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Convergence of a Steepest Descent Algorithm for

Ratio Cut Clustering

Xavier Bresson∗, Thomas Laurent†, David Uminsky‡and James H. von Brecht§

May 1, 2012

Abstract

Unsupervised clustering of scattered, noisy and high-dimensional data points is an important and
difficult problem. Tight continuous relaxations of balanced cut problems have recently been shown to
provide excellent clustering results. In this paper, we present an explicit-implicit gradient flow scheme
for the relaxed ratio cut problem, and prove that the algorithm converges to a critical point of the energy.
We also show the efficiency of the proposed algorithm on the two moons dataset.

1 Introduction

Partitioning data points into sensible groups is a fundamental problem in machine learning and has a wide
range of applications. An efficient approach to deal with this problem is to cast the data partitioning
problem as a graph clustering problem. Given a set of data points V = {x1, . . . , xn} and similarity
weights {wi,j}1≤i,j≤n, the clustering problem aims at finding a balanced cut of the graph of the data.
In this work, we consider the balanced cut of Hagen and Kahng [5] known as ratio cut. The ratio cut
problem is

Minimize RatioCut(S) =

∑

xi∈S

∑

xj∈Sc wi,j

|S| +

∑

xi∈S

∑

xj∈Sc wi,j

|Sc| (1)

over all subsets S ( V .

Here |S| denotes the number of data points in S. While the problem, as stated above, is NP-hard, it has
the following tight continuous relaxation:

Minimize E(f) =
1
2

∑

i,j
wi,j |fi − fj |

∑

i
|fi −m(f)| (2)

over all non-constant functions f : V → R.

Here m(f) stands for the average of f ∈ Rn and fi stands for f(xi). Recently, various algorithms have
been proposed [12, 6, 7, 1, 10] to minimize relaxations of balance cut problem similar to (2). In this work,
we present an explicit-implicit gradient flow algorithm, then prove that the iterates converge to critical
points of the energy. We also present numerical experiments to show the robustness and efficiency of the
algorithm.
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1.1 The Tight Continuous Relaxation

We begin by first explaining the meaning of the term tight relaxation. Since E is invariant under the
addition of a constant, problem (2) is equivalent to

Minimize
1
2

∑

i,j
wi,j |fi − fj |
∑

i
|fi|

(3)

over all f : V → R s.t. m(f) = 0 and f 6= 0.

If the graph is connected then the total variation functional 1
2

∑

i,j
wi,j |fi − fj | defines a norm on the

space of mean zero functions; we denote it by ‖f‖TV . The denominator of (3) is simply the ℓ1-norm,
and we denote it by ‖f‖1.

The continuous problem (3) is a tight relaxation of (1) in the following sense— if S∗ is a solution of
(1), then any nonzero, binary function of mean zero

f∗(xi) =

{

a if xi ∈ S∗

b if xi ∈ (S∗)c
(4)

is a solution of problem (3). This is a consequence of the fact that the the extreme points of the TV-unit
ball

{f ∈ R
n : ‖f‖TV ≤ 1, m(f) = 0}

are binary functions (see [12] for a proof of this fact). Therefore, if we fix ‖f‖TV = 1 and maximize the
convex functional in the denominator of (3), the minimum of the ratio is attained at an extreme point.
That is, at a binary function of mean zero. Binary functions of mean zero are always of the form

f = λ (|Sc|χS − |S|χSc) , S ( V, λ 6= 0,

where χS is the characteristic function of the set S. For such a function, we easily check that E(f) =
RatioCut(S)/2. From this observation we can see that if S∗ is a solution of the ratio cut problem (1),
then f∗ = λ

(

|(S∗)c|χS∗ + |S∗|χ(S∗)c
)

is a solution of the continuous relaxation (3) for any λ 6= 0. A
different proof of the fact that problem (2) is a tight relaxation of problem (1) can be found in [10].

