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Could any black holes be produced at the LHC?
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Abstract

We introduce analytical quantum gravity modifications of the production cross section for teras-

cale black holes by employing an effective ultraviolet cut off l. We find the new cross sections

approach the usual “black disk” form at high energy, while they differ significantly near the funda-

mental scale from the standard increase with respect to s. We show that the heretofore discontinu-

ous step function used to represent the cross section threshold can realistically be modeled by two

functions representing the incoming and final parton states in a high energy collision. The growth

of the cross section with collision energy is thus a unique signature of l and number of spatial

dimensions d. Contrary to the classical black disk result, our cross section is able to explain why

black holes might not be observable in LHC experiments while they could be still at the reach of

ultra-high energy cosmic ray events.
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I. INTRODUCTION.

Despite decades of theoretical advances and experimental progress, we are in reality no

closer to a formulating a workable framework of quantum gravity – let alone finding related

definitive experimental evidence – and must be content to speculate about its nature and

phenomenology. This is not be only an academic exercise: probing a deeper understanding

of the physical processes potentially able to unveil quantum gravity signatures would be a

major breakthrough in an otherwise stagnating and discouraging situation. In this spirit,

we return to the foundational connection between classical and quantum gravitation, i.e.

Hawking radiation. Thanks to its robustness in the semi-classical limit, Hawking radiation

is a widely accepted benchmark for any reliable theory of quantum gravity.

Unfortunately, the chances of a direct detection of the Hawking radiation are remote.

Since T ∼ M−1
BH, astrophysical black holes are too big to display any relevant quantum

mechanical effects. It has alternatively been conjectured that smaller primordial black holes

with masses MBH ∼ 1011 kg and radii rH ∼ 10−16 m may have formed in the extreme density

flucations of the early universe. With temperatures T ∼ 1012 K, these black holes would be

so bright that we should be able to observe them, but as of now the Fermi Gamma-ray Space

Telescope satellite has been unsuccessful in detecting any such evidence [1]. At even shorter

length scales, one enters the domain of modern particle physics accelerators. It has been

suggested, however, the possibility of a “particle black hole” is very unlikely: the energy

densities required to squeeze a mass completely inside its own gravitational radius is of the

order of the Planck mass MPl [2], almost 15 orders of magnitude higher than the LHC energy

and eight orders higher than the most energetic cosmic ray ever detected [3]. It may thus

seem Hawking radiation, and maybe also any hint quantum gravity, is inaccessible at least

in the immediate future.

The advent of large extra spatial dimensions accessible at a fundamental scale to M∗ ∼
1 TeV allows such gravitational collapse to occur for matter compressed at distances of the

order of 10−4 fm [4]. Despite the myriad fascinating possibilities unveiled in such scenarios,

the theoretical foundations are far from being understood. Perhaps most problematic is the

major limitation concerning the description of micro-black holes, in that it is impossible

to correctly describe end-stage black hole evaporation in the semiclassical limit when T ∼
MBH ∼ M∗.
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Utilizing the current literature base of inadequate classical metrics, one cannot take into

account the local loss of resolution which plagues the spacetime when it is probed at high

energies/short scales. We thus propose a new framework to describe in an effective way the

nature of a quantum spacetime and its signatures in the physics of microscopic black holes.

As a preliminary step we seek to address the fundamental question: how does quantum

gravity affect microscopic black hole formation?

II. BLACK HOLE PRODUCTION.

The standard expression for the semi-classical black hole production cross section is a

translation of the “hoop conjecture” [2] (for improved versions of this result and comments

see [5–9]) a black hole is produced whenever a parton of energy
√
s hits a target with

an impact parameter b < rH , i.e. smaller than the Schwarzschild radius of the effective

two-body system,
1

2π b

dσ ( s ; b )

db
= ΘH ( rH ( s )− b ) , (1)

Here, ΘH is the Heaviside step-function implemeting the constraint b ≤ rH = 2GN

√
s.

Since the impact parameter b is not observable, it must be integrated over to obtain the

experimentally measurable production cross section:

σ ( s ) = 2π

∫ ∞

0

db bΘH ( rH ( s )− b ) = π r2H ( s ) (2)

We thus recover the “black disk” cross section typically found in the literature.

