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Interpreting force concept inventory scores: Normalized gain and SAT scores

Vincent P. Coletta and Jeffrey A. Phillips
Loyola Marymount University, Los Angeles, California 90045, USA

Jeffrey J. Steinert
Edward Little High School, Auburn, Maine 04210, USA
(Received 22 May 2006; published 23 May 2007)

Preinstruction SAT scores and normalized gains (G) on the force concept inventory (FCI) were examined for
individual students in interactive engagement (IE) courses in introductory mechanics at one high school
(N=335) and one university (N=292), and strong, positive correlations were found for both populations
(r=0.57 and r=0.46, respectively). These correlations are likely due to the importance of cognitive skills and
abstract reasoning in learning physics. The larger correlation coefficient for the high school population may be
a result of the much shorter time interval between taking the SAT and studying mechanics, because the SAT
may provide a more current measure of abilities when high school students begin the study of mechanics than
it does for college students, who begin mechanics years after the test is taken. In prior research a strong
correlation between FCI G and scores on Lawson’s Classroom Test of Scientific Reasoning for students from
the same two schools was observed. Our results suggest that, when interpreting class average normalized FCI
gains and comparing different classes, it is important to take into account the variation of students’ cognitive
skills, as measured either by the SAT or by Lawson’s test. While Lawson’s test is not commonly given to
students in most introductory mechanics courses, SAT scores provide a readily available alternative means of
taking account of students’ reasoning abilities. Knowing the students’ cognitive level before instruction also

allows one to alter instruction or to use an intervention designed to improve students’ cognitive level.

DOI: 10.1103/PhysRevSTPER.3.010106

I. INTRODUCTION

The force concept inventory (FCI) is a 30-question
multiple-choice test,!2 used as a measure of student under-
standing of Newtonian concepts in introductory mechanics
and usually given both at the beginning and at the end of an
introductory mechanics course. The wrong answers on the
test are based on extensive student interviews and corre-
spond to common student misconceptions. Students usually
score higher on the test when it is taken the second time,
following instruction. Interpretation of FCI results is facili-
tated by use of the normalized gain®* (G), defined as the
change in score divided by the maximum possible increase:

_ (postscore % ) — (prescore %)

100 — (prescore %)

For example, using this measure, we equate the conceptual
gains of students with pre— post scores of 20% — 60%,
40% — 70%, and 80% — 90%; all correspond to G=0.5. It
should be emphasized that G is the single student normalized
gain and is not the same as Hake’s normalized gain (g),
obtained from the class averages of pretest and posttest
scores. Hake* discusses the mathematical relationship of (g)
to the class average of individual students’ G’s and states that
the two are usually within 5%.

One way to describe G is that it is a measure of the frac-
tion of the concepts learned that were not already known at
the beginning of the course. Thus we are able to use G as a
measure of learning Newtonian concepts, independent of a
student’s initial state of understanding. The validity of this
interpretation is justified by the fact that, when other impor-
tant factors such as reasoning ability are either accounted
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for or averaged over, students’ normalized gains are not cor-
related with preinstruction scores. For example, in a study of
12000 high school students’ FCI scores, Hestenes® found that
there was no significant correlation between G and FCI pres-
cores (correlation coefficient r=0.00). However, in college
introductory mechanics courses, G is often positively corre-
lated with prescores.® We believe that this is not because
higher prescores tend to cause higher G’s, but rather because
in college classes both high prescores and high G’s tend to be
achieved by those students with the strongest reasoning
skills. Higher prescores are often a reflection of the greater
conceptual learning achieved by stronger reasoners in their
high school physics courses, and higher G’s are achieved by
stronger reasoners in their college courses. Thus the correla-
tion between G and prescore in many college classes appears
to be simply a by-product of a correlation between concep-
tual learning and reasoning skills, as discussed below. A
more detailed explanation of the relationship between pres-
cores, normalized gain, and reasoning ability may be found
in our recent article.®

A considerable body of pedagogical research over the past
decade has demonstrated that traditional physics instruction
does not meet the needs of the great majority of students who
take introductory physics courses. This research®’ also
shows that many of the active learning, or interactive en-
gagement (IE), strategies that have been developed in recent
years are considerably more effective than traditional ap-
proaches. Traditional courses consistently result in class av-
erage G’s of only about 0.2, whereas IE classes produce
consistently higher class average G’s, typically in the range
0.3-0.6.