1.2 Explicit-implicit gradient Flow

Let
T (f) = ‖f‖TV and B(f) =

∑

i

|fi −m(f)|. (5)

Note that both T and B are convex. If T and B were differentiable, the explicit-implicit gradient flow
of E = T/B would be

fk+1 − fk

τk
= −∇T (fk+1)− E(fk)∇B(fk)

B(fk)
(6)

where τk is the time step. Since T and B are not differentiable, we replace (6) with its non-smooth
equivalent:

gk = fk +
τk

B(fk)
E(fk)vk for some vk ∈ ∂B(fk) (7)

fk+1 = argmin
f

{

T (f) +B(fk)
‖f − gk‖2

2τk

}

. (8)

The minimization problem (8) is a standard ROF problem [11] that can be solved efficiently using
approaches such as augmented Lagrangian method [4] or primal-dual method [3]. The scheme (7)–(8),
as will be shown in the next section, decreases the energy and preserve the zero mean properties of
the successive iterates. In order to remain away from the origin, where the energy is not defined, we
project each iterate onto the sphere Sn−1 = {u ∈ Rn : ‖u‖2 = 1} at the end of each step. In numerical
experiments we observe faster convergence when the time step is chosen to be

τk = c
B(fk)

E(fk)
, c > 0. (9)
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With these choices, we arrive at our proposed algorithm to find critical points of the ratio cut func-
tional (2):

gk = fk + cvk for some vk ∈ ∂B(fk) (10)

hk = argmin
f

{

T (f) +E(fk)
‖f − gk‖2

2c

}

(11)

fk+1 =
hk

‖hk‖2
, (12)

which we formalize in Algorithm 1.

Algorithm 1 Steepest descent of the RatioCut functional (2)

fk=0 nonzero function with mean zero.
c positive constant.
while loop not converged do

wk ∈ sign(fk), vk = wk −m(wk), λk = ‖fk‖TV

‖fk‖1

gk = fk + c vk

hk = argminf {‖f‖TV + λk

2c
||f − gk||22 }

fk+1 = hk

‖hk‖2

end while

Let {fk} denote a sequence of iterates generated by Algorithm 1, starting from a non-zero function
f0 with m(f0) = 0. In section 2, we show that any accumulation point of this sequence is a critical point
of the the ratio cut functional (2). Moreover we show that ‖fk+1 − fk‖2 → 0 as k → ∞, so that either
the sequence converges or the set of accumulation points is a connected subset of the sphere Sn−1. In
section 3 we demonstrate the efficiency of Algorithm 1 on the two moons example.

2 Convergence

Given a connected graph, we want to minimize

E(f) =

∑n

i,j=1 wi,j |fi − fj |
∑n

i=1 |fi −m(f)| =
T (f)

B(f)

over the space of non-constant functions f ∈ Rn. (Note that E is not defined for constant functions).
This is equivalent to minimizing E over the set of non-constant functions with mean zero, which we write
as

F = {f ∈ R
n : m(f) = 0 and f 6= 0}.

We define 1 := (1, . . . , 1)T ∈ Rn, so that m(f) = 〈1, f〉/n and 1
⊥ gives the space of functions with mean

zero. Clearly F is an open subset of 1⊥. As we assume a connected graph, T and B define norms on
1
⊥. Since all norms are equivalent in finite dimensions, there exist constants β > α > 0 such that

αB(f) ≤ T (f) ≤ βB(f) for all f ∈ 1
⊥.

Therefore
α ≤ E(f) ≤ β for all f ∈ F .

If we let

L(f) = ‖f‖1 =
n
∑

i=1

|fi|, P0f = f −m(f)1, (13)

then we see that B(f) = L(P0f). Note that P0 = Id − 1
n
11

T , so that the matrix P0 simply gives the

orthogonal projection onto 1
⊥. As L(f) is convex, so is B(f) = L(P0f), and we also have

∂B(f) = P0 sign(P0f).
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It is then easy to see that 〈∂B(f),1〉 = 0 for all f . If f ∈ 1
⊥, then B(f) = L(f) and ∂B(f) is simply

the projection of ∂L(f) on 1
⊥, i.e. ∂B(f) = P0 sign(f).