For a neutral, non-spinning, black hole of mass MBH =
√
s in d + 1 dimensions, the

horizon radius is

rH = ( 2G∗ )
1/(d−2) s1/2(d−2) , (3)

where we have introduced the higher dimensional gravitational coupling constant G∗ ≡
ld−1
∗ = M1−d

∗ . We note a peculiar feature of black hole “particle” physics. As mass (energy)

increases, the linear dimension of the black hole increases, in contrast to the expected be-

havior of normal particles whose effective scales are determined by the Compton wavelength.

This unique behavior leads to a possible UV self-completion of quantum gravity [10]. By

inserting equation (3) in (2), we get

σ ( s ) = π
(

2G∗

√
s
)2/(d−2)

. (4)
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For typical LHC energies
√
s ∼ 1 − 10 TeV, one obtains cross sections of the order σ ∼ 1

nb. Given the most recently reported LHC peak luminosity L ∼ 3.65 × 1037 m−2 s−1 [11],

this would imply that about ten black hole per second would form. In hindsight we find

that, according to the black disk cross section, black holes would have formed at a non-

negligible rate even in early particle physics experiments. By combining (4) with Super

Proton Synchrotron (SPS) parameters
√
s ∼ 630 GeV and L ∼ 3.6× 1033 m2 s−1, one finds

that roughly one black hole a day would have formed in 1985 [12].

The aforementioned production rate estimates have since been improved to much lower

values [7–9]. These results, however, conflict with the latest experimental investigations

that effectively rule out the possibility of black hole formation at the LHC [13], at least as

far as the semiclassical regime is valid [14]. The weak point of the hoop conjecture is that

for any s black holes can be produced provided b is small enough. On the contrary, we

expect the black hole production channel to open only above some threshold energy. The

inaccuracy of predictions due to (4) follows from the assumption that the impact parameter,

b, can take on aribitrary small values, which is not the case in any theory of quantum

gravity where a minimal length emerges as a new fundamental constant of nature [15].

We thus have to introduce a non-vanishing lower integration limit into equation (2) to

account for the breakdown of any semi-classical description of spacetime in a true quantum

regime. In theories with large extra-dimensions, the constraint l∗ >> lP l. yields quantum

gravitational excitations. Any chance to observe at least some indirect signal of quantum

gravitational phenomena at LHC requires taking l∗ as the “minimal length”. Moreover,

instead of demanding a cut-off b ≥ l∗ in the scale size, we introduce a proper exponential

suppression that drives the integral to zero faster than any power of s,

σ ( s ) = 2π

∫ ∞

0

db b e−l2
∗
/b2ΘH ( rH ( s )− b ) . (5)

Integration can be carried out and gives

σ ( s ) = π l2∗ Γ
(

−1 ; l2∗/r
2
H

)

, rH = rH ( s ) (6)

where, Γ (−1 ; l2∗/r
2
H ) is the upper incomplete Gamma function defined as

Γ (α ; x ) ≡
∫ ∞

x

dt tα−1e−t (7)

Γ (α ; x ) is a smooth function with the following behavior. For s → 0 we get

σ ( s ) ≈ π l2∗

(

rH
l∗

)4

e−l2
∗
/r2H −→ 0 (8)
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FIG. 1: Top: Black hole cross sections (6) as a function of
√
s for different values of d in l∗-

units (from top to bottom on the right: d = 3, 4, 5, 6). All values are modified at low energies

while matching the standard predictions at large s. Bottom: The same plot as above for d = 3

(solid curve) with different ordinate scale to facilitate comparison with the the standard black disk

approximation (dotted curve) in the low-energy regime
√
s < l−1

∗ .
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Equation (8) means that the production of arbitrary small balck holes at low energy is zero,

as we expected.

The high-energy limit of (6) is obtained by means of the asymptotic

Γ (α ; x )

xα
→ − 1

α
, x → 0 (9)

We thus reproduce the semi-classical black-disk cross section

σ ( s ) ≈ π l2∗ ×
(

l2∗
r2H

)−1

= π r2H ( s ; l∗ ) (10)

In summary, at energy above the higher dimensional unification scale,
√
s > M∗ = l−1

∗ the

production cross section takes on the semi-classical black-disk form, while it drops to zero

very quickly for
√
s < M∗ (see Fig. 1).

