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Abstract

After a review of exotic statistics for point particles in 3d BF theory,

and especially 3d quantum gravity, we show that string-like defects in 4d

BF theory obey exotic statistics governed by the ‘loop braid group’. This

group has a set of generators that switch two strings just as one would

normally switch point particles, but also a set of generators that switch

two strings by passing one through the other. The first set generates a

copy of the symmetric group, while the second generates a copy of the

braid group. Thanks to recent work of Xiao-Song Lin, we can give a pre-

sentation of the whole loop braid group, which turns out to be isomorphic

to the ‘braid permutation group’ of Fenn, Rimányi and Rourke. In the

context 4d BF theory this group naturally acts on the moduli space of

flat G-bundles on the complement of a collection of unlinked unknotted

circles in R
3. When G is unimodular, this gives a unitary representation

of the loop braid group. We also discuss ‘quandle field theory’, in which

the gauge group G is replaced by a quandle.
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1 Introduction

Physically speaking, the goal of this paper is to study the exotic statistics of
loop-like defects in a 4-dimensional topological field theory called BF theory.
We call these entities ‘closed strings’ for short, though they behave differently
from the closed strings familiar in string theory: the relevant Lagrangian is
different. In fact, we postpone the study of their dynamics to another paper
[3]. The considerations of this paper are purely topological, and accessible—we
hope—to mathematicians with only a passing interest in physics.

Mathematically speaking, the point of this paper is to study some repre-
sentations of a higher-dimensional analogue of the braid group: the ‘loop braid
group’. Just as the braid group describes the topology of points moving in the
plane, the loop braid group describes the topology of circles moving in R3. In
the body of this paper, we describe this group and certain representations of it
coming from the moduli space of flat bundles on R3 with these circles removed.
But since everything we do has a more familiar analogue one dimension down,
let us start by recalling that.

Exotic statistics in 3d BF theory

The behavior of a collection of identical particles when they are exchanged
goes by the name of ‘statistics’. Traditionally, statistics was described using
representations of the symmetric group. However, it is well known that in 3d
spacetime, ‘exotic’ statistics are possible, in which the process of exchanging
identical particles is described by a representation of the braid group. For
example, exchanging two ‘abelian anyons’ multiplies their wavefunction by a
phase, which need not be 1 as it is for bosons, nor −1 as for fermions. This
possibility has been investigated in experiments on the fractional quantum Hall
effect [7]. Now researchers have begun the search for ‘nonabelian anyons’, whose
statistics are described by more complicated representations of the braid group
[5]. Plans are already afoot to use these in quantum computers [12, 21].

Exotic statistics also arise naturally in the context of 3d quantum gravity. As
we ‘turn on gravity’, letting Newton’s gravitational constant κ become nonzero,
ordinary quantum field theory on 3d Minkowski spacetime deforms into a theory
where the Poincaré group goes over to a quantum group called the κ-Poincaré