Starting from a non-constant function f , we define g and h according to Algorithm 1

g = f + cv, where v ∈ ∂B(f) (14)

h = argmin
u

{

T (u) + E(f)
‖u− g‖22

2c

}

, (15)

which we write succinctly as
h ∈ Hc(f).

Since g is not uniquely defined when B(f) is non-differentiable, in general Hc(f) may have more than
one element. Therefore the map Hc is a set-valued map defined over the space of non-constant functions
(see Definition 2 in the following subsection).

2.1 Estimates

Lemma 1 (Elementary properties of Hc). Let g and h be defined by (14)–(15).

1. If f is not constant, then h is not constant. Moreover, the energy inequality

E(f) ≥ E(h) +
E(f)

B(h)

‖h− f‖22
c

(16)

holds. As a consequence, E(h) < E(f) unless h = f .

2. If f is not constant, then
‖h‖2 ≤ ‖g‖2 ≤ ‖f‖2 + 2c

√
n. (17)

3. If f ∈ Rn, then ‖g‖2 > ‖f‖2, or, to be more precise:

‖g‖22 = ||f ||22 + 2cB(f) + c2||∂B(f)||22.

4. If f ∈ F, then g, h ∈ F.

Proof. (1.) The definition (15) of h implies that E(f)h−g

c
∈ −∂T (h), and therefore, since T is convex,

T (f) ≥ T (h) +

〈

−E(f)
h− g

c
, f − h

〉

(18)

= T (h)− E(f)

〈

h− (f + cv)

c
, f − h

〉

(19)

= T (h) +
E(f)

c
‖h− f‖22 −E(f) 〈v, h− f〉 . (20)

Since B is also convex, we have B(h) ≥ B(f)+〈v, h−f〉, and therefore adding these two last inequalities,

T (f) + E(f)B(h) ≥ T (h) + E(f)B(f) +
E(f)

c
‖h− f‖22.

In other words,

E(f)B(h) ≥ T (h) +
E(f)

c
‖h− f‖22.

Since f is not constant, we have E(f) > 0. Note that if h were constant, then B(h) = 0 which would
imply h = f . This is a contradiction since f is not constant. Thus B(h) > 0, so we may divide in the
last expression to obtain (16).

(2.) To prove that ‖h‖2 ≤ ‖g‖2, note

h = proxΦ(g) := argmin
u

{

Φ(u) +
‖u− g‖22

2

}

where Φ(u) =
c

E(f)
T (u).
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Since proximal mappings are Lipshitz continuous with constant one, and since proxΦ(0) = 0, we have

‖h‖2 = ‖proxΦ(g)− proxΦ(0)‖2 ≤ ‖g‖2. (21)

To establish the inequality ‖g‖2 ≤ ‖f‖2 + 2c
√
n, note that ‖sign(P0f)‖∞ ≤ 1 and therefore

‖∂B(f)‖2 ≤
√
n‖∂B(f)‖∞ =

√
n‖sign(P0f)−m(sign(P0f))1‖∞ ≤ 2

√
n for all f ∈ R

n. (22)

The upper bound then follows from the definition of g and the triangle inequality.

(3.) Since B is homogeneous of degree one, we have

||g||22 = ||f + c∂B(f)||22 = ||f ||22 + 2c 〈f, ∂B(f)〉+ c2||∂B(f)||22 = ||f ||22 + 2cB(f) + c2||∂B(f)||22. (23)

(4.) Since ∂B(f) ⊂ 1
⊥, it is clear that f ∈ 1

⊥ implies g ∈ 1
⊥. Equation (23) shows that ||g||2 > ||f ||2 > 0

so that g cannot be constant (the only constant function of mean zero is the zero function). Thus g ∈ F .
Suppose that h /∈ 1

⊥. Since P0 projects onto 1
⊥ and since T (P0u) = T (u) for all u ∈ Rn (because T is

invariant under addition of a constant), we have

T (h) +
E(f)

2c
‖h− g‖22 = T (P0h) +

E(f)

2c

(

‖P0h− g‖22 + ‖(Id− P0)h‖22
)

.