III. QUANTUM GRAVITY IMPROVED BLACK HOLES.

In the following analysis, we take a further step to improve σ ( s ) by considering that in

the presence of a minimal length, whatever it is, the spacetime geometry itself is subjected to

modifications. This step is motivated by the fact that semiclassical black holes offer reliable

spacetime descriptions (e.g. in (3)) only when their masses are well above the fundamental

mass, while they become increasingly inaccurate for energies at or just above the funda-

mental scale. This particular phenomenology is the goal of the present investigation. To

this purpose, we recall that in recent years there have been several attempts to incorporate

in black hole spacetimes the presence of quantum gravity effects through effective quantum

geometries [16–20]. The resulting metrics (QGBHs) tend to agree on some highly desired

general characters like the absence of any curvature singularity and a thermodynamically

stable cooling down at the end of the evaporation [21]. In addition one finds that QGBHs do

not suffer from a relevant back reaction, a fact that permits a safe employment of quantum

field theory in curved space without any breakdown of the formalism. QGBHs have distinc-

tive emission spectra: they tend to emit larger number of softer particles than semi-classical

black holes with a suppressed bulk emission [22]. As a consequence QGBHs are a natural

alternative to improve the scenario at hand.

A common features of such models is the introduction of a generic minimum length l,

which is obtained by means of a modified structure of metric coefficients

ds2 = −f ( r ) dt2 + f−1 ( r ) dr2 + r2dΩ2 , (11)
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FIG. 2: The function f(r) in l∗-units. The solid curve is QGBH extremal configuration, while the

dotted curve is the corresponding classical black hole having the same mass MBH = M0.

f ( r ) ≡ 1− Gd(r)

(

2MBH

rd−2

)

. (12)

The function Gd(r) models quantum gravity corrections and is subject to the following model

independent constraints (for more detailed discussions see [21]):

i) for r ≫ l the function Gd(r) matches its classical value, i.e., Gd(r) → G∗;

ii) for r ∼ l the function Gd(r) enters an “asymptotically safe regime” by decreasing with

respect its classical value i.e., Gd(r) < G∗ in order to allow the horizon extremization,

i.e., f(r0) = f ′(r0) = 0 (see Fig. 2 and (13) for more details) and a black hole phase

transition to a positive heat capacity cooling down phase;

iii) for r <∼ l the function Gd(r) is vanishing in order to improve the curvature singularity,

i.e., Gd(r) ∼ O
(

(r/l)d−2
)

.

The minimum length l is not fixed a priori but is assumed to be in the range lP l. ≤ l ≤ l∗,

where the Planck length lP l. is the usual four-dimensional gravitational length scale and l∗
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is its higher dimensional counterpart at the TeV scale. Such a minimal length bears critical

importance to the production cross-section of any QGBHs that may result in high energy

collisions [23].

It would be tempting to say that σ ( s ) is given by equation (6), with l∗ replaced by l.

This is almost correct as it properly takes into account the role of l, but ignores the existence

of a minimum mass M0 below which QGBHs do not form [24]. This minimum mass is a

common feature of QGBHs and corresponds to the mass of the extremal configuration. The

value of M0 can be calculated by solving the system







f(r) = 1− Gd(r)
(

2MBH

rd−2

)

= 0

f ′(r) = 2MBH

rd−3

(

d− 2− r
G′

d

Gd

)

= 0
(13)

in terms of M0 = M0(r0). Since the creation channels opens up only for
√
s ≥ M0, we thus

need to include this threshold condition in the cross section through a second step-function

σ ( s ) = π l2 Γ
(

−1 ; l2/r2H
)

Θ(
√
s−M0) . (14)

Equation (14) describes the sharp opening of the production channel at the energy M0,

but quantum mechanics introduces uncertainty and makes the step less sharp. The way

the edges of the step are smoothed is determined by the “golden rule”, derived by previ-

ous investigations in noncommutative geometry, leading to regular line elements [16]. In

a nut-shell, the presence of a minimal length (whatever it is its origin) translates into the

replacements of Dirac delta functions into minimal width Gaussian distributions. Further-

more, since the Dirac delta is the “derivative” of the Heaviside function, it can be shown

that in the framework of a minimal length a modified step function can be defined without

the limit l → 0:

Θ(x) → Θl(x) =
1

(4πl2)1/2

∫ x

−∞

e−y2/4l2dy

=
1

2
+

1

2
erf(x/2l) .