We wondered whether this broad range of G’s might be at
least partly due to population effects. Our research has been
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concerned with the effect of different student populations on
values of G observed in IE classes. In two quite different
populations we have seen very similar, strong positive
correlations® between G and preinstruction scores on Law-
son’s Classroom Test of Scientific Reasoning.’ In both
groups, the upper quartile by Lawson score (averaging ap-
proximately 90%) achieved average G’s over 0.6 and the
lowest quartile by Lawson score (averaging approximately
45%) achieved average G’s of less than 0.3. These results
have now been replicated at the University of Colorado'® and
at the University of Central Florida.!! We think it is quite
likely that much of the variation in class average G’s in
different IE classes across the country may well be due to
variations in the composition of classes with regard to rea-
soning level, and it is important that this be taken into ac-
count when interpreting gains. For example, it may be incor-
rect to conclude that teaching methods used in a class with a
normalized gain of 0.6 are necessarily more effective than
those which produce a gain of 0.3 in a different class, be-
cause the backgrounds of the students in the two classes may
be a more important factor than the specific IE methods used
in the classes. We are gratified that many physics instructors
are beginning to use the Lawson test to help interpret their
FCI results. But we are also aware that many other instruc-
tors find the addition of another diagnostic test too great a
burden. The purpose of this paper is to offer an alternative to
using valuable class time to administer the Lawson test,
making use of SAT data that are already available in most
student files.

Piaget’s model of cognitive development states that an
individual progresses through discrete stages, eventually de-
veloping the skills to perform scientific reasoning.!> The pen-
ultimate stage is known as concrete operational. During this
stage a person has the ability to make sense of concrete ex-
periences but not yet form hypotheses or understand abstract
concepts.! In the final stage, known as the formal opera-
tional stage, an individual has the ability to form an hypoth-
esis and test it with carefully designed experiments, using
hypothetico-deductive reasoning.'# Although Piaget believed
that the formal stage is typically reached between ages 11
and 15, many high school and college students never reach
this stage.'>!® For example, Arons and Karplus state that
only 1/3 of college students have reached the formal stage.!”
The majority of students either remain confined to concrete
thinking or are only capable of partial formal reasoning, of-
ten described as transitional. In other studies focusing on
physics students, similar results have been seen.!8-2 It seems
clear that while formal reasoning skills are not sufficient for
a physics student, they are necessary. Students who lack the
ability to understand abstract concepts will struggle even
with Newton’s second law.?!

The SAT Reasoning Test, formally known as the Scholas-
tic Aptitude Test, is a standardized test widely used in college
admissions. The test is comprised of mathematical reasoning
and verbal thinking sections, and although a writing section
was recently added to the test, none of the data presented
here are from this “new SAT.” By focusing on general skills
that will be used in college, rather than competence in spe-
cific subjects, the SAT strives to be a predictor of college
success. According to the creators of the SAT, the test mea-
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sures a student’s “college readiness.”?? At least one study has
interpreted this readiness as general intelligence g and ob-
served significant correlations between measures of g and
SAT scores.”> Many studies have looked at the correlations
between SAT scores and freshman grade point averages (FG-
PAs), the most often used measure of college success. While
the reported correlation coefficients have varied, two large
studies?*? have reported values around 0.35. Among engi-
neers, there is a stronger correlation between the math sec-
tion of the SAT and FGPA,20 r=0.43. We have studied the
correlation between cumulative math and verbal SAT scores
and scientific reasoning ability, as measured by Lawson’s
test, for our own students, and found r=0.746 and r=0.680,
respectively, for the university and high school students in
our study. Since SAT scores correlate with Lawson scores
and Lawson scores correlate with G, we decided to test for a
correlation between SAT scores and G.

II. DATA

We analyzed preinstruction math, verbal, and cumulative
SAT scores and FCI normalized gains for 292 students in
various IE introductory mechanics classes at Loyola Mary-
mount University (LMU) and for 335 students in IE model-
ing physics classes at Edward Little High School (ELHS). Of
the 292 LMU students, 117 were taught by one of us (Co-
letta), using a method in which each chapter is covered first
in a “concepts” class, in a Socratic style very similar to Peer
Instruction, and then again in a “problems” class, featuring
estimation problems and group problem solving. Another au-
thor (Phillips) taught 89 students in a learning cycle format,
with lectures and small group activities, such as using con-
ceptual worksheets, performing short experiments, and
working context-rich problems. The other 86 LMU students
were taught by professors Bulman and Sanny, who both lec-
ture with a strong conceptual component and with frequent
class dialogue. Half of the classes were calculus based, pri-
marily composed of engineering majors; the other half were
algebra based, with mostly biology and natural science ma-
jors.