This contradicts the definition of h as the global minimizer unless (Id−P0)h = 0. Thus h has mean zero.
By property (1.) we know h is not constant, so h ∈ F as well.

Definiton 1. Let f0 ∈ F. We say that fk, gk, hk is a sequence generated by the algorithm if

fk+1 ∈ P2(Hc(fk)) where P2 is the projection onto the sphere Sn−1

and where gk and hk are defined from fk by (14) and (15).

Lemma 2 (Properties of the iterates). If fk, gk, hk is a sequence generated by the algorithm, then
E(fk+1) ≤ E(fk) with equality if and only if fk = fk+1. Moreover,

‖fk − hk‖2 → 0 and ‖fk − fk+1‖2 → 0. (24)

Therefore Sn−1 is an attractor for the sequence {hk}.

Proof. The fact that the energy decreases is a consequence of (16) from Lemma 1 together with the fact
that E(fk+1) = E(hk) due to the invariance of E under scaling. As fk ∈ 1

⊥ and ||fk||2 = 1 it follows
that E(fk) ≥ α > 0. From (16) we then have

‖hk − fk‖22 ≤ c

α
B(hk)(E(fk)− E(fk+1)). (25)

Now from (17) we have
B(hk) = ‖hk‖1 ≤

√
n‖hk‖2 ≤

√
n+ 2nc,

and therefore
‖hk − fk‖22 ≤ c

α
(
√
n+ 2nc)(E(fk)− E(fk+1)) → 0,

where we have used that E(fk) is a converging sequence since it is decreasing and bounded from below.
We now show ‖fk − fk+1‖2 → 0. Note that the projection P2 is smooth on the annulus A := {u ∈

Rn : 1/2 ≤ ‖u‖ ≤ 3/2} and therefore it is Lipschitz continuous on A with constant, say, C. Since
eventually hk ∈ A, we have

‖fk − fk+1‖2 = ‖P2(f
k)− P2(h

k)‖2 ≤ C‖fk − hk‖2 → 0.
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2.2 Proof of convergence

Definiton 2 (Set-valued map). Let X and Y be two subsets of Rn. If for each x ∈ X there is a
corresponding set F (x) ⊂ Y then F is called a set-valued map from X to Y . We denote this by
F : X ⇒ Y . The graph of F , denoted Graph(F) is defined by

Graph(F ) = {(x, y) ∈ R
n × R

n : y ∈ F (x), x ∈ X}.

A set-valued map F is called closed if Graph(F ) is a closed subset of Rn × Rn.

Define the compact sets

K1 = {u ∈ R
n : ‖u‖2 = 1 and m(u) = 0} (26)

K2 = {u ∈ R
n : 1 ≤ ‖u‖2 ≤ 1 + 2c

√
n and m(u) = 0} (27)

along with the set-valued map Yc : K1 ⇒ K2

Yc(f) = f + c∂B(f).

The fact that the range of Yc is in K2 is a consequence of (17).

Lemma 3. The set-valued map Yc is closed.

Proof. Let us first show that the set-valued map sign : Rn
⇒ [−1, 1]n is closed. Let assume that

fk → f∗ (28)

zk ∈ sign(fk) → z∗ (29)

We want to show that z∗ ∈ sign(f∗), or equivalently, z∗i ∈ sign(f∗
i ) for all 1 ≤ i ≤ n. If f∗

i > 0 then
fk
i > 0 for k large enough. As zki = 1 for all such k it follows that z∗i = 1 = sign(f∗

i ). Similar reasoning
applies if f∗

i < 0. Lastly, if f∗
i = 0 then sign(f∗

i ) = [−1, 1]. The entire sequence {zki }∞k=1 therefore lies in
sign(f∗

i ), so obviously z∗i ∈ sign(f∗
i ) as well.