To derive the profile of the new cross section, we also need to determine the horizon radius

by solving the equation f(r) = 0. This can best be done by iteration on the expression

rd−2
H = 2

√
s Gd(rH) , (15)
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giving the terms

0th order =⇒ rH(0) =
(

2G∗

√
s
)

1
d−2

(16)

1st order =⇒ rH(1) = rH(0)

[ Gd(rH(0))

G∗

]
1

d−2

(17)

As a first step, we consider just the 0-th order result (16) and we truncate the iteration

process there. For illustrative purposes we can assume M0 ∼ M∗. In the next section we will

show that, though the 0-th order approximation of the radius may be still acceptable, the

assumption of the threshold mass becomes inadequate when quantum gravity corrections of

black hole metrics are properly taken into account.

Using x =
√
s−M0 and rH ≃ (2G∗

√
s)

1
d−2 at first order, we obtain

σ ( s )

πr2H(s)
=

l2

(2G∗

√
s)

2
d−2

Γ

(

−1 ;
l2

(2G∗

√
s)

2
d−2

)

× Θl(
√
s−M0). (18)

This implies d-dependent cross-section suppressions, dependent also on the presence of a

mass threshold [25].

We stress the different roles of the two functions in (18). The first (Γ(...)) comes form the

hoop conjecture once the impact parameter is integrated over with a proper short-distance

cut-off, while the second (Θl(...)) describes the smooth opening of the production channel

for
√
s > M0. Generically, these can be understood to represent the outgoing (BH) and

incoming (beam) states of the collision, respectively.

IV. BLACK HOLE PARAMETERS/ENERGY RELATIONS.

In the previous section we estimated the cross section by considering 0-th order param-

eters. This basically corresponds to ignoring the exact nature of quantum corrections to

obtain an approximate expression for the cross section which, at the given order, turns out

to be model independent. This procedure can be improved in order to obtain more accurate

results. To this purpose, one has to specify a given model of QGBH and determine horizon

radii and minimum masses. In doing so, one opens the possibility of discriminating among
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the proposed quantum gravity corrections in the class of QGBHs by comparing the resulting

cross sections with experimental data.

To illustrate the procedure, we will focus on noncommutative geometry inspired black

holes (NCBHs) only [16], leaving the analysis of the whole array of QGBHs in future con-

tributions.

This choice is motivated by the following reasons. NCBHs are for now the richest family

of QGBHs, since they include the higher-dimensional charged [26, 27], spinning [28] and

charged-spinning [29] solutions. NCBHs are thus the only family of solutions able to describe

the complete life cycle of a black hole from its formation to the end of the evaporation, a

crucial necessity for phenomenological studies [30, 31]. Second, NCBHs not only capture

the two primary features of QGBHs (i.e. regularity of the manifold and cooling down phase

at the end of the evaporation [25]), but being a subfamily of another class of QGBHs –

namely black holes in nonlocal gravity theories [20] – pave the way to model independent

phenomenological conclusions.

The simplest realization of a noncommutative (d + 1)-dimensional spacetime due to a

collapsing parton system is given by equation

ds2 = −f ( r ) dt2 + f−1 ( r ) dr2 + r2dΩ2 , (19)

f ( r ) ≡
(

1− 2MBH

Md−1
∗ rd−2

γ(d/2; r2/4l2)

Γ(d/2)

)

(20)

where, to avoid notational confusion, we again indicate with l the minimal length related

to the size of spacetime discretization cells, while we keep G∗ = M1−d
∗ for the gravitational

coupling. The above line element can be equivalently identified by the function

Gd(r) =
1

Md−1
∗

γ(d/2; r2/4l2)

Γ(d/2)
(21)

in which deviations from the traditional line element are taken into account by the lower

incomplete Gamma function

γ(d/2 ; r2/4l2) =

∫ r2/4l2

0

dt td/2−1e−t . (22)

While the above metric can exhibit Killing, Cauchy and degenerate horizons, the singularity

at r = 0 has been removed by “spreading” the total mass energy MBH over a region of linear

size l. In addition the mass spectrum is bounded from below by an extremal configuration

which exists even in the case of neutral, non-spinning black holes. As expected for any

10



QGBH, the “classical” relation (3) between horizon radii and
√
s is still valid in the high

energy limit
√
s ≫ l−1. Conversely, relevant quantum gravity deviations occur for

√
s ∼ l−1.