All of the 335 ELHS students were taught by one of us
(Steinert) in algebra-based regular or honors physics classes
using modeling instruction. Modeling?’ engages students in
constructing and using scientific models to understand the
physical world by providing them with conceptual tools to
represent physical objects and processes in multiple ways.
Instruction is organized into modeling cycles,?® which move
students through the phases of model development, evalua-
tion, and application in concrete situations, promoting an in-
tegrated understanding of a small set of models as the con-
tent core of physics. Students at ELHS collaborate in
planning and conducting experiments and solving problems,
and are required to justify their thinking in oral and written
presentations of their laboratory conclusions and homework
solutions. Socratic questioning techniques are used to probe
for misconceptions and guide student inquiry.

The average SAT score of LMU students in the calculus-
based course was 1192+8 (s.e.), and the average of those in
the algebra-based course was 1114+12. Combined data from
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TABLE I. The correlations of math (M), verbal (V), and com-
bined math and verbal (M+V) SAT scores with FCI G.

SAT M SAT V SAT M+V

& FCI G & FCI G & FCI G
LMU 0.46 0.35 0.46
ELHS 0.57 0.45 0.56

both LMU courses provided a wide range of cumulative SAT
scores: 720 to 1550, with an average of 1164+8. The cumu-
lative SAT scores among the ELHS students ranged from
720 to 1540, with an average of 1109+9.

Typically students take the SAT exam during the spring of
their junior year or fall of their senior year of high school.
The ELHS students took introductory mechanics in the fall
of their senior year of high school. (Note that although SAT
scores for ELHS students achieved in their senior year were
available, only scores earned prior to the start of their high
school physics course were used in this study.) LMU stu-
dents in calculus-based physics typically take introductory
mechanics in the spring semester of their freshman year of
college, and LMU students in algebra-based physics typi-
cally take introductory mechanics in the fall of their junior
year of college. Thus all students in both schools took the
SAT exam prior to the beginning of their mechanics course,
but the time delay between testing and taking physics was
much shorter for the high school students (typically less than
6 months) than for the university students (either almost
2 years or about 3 and 1/2 years).

We considered separately the correlations of math, verbal,
and combined math and verbal scores with FCI G (Table I).
We found highly significant correlations for all three at both
schools, with significance levels p <<0.0001; the probability
that G and SAT scores are not correlated in these populations
is less than 0.0001. The correlation coefficients for the math
scores are considerably greater than the correlation coeffi-
cients for the verbal scores (0.46 vs 0.35 at LMU and 0.57 vs
0.45 at ELHS). The correlation coefficient for the combined
math and verbal score is the same as for the math score alone
at LMU, and the correlation for the combined score is nearly
the same as for the math score at ELHS. Thus a student’s
SAT math score alone and her or his cumulative SAT score
seem to be of equal value in predicting whether she or he
will succeed in introductory physics.

For both schools, we graphed each student’s normalized
gain G versus the student’s cumulative SAT math and verbal
score [Figs. 1(a) and 2(a)]. There are, of course, other factors
affecting an individual’s value of G, and so there is a range
of G’s for any particular SAT score. The effect of the SAT
score on G can be seen more clearly by binning the data,
averaging values of G over students with nearly the same
SAT scores [Figs. 1(b) and 2(b)]. We formed bins with the
same number of students in each bin, as nearly as possible,
so that each data point on a graph of binned data has equal
weight. Ideally, one wants the bins to contain as many stu-
dents as possible, to produce a more meaningful average for
each point on the graph. However, one also wants as many
data points as possible to improve the statistics for the graph.
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FIG. 1. (a) Plot of individual students’ normalized FCI gains
versus SAT scores for 292 LMU students: slope=0.00084, r=0.46.
(b) Plot of normalized FCI gains versus SAT scores, with individual
student data averaged within 17 bins.

Our approach is to make the number of bins roughly equal to
the square root of the total number of students in the sample,
so that the number of bins and the number of students in
each bin are roughly equal. However, varying the bin size
had very little effect on the slope of the best-fit line.