To show that Yc is closed, assume first that

fk → f∗ (30)

gk ∈ Yc(fk) = fk + c P0 sign(fk) → g∗, (31)

where we have used the fact that ∂B(f) = P0 sign(f) whenever f ∈ K1. Thus our goal is to prove that
g∗ ∈ Yc(f∗). Clearly there exists zk ∈ sign(fk) such that

gk = fk + cP0z
k. (32)

Since zk lies in a compact set there exists a subsequence zki → z∗. So we have

fki → f∗ (33)

zki ∈ sign(fki) → z∗ (34)

Since sign is closed z∗ ∈ sign(f∗), which combines with (32) gives

gki → f∗ + cP0z
∗ ∈ Yc(f∗)

where we have used the definition of Yc(f∗) and the fact that f∗ ∈ K1. From (31) we then obtain
g∗ ∈ Yc(f∗) as desired.

We define the function Ψc : K1 ×K2 → Rd

Ψc(f, g) = argmin
u

{

T (u) +E(f)
‖u− g‖22

2c

}

Lemma 4. The function Ψc is continuous on K1 ×K2.
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Proof. Let h = Ψc(f, g) and h′ = Ψc(f ′, g′). Then we have E(f)h−g

c
∈ −∂T (h) and E(f ′)h

′−g′

c
∈

−∂T (h′) so

T (h′) ≥ T (h)−
〈

E(f)
h− g

c
, h′ − h

〉

T (h) ≥ T (h′)−
〈

E(f ′)
h′ − g′

c
, h− h′

〉

.

By adding these two inequalities,

〈

E(f)(h− g)− E(f ′)(h′ − g′), h− h′
〉

≤ 0.

Adding and subtracting we get

〈

E(f)(h− g)− E(f)(h′ − g′), h− h′
〉

+
〈

(E(f)− E(f ′))(h′ − g′), h− h′
〉

≤ 0

E(f)
〈

(h− h′)− (g − g′), h− h′
〉

+ (E(f)− E(f ′))
〈

h′ − g′, h− h′
〉

≤ 0

E(f)
(

‖h− h′‖22 −
〈

g − g′, h− h′
〉)

+ (E(f)− E(f ′))
〈

h′ − g′, h− h′
〉

≤ 0

‖h− h′‖22 ≤
〈

g − g′, h− h′
〉

− (E(f)−E(f ′))

E(f)

〈

h′ − g′, h− h′
〉

From Cauchy-Schwarz we have

‖h′ − h‖2 ≤ ‖g′ − g‖2 + |E(f ′)− E(f)|
E(f)

‖h′ − g′‖2 ≤ ‖g′ − g‖2 + |E(f ′)− E(f)|
E(f)

2‖g′‖2

The last inequality follows from (21). We then easily conclude that if (f ′, g′) → (f, g) then h′ → h, due
to the continuity of E on K1.

We next show that the set-valued map Hc : K1 ⇒ F

Hc(f) = Ψc(f,Yc(f))

is closed. The fact that the range of H is in F is a consequence of Lemma 1.

Lemma 5. The set-valued map Hc is closed.

Proof. Suppose that

fk → f∗ (35)

hk ∈ Hc(fk) = Ψc(fk,Yc(fk)) → h∗. (36)

We must show that h∗ ∈ Hc(f∗). Clearly there exist gk ∈ Yc(fk) such that

hk = Ψc(fk, gk).

Since the sequence gk is in the compact set K2 there exists g∗ ∈ K2 and a subsequence gki → g∗. So we
have

fki → f∗ (37)

gki ∈ Yc(fki) → g∗, (38)

from which we conclude that g∗ ∈ Yc(f∗) because Yc is closed. Now since Ψc is continuous we have

hki = Ψc(fki , gki) → Ψc(f∗, g∗) ∈ Ψc(f∗,Yc(f∗)) = Hc(f∗).