The choice (21) for the profile of Gd lets us determine the quantities r0 and M0 in terms

of l from the system



























f ′ ( r0 ) = 0 → r0 =
( d−2 )1/d

2(1−d)/d l ×
[

γ
(

d
2
;
r20
4l2

) ]
1
d
er

2
0/4dl

2

f ( r0 ) = 0 → 2G∗M0 = rd−2
0

Γ( d
2 )

γ

(

d
2

;
r2
0

4l2

)

(23)

Note that (23) can be solved only through numerical methods, whose results are given in

Table I [25].

d 4 5 6 7 8 9

M0 (TeV) 6.7 24 94 3.8× 102 1.6× 103 7.3× 103

r0 (10−4 fm) 2.68 2.51 2.41 2.34 2.29 2.26

TABLE I: M0 and r0 for different values of d and l = l∗ = M−1
∗ = 1 TeV−1 For d = 10 one finds

M0 ≃ 3.4× 104 TeV and r0 ≃ 4.40 TeV−1.

d 4 5 6 7 8 9

M0 (TeV) 15.8 102 581 3.02 × 103 1.48 × 104 6.91 × 104

r0 (10−4 fm) 2.68 2.51 2.41 2.34 2.29 2.26

TABLE II: M0 and r0 for different values of d and l = l∗ = M−1
∗ = 1 TeV−1 according to

Myers-Perry definition for the fundamental mass M∗ [32]. For d = 10, M0 ≃ 3.13 × 105 TeV and

r0 ≃ 2.23 TeV−1.

d 4 5 6 7 8 9 10

M0 (TeV) 63.2 65.2 58.8 48.6 37.9 28.2 20.3

r0 (10−4 fm) 2.68 2.51 2.41 2.34 2.29 2.26 2.23

TABLE III: M0 and r0 for different values of d and l = l∗ = M−1
∗ = 1 TeV−1 using the Particle

Data group notation for the fundamental mass M∗ [31].
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FIG. 3: The ratio of σ(s) with and without threshold masses versus the classical value πr2H(s) as

a function of
√
s in M∗-units (M∗ = l−1 = 1016 TeV for d = 3 and M∗ = l−1 = 1 TeV for d > 3).

From top to bottom (solid): d = 3, 4, 5, 6, 7 and 10 without threshold masses M0. Dashed curves

take into account the the threshold masses M0. The dotted curve is the classical black disk cross

section which has the same profile for any s.

The discrepancy between M0 and M∗ underlines the need to properly account for black

hole quantum gravity corrections beyond the rudimentary assumption M0 ∼ M∗.

We stress the above values depend on the definitions of the fundamental scale M∗, which

may differ for multiplicative constants (see [22] for more detailed comments on the interre-

lationship between them). In Table II and III we show the black hole threshold parameters

according to two other major definitions of the fundamental mass. For the cases in Table I

and II, the minimum mass increases with spatial dimensionality, which at LHC energies

would yield a virtually vanishing cross-section for d ≥ 6. Curiously, according to the Par-

ticle Data Group notation (Table III), we find the minimum mass decreases with spatial

dimensionality for any d ≥ 5. When d = 10 we find the most promising case, corresponding

to a minimum mass of roughly 6 TeV above the maximum LHC centre-of-mass energy.
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One may wonder what is the production rate related to the final formula

σ ( s ) = π l2 Γ
(

−1 ; l2/r2H(s)
)

Θl(
√
s−M0) . (24)

assuming the LHC’s current peak luminosity. Unfortunately, we cannot determine the hori-

zon radius rH as a function of
√
s in a closed form. From the data presented in the above ta-

bles, however, we see that quantum gravity deviations are largely a function of the threshold

energy. Conversely, the horizon radii are less sensitive to non-classical effects and approach

the range of classical values ∼ 10−4 fm even in the realm of maximum corrections, i.e. in

the vicinity of the extremal configuration. This is the case irrespective of the definition of

the fundamental mass, since r0 is determined through the first equation of the system (23).