The slopes of the best-fit lines in Figs. 1(a) and 2(a) are
0.000 84 and 0.000 89, respectively, and the correlation co-
efficients r equal 0.46 and 0.57, respectively. Both the distri-
bution of SAT scores and the regression lines were similar
for the two data sets, and so we decided to combine data
from the two schools. Figure 3 shows a graph of the com-
bined, binned data from LMU & ELHS (N=627). A linear
regression for this graph gives r=0.94. However, binning the
data also reveals that the variation of G with SAT score is not
linear. A quadratic function, shown in Fig. 3, provides a bet-
ter fit to the data, with a correlation coefficient of 0.97. For
purposes of comparison, we also combined the available
Lawson and FCI data from both schools, again binned the
data, and plotted a graph of FCI G versus Lawson score (Fig.
4, N=297). Again a quadratic equation provides a better fit to
the data than a linear one: r=0.89, linear, and r=0.95, qua-
dratic.

III. CONCLUSIONS

We conclude that, when one takes account of reasoning
ability in interpreting FCI gains, use of SAT scores offers a
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FIG. 2. (a) Plot of individual students’ normalized FCI gains
versus SAT scores for 335 ELHS students: slope=0.00089, r
=0.57. (b) Plot of normalized FCI gains versus SAT scores, with
individual student data averaged within 18 bins.

reasonable alternative to use of Lawson’s test scores. We
were able to obtain over twice as much SAT and FCI data as
Lawson and FCI data. For the subset of LMU students for
whom we have both Lawson and SAT scores (N=98), the
correlation between SAT scores and FCI G’s (r=0.46) is
weaker than the correlation between Lawson scores and FCI
G’s (r=0.54). However, for the subset of ELHS students for
whom we have both Lawson and SAT scores (N=199), the
correlation between SAT scores and FCI G’s (r=0.57) is

0.8

o
o
.

FCI normalized gain
o
'

0 T T T r
700 900 1100 1300 1500
SAT math + verbal

FIG. 3. Plot of normalized gains versus SAT scores for 627
LMU and ELHS students, with individual student data averaged
within 25 bins.
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FIG. 4. Plot of normalized gains versus Lawson Test scores for
297 LMU and ELHS students, with individual student data aver-
aged within 17 bins.

even stronger than the correlation between Lawson scores
and FCI G’s (r=0.53). Because the correlations between
Lawson scores and FCI G’s are so similar for the two
schools, we conclude that the weaker correlation between
SAT score and G observed at LMU is likely due to the
greater time delay between taking the SAT exam and the
beginning of introductory mechanics for college students.
During that long delay one might expect that developmental
experiences of students would vary, and so the SAT, taken up
to 3 and 1/2 years earlier, would be a less accurate indicator
of their initial state in a physics class.

SAT scores are used by colleges to predict college suc-
cess, where success is measured by the FGPA, which is not a
direct measure of student learning. With this study we see
that the SAT is, in fact, correlated with student learning, as
measured by the normalized gain on the FCI. The correlation
we observed between SAT scores and FCI G’s is larger than
the correlation typically seen between SAT scores and FGPA.

Instructors may want to assess their class average FCI
normalized gains by taking into account their students’ rea-
soning ability either, by using class average Lawson test
scores or class average SAT scores. Figures 3 and 4 provide
a means to do so. For example, these figures show that for a
class with an average SAT score of 1100 or an average Law-
son score of 65%, a class average G of about 0.35 would be
equal to the average G achieved by students in our study
with the same average SAT or Lawson scores. For a class
with either an average SAT score of 1400 or an average
Lawson score of 95%, a class average G of 0.7 would be
equal to the average G achieved by students in our study
with the same average SAT or Lawson scores.

Several interventions have been developed to address
cognitive development. (i) Feuerstein?® developed an inter-
vention for dramatically improving the reasoning of Israeli
children with low 1Q’s. His methods have been applied by
others and shown to be effective in improving the cognitive
levels of normal children. (ii) In Great Britain, Adey>*3! de-
veloped an intervention program for 12— 14 year old children
using science as a means of improving cognitive skills. He
produced substantial long-term improvement in grades in
science, mathematics, and English. (iii) In the U.S,,
Karplus®>* developed an intervention to improve the pro-
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portional reasoning skills of middle school children. He dem-
onstrated dramatic long-term improvement. Feuerstein,
Adey, and Karplus were all strongly influenced by the work
of Piaget. Our research demonstrates that many high school
and college students, who have not attained the level of for-
mal reasoning identified by Piaget as necessary for under-
standing science, could benefit from such interventions. We

PHYS. REV. ST PHYS. EDUC. RES. 3, 010106 (2007)

are currently working to adapt some of the interventions
mentioned above for our students.
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