But hki → h∗, so we may conclude h∗ ∈ Hc(f∗) as desired.
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Definiton 3 (Critical points). Let f ∈ F . We say that f is a critical point of the energy E(f) if there
exist w ∈ ∂T (f) and v ∈ ∂B(f) so that

0 = w − E(f)v.

If both T and B are differentiable at f then the subdifferentials ∂T (f), ∂B(f) are single-valued, so we
recover the usual quotient-rule

0 = ∇T (f)− E(f)∇B(f).

Theorem 1 (Convergence of the algorithm). Take f0 ∈ F and fix a constant c > 0. Let {fk}+∞
k=0 ⊂ F

be a sequence generated by the algorithm. Then

1. Any accumulation point f∗ of the sequence is a critical point of the energy.

2. Either the sequence converges, or the set of accumulation points is a connected subset of Sn−1.

Proof. (1.) The proof is inspired by [8]. Let fki denote a subsequence converging to f∗. Since the
sequence {fki+1}∞i=1 lies in a compact set we can extract a further subsequence (still denoted {fki+1})
that converges to some function f ′. So we have, as i → ∞

fki → f∗ (39)

fki+1 → f ′. (40)

But, because of (24) it must be that f∗ = f ′. Thus we have

fki → f∗ (41)

fki+1 ∈ P2(Hc(fki)) → f∗. (42)

Clearly there exist hki ∈ Hc(fki) such that fki+1 = P2(h
ki). Since the hki eventually lie in the annulus

A := {1/2 ≤ ‖u‖2 ≤ 3/2}, we can assume (upon extracting another subsequence) that the hki ∈ A →
h∗ ∈ A. Therefore we have

fki → f∗ (43)

hki ∈ Hc(fki) → h∗ (44)

and since Hc is closed h∗ ∈ Hc(f∗). Since P2 is continuous in the annulus A and all limit points of {hk}
lie on Sn−1, we conclude that

fki+1 = P2(h
ki) → P2(h

∗) = h∗ ∈ Hc(f∗).

From (42) we therefore have f∗ ∈ Hc(f∗). By definition of Hc(f∗), if f∗ ∈ Hc(f∗) then there exists
y∗ ∈ Yc(f∗) so that

f∗ = argmin
u

{

T (u) +E(f∗)
‖u− y∗‖22

2c

}

.

Therefore there exists w∗ ∈ ∂T (f∗) so that 0 = cw∗ + E(f∗)(f∗ − y∗). By definition of Yc(f∗) there
exists v∗ ∈ ∂B(f∗) so that

0 = cw∗ + E(f∗)(f∗ − (f∗ + cv∗)) = c(w∗ − E(f∗)v∗).

Thus f∗ is a critical point of the energy according to definition 3.

(2.) For any sequence generated by the algorithm, ||fk+1 − fk||2 → 0 according to lemma 24.
Moreover, they lie in the bounded set Sn−1 ⊂ Rn. The hypotheses of Theorem 26.1 of [9] are therefore
satisfied, giving the desired conclusion.
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(a) Two moons dataset (b) Desired clustering

Figure 1: Unsupervised clustering of the two moons dataset. Each moon has 1,000 data points in R100.

3 Experiments

We construct the two moons dataset as in [2] (Figure 1). The first moon is a half circle of radius one
in R2, centered at the origin, sampled with a thousand points; the second moon is an upside down half
circle also sampled at a thousand points, but centered at (1,−1/2). The dataset is embedded in R100

by adding Gaussian noise with σ = 0.015. In all experiments we use a 10 nearest neighbors graph with
the self-tuning weights as in [13] (the neighbor parameter in the self-tuning is set to 7 and the universal
scaling to 1). The constant c in Algorithm 1 is taken to be c = 1/4.

Clustering results with different initial conditions are shown in Figure 2. Since the energy is not
convex there is no guarantee that the algorithm will converge toward the global minimizer of the ratio
cut functional. However, for most initial data, the algorithm indeed finds the correct solution in a very
small number of iterative steps.
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(g) Initialization #3 (random
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