∈ Cf one can show that d(x, y) = 2〈y − x, ρ∨〉,
where ρ∨ = 1

2

∑
α∨∈(R∨)+ α

∨, compare [Hit09, Section 1]. So in our case

d(0, y) = 2〈y, ρ∨〉.
Since the convex hull of a pair of points in A equals their segment, see
[Ben90, Prop. 2.13] we have that segA(0, y) ⊂ Cf .

We write projHαi,0
(p) for the projection mα of a point p onto the hyperplane

Hαi,0 perpendicular to α. Suppose that the elements of the basis B of R are

enumerated such that B = {αi}ki=1. We may define a sequence of projections
(by backward induction) from k+1 to 1 as follows: Put yk+1 = y and define

yi = projHαi,0
(yi+1) for all i = k, . . . , 1.

With y0 = 0 let γ be the concatenation of the geodesic pieces γi : yi  yi+1,
where γi is defined as follows:

γi(λ) = yi + λαi for all λ ∈ [0, yαii ] and all i = 0, . . . , k.

Here xα = 1
2〈x, α

∨〉 for all x ∈ A and α ∈ R, compare [Hit09, Prop. 4.12]. It

is not hard to verify that indeed d(0, y) =
∑k

i=0 d(yi, yi+1) and that γ : 0 y
is a geodesic. �

11. Appendix: Sharpness of axiom (A5)

by Koen Struyve

This section is devoted to the following question: Let (X,A) be a space
modeled on A = A(R,Λ), which satisfies axioms (A1)–(A4) and (A6). Is
(X,A) again an affine Λ-building?

We will construct examples of such spaces which vacuously satisfy (A6)
but do not satisfy either (A5) or (TI), answering the above question in the
negative.

11.1. Some additional definitions. The images in the model space A of
the fundamental Weyl chamber Cf under the spherical Weyl group W will
be called vector Weyl chambers. The unique fixed point in A of this group
(so the basepoint of all the vector Weyl chambers) is denoted by o. The
image of a vector Weyl chamber under a chart will again be called such.

We call the closed ball {x ∈ A|d(o, x) ≤ λ} and their images under charts
centered balls with radius λ.
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Recall that if two Weyl chambers contain a common Weyl chamber we call
them parallel. If an atlas satisfies axiom (A2), then this relation forms an
equivalence relation.

A space (X,A) modeled on A = A(R,Λ) will be called λ-admissible if the
following conditions are satisfied.

(T0) No two injections in A have the same image.
(T1) (X,A) satisfies the axiom (A2).
(T2) If two different apartments intersect, then they either intersect in a

single point contained in the centered balls with radius λ of both
apartments, or they intersect in a Weyl chamber contained in the
interior of vector Weyl chambers in both apartments.

(T3) All the vector Weyl chambers in one parallelism class contain a com-
mon sub-Weyl chamber.

Fix a sequence (λi)i=1,2,... with λi ∈ Λ such that 0 < λ1 < λ2 < . . . and the
sequence converges to infinity.

11.2. Extension procedure. In this section, we will construct from a
given λi-admissible space (Xi,Ai) (for i ∈ N\{0}) a λi+1-admissible space
(Xi+1,Ai+1), extending the previous one.

11.2.1. Step 1: Covering pairs of points. Let P be the set of pairs of points
(up to order) in centered balls with radius λi+1 in Xi not yet covered by a
common apartment. For each pair p := (x, y) in P we choose distinct points
xp and yp in the centered ball of radius λi+1 of a copy Ap of the model space
A. Let πp be the canonical isometry from A to Ap.
We now define X ′i to be the union of the sets Xi and Ap \ {xp, yp} for each
p := (x, y) in P . The set of charts A′i is defined as the set of charts Ai
together with a chart

fp : a ∈ A→

 πp(a) if xp 6= πp(a) 6= yp
x if π(ap) = xp
y if π(ap) = yp

for each p := (x, y) in P .