We can show this from the equation f(rH) = 0, by considering the parton energy to

contribute to both classical (0-th order) and non-classical horizons, i.e.
√
s(0) and

√
s re-

spectively, whose ratio √
s(0)√
s

=
γ(d/2; r2H/4l

2)

Γ(d/2)
(25)

is plotted in Figure 4. We see that the above approximation works very well not only in the

high energy regime (i.e. for rH ≥ 6l), but also below the production threshold where the

the function Θl(. . .) excludes the discrepancies arising from the 0-th order approximation of

the actual non-classical horizon. It is therefore not difficult to improve the result in (18) by

considering the correct threshold masses, while keeping horizon radii approximated at the

0-th order.

rH ∼ rH(0) =
(

2G∗

√
s
)

1
d−2 (26)

In the process, the production rate is mildly overestimated by virtue of the fact Gd ≤ G∗

implies rH(0)
>∼ rH (or correspondingly

√
s(0) <

√
s), i.e., classical horizon formation requires

less energy). Consequently, use of (18) is justified under proper choice of M0. Tighter con-

straints may be obtained by simply proceeding with a more sophisticated approximation for

the horizon radius, i.e., rH(1). Figure 3 demonstrates the resulting profile of cross sections for

the choice of fundamental mass M∗ of Table I. In light of the resulting rates being extremely

suppressed at LHC energies for all d, we can make just an example of a hypothetical collision

at energies
√
s = 90− 100 TeV. In Table IV, we show the black hole production rate Ṅ for

varying energy
√
s and number of dimensions d. Note the data are very sensitive to both

√
s and d. For d = 5, energies above the production threshold ∼ 24 TeV and Ṅ saturate

13



FIG. 4: The ratio
√
s(0)/

√
s of the parton energies required for the formation of classical (0-th

order) and non-classical horizons, in units l = 1. Curves from botton to top refer to d = 3 − 10.

All ratios are less than unity, indicating quantum gravity effects slow down production rates by

requiring more energy for horizon formation. When rH ≥ 6l quantum gravity corrections quickly

die off, while for smaller radii the dotted curves indicate the regime where non-classical horizon do

not form for the presence of threshold energies.

√
s= 90 TeV 91 TeV 92 TeV 94 TeV 100 TeV

d = 5 129 s−1 130 s−1 131 s−1 132 s−1 138 s−1

d = 6 12 yr−1 0.55 h−1 6 min−1 23 s−1 51 s−1

d = 7 < 1 TU
−1 < 1 TU

−1 < 1 TU
−1 < 1 TU

−1 < 1 TU
−1

TABLE IV: The number of black holes per unit of time Ṅ for different values of d and
√
s. Here,

TU = 13.7 Gyr is the age of the universe. Values of Ṅ have been calculated from (18) by considering

threshold masses as in Table I, the fundamental mass M∗ = l−1 = l−1
∗ = 1 TeV, the current LHC

luminosity L ∼ 3.65 × 1038 m−2s−1 and the classical black disk cross section for each d and value

of energy
√
s.
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at the black disk result. Remarkably for d = 7 and energies below the production threshold

∼ 380 TeV, the rate Ṅ is so low that the production time for a single black hole would

be greater than the present age of the universe (i.e. TU ∼ 13.7 Gyr). Finally for d = 6,

we are at energies close to the production threshold ∼ 94 TeV and Ṅ varies dramatically

with
√
s ranging from formation time scale of a second to a month. This example shows

how in principle the black hole production described by (18) can also be used to indirectly

determine the number of dimensions d.

As a check of the huge variation of Ṅ , we can write the near-threshold cross section for

the production of extremal black holes. For
√
s ∼ M0, the leading term reads

σ ( s ) ∼ πl2 Γ
(

−1 ; l2/r20
)

[

1

2
+

1

2l
(
√
s−M0)

]

, (27)

which describes the approximately linear behavior of the cross section near the production

threshold. The above formula can be employed to improve the results of Table IV when

considering rates at near threshold energies, i.e., for d = 6 and
√
s = 90 − 100 TeV. The

corresponding values in Table V show that the 0-th order approximation can capture the

orders of magnitude of productions rates even in this limit. As expected, the quantum

gravity corrections of horizon radii result in slightly suppressed rates.

√
s= 90 TeV 91 TeV 92 TeV 94 TeV 100 TeV

d = 6 3.7 yr−1 0.20 h−1 2.2 min−1 8 s−1 16 s−1

TABLE V: The number of black holes per unit of time Ṅ for d = 6 and
√
s = 90−100 TeV. Values

of Ṅ have been calculated from (27) by considering threshold mass M0 = 94 TeV and the extremal

black hole radius r0 = 2.41 TeV−1 as in Table I, the fundamental mass M∗ = l−1 = l−1
∗ = 1 TeV

and the current LHC luminosity L ∼ 3.65 × 1038 m−2s−1.

Estimates of Ṅ for the Myers-Perry definition will not give higher production rates due to

the heavier threshold masses, as is evident from Table II. Consequently, it may be interesting

to explore the case of the Particle Data Group definition, whose gravitational coupling

constant turns out to be

G∗ → G∗ =
2d−4

d− 1
π(d−6)/2Γ(d/2)M1−d

∗ . (28)

Table VI lists the production rates for the case d = 10. Despite the low threshold mass, we

find that at typical LHC energies the production of black hole turns out to be improbable:
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at 14 TeV, roughly one black hole every 60 million years would be produced in particle

detectors. Due to the vicinity to the threshold mass, however, the data strongly vary and

already at 16 TeV one finds a promising value of one black hole per month being produced.

The above results can be improved by using (27), which works better near threshold and

provides tighter constraints. In this case the maximum LHC beam energy significantly

lowers the production rate to one black hole every 225 million years, while at 16 TeV one

finds a rate of approximately one black hole every 4 months. Table VII shows the complete

results that confirm how the 0-th order approximation can be considered valid to estimate

orders of magnitude.

√
s= 10 TeV 14 TeV 16 TeV 17 TeV 20 TeV

d = 10 < 1 TU
−1 0.016 Myr−1 13 yr−1 2.3 h−1 30 s−1

TABLE VI: The number of black holes per unit of time Ṅ as a function of
√
s for d = 10,

calculated from (18) by considering threshold mass M0 = 20.3 TeV as in Table III (Particle Data

Group notation), the fundamental mass M∗ = l−1 = l−1
∗ = 1 TeV, the current LHC luminosity

L ∼ 3.65 × 1038 m−2s−1 and the classical black disk cross section for each value of energy
√
s.

√
s= 10 TeV 14 TeV 16 TeV 17 TeV 20 TeV

d = 10 < 1 TU
−1 0.004 Myr−1 3.2 yr−1 0.52 h−1 6.6 s−1

TABLE VII: The number of black holes per unit of time Ṅ as a function of
√
s for d = 10,

calculated from (27) by considering threshold mass M0 = 20.3 TeV and the extremal horizon

radius r0 = 2.23 TeV as in Tab. III (Particle Data Group notation), the fundamental mass

M∗ = l−1 = l−1
∗ = 1 TeV and the current LHC luminosity L ∼ 3.65 × 1038 m−2s−1.

V. FINAL REMARKS.

We have presented a first step in modeling black hole production in a post-semiclassical

limit, with quantum gravity effects being introduced by a minimal length l. Black pro-

duction cannot occur among the variety of quantum gravity corrections we have considered,

implemented below their respective threshold masses. We have provided a complete analysis

of the associated cross-sections for the case of NCBHs. The related black hole production

16



rates are highly sensitive to the value of the threshold masses, which vary non only according

to the number of extra dimensions but also to the definition of the fundamental mass. Our

results show that that microscopic black hole production is not a likely scenario for energies

below 100 TeV with a minimum d = 6 spatial dimensions. However for the case of Particle

Data Group definition of the fundamental mass, we find that the LHC would be just a couple

of TeV below a reasonable production rate, provided that d = 10. Our approach assumes

the extra-dimensional characteristics of spacetime are those of the ADD mechanism [33], but

we acknowledge that other terascale gravity models also produce similiar phenomenology,

including Randall-Sundrum [34], ungravity [35], etc.. Additionally, even if we believe to

have found the correct method to study these issues, our conclusions cannot be considered

definitive: we still miss a complete analysis of all the remaining quantum gravity corrected

black holes whose threshold masses might be at the reach of the LHC. Consequently, our

result can be used by reversing the logic: instead of predicting production rates, one may

determine the correct quantum gravity theory from experiment, i.e. through the value of

the observed threshold mass for non-negligible production rates at LHC.

Whatever the case, even in the most pessimistic scenario such novel phenomenology is

still potentially observable in ultra-high energy cosmic ray collisions.
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