It is straightforward to verify that the newly obtained space (X ′i,A′i) satisfies
conditions (T0) up to (T3) (with λ = λi+1), and hence is an λi+1-admissible
space.

11.2.2. Step 2: Covering pairs of sectors. We will now extend (X ′i,A′i) to a
λi+1-admissible space (Xi+1,Ai+1).

Let Q be the set of parallelism classes of Weyl chambers in X ′i. For each class
q ∈ Q, consider all vector Weyl chambers in this parallelism class. We know
that these vector Weyl chambers contain a common sub-Weyl chamber by
condition (T3). Condition (T2) together with the definition of vector Weyl
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chambers then implies that there exists a sub-Weyl chamber which has no
points in common with the centered balls of radius λi+1 in any apartment.
Fix such a sub-Weyl chamber Sq.

Let R be the set of pairs (up to order) of parallelism classes of sectors
not yet covered by a common apartment (meaning that there are no two
elements, one of each class, contained in a common apartment). For each
such pair r := (q1, q2) we pick two disjoint sub-Weyl chambers S1

r and S2
r ,

both contained in vector Weyl chambers of a copy Ar of the model space A,
and such that S1

r and S2
r are disjoint with the centered ball of radius λi+1

in Ar. Let πr be the canonical isometry from A to Ar. Let π1r and π2r be the
canonical isometries from S1

r and S2
r to respectively Sq2 and Sq1 .

The set of points Xi+1 of the space we want to construct is the union of the
sets X ′i and Ar \ (S1

r ∪ S2
r ) for each r in R. The set of charts Ai+1 is A′i

extended with a chart

gr : a ∈ A→

 πr(a) if πr(a) /∈ S1
r ∪ S2

r

π1r (a) if πr(a) ∈ S1
r

π2r (a) if πr(a) ∈ S2
r

for each r in R.

We now claim that (Xi+1,Ai+1) is λi+1-admissible space. Conditions (T0)
and (T3) are automatically satisfied. In order to see conditions (T1) and
(T2) note that for any two points a ∈ Sq and b ∈ Sq′ , where q, q′ with

(q, q′) ∈ R5 are two distinct parallelism classes in Q, one has that a and b
are not contained in a common apartment by condition (T2) for (X ′i,A′i).

11.3. Direct limit and conclusion. By repeating the extension procedure
laid out in the previous sub-section one obtains sets of points Xi ⊂ Xi+1 ⊂
Xi+2 ⊂ . . . and sets Ai ⊂ Ai+1 ⊂ Ai+2 ⊂ . . . of injections. Let

X∞ =
∞⋃
j=i

Xj and A∞ =
∞⋃
j=i

Aj .

This direct limit yields a space (X∞,A∞) modeled on A = A(R,Λ). In
order to satisfy axiom (A1) we replace A∞ by the set A′∞ = {f ◦ w|f ∈
F , w ∈ W}. The space (X∞,A′∞) satisfies axiom (A2) by condition (T1)
for the intermediate steps. The repetition of the first and second step of the
procedure implies that (X∞,A∞) satisfies axioms (A3) and (A4) as well.

If the dimension of A is at least 2 then no two apartments intersect in a
half-apartment by condition (T2) for the intermediary steps, so axiom (A6)
is satisfied vacuously. So in this case we obtain a space which satisfies
axioms (A1)–(A4) and (A6). However it cannot consists of more than a
single apartment and satisfy axiom (A5) at the same time because if it

5q and q′ are not in the same apartment
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would, then there would be apartments intersecting in half-apartments (see
for example [Par00, Prop. 1.7]). By Theorem 3.3 it cannot satisfy (TI) either
then.

A more direct way to obtain an example which does not satisfy (TI) is to
start from a λ1-admissible space (for a suitable choice of λ1) which does not
satisfy (TI). An example would be three apartments glued pairwise together
at a (distinct) point. The three gluing points form a triangle, for which the
side lengths can be chosen such that they violate the triangle inequality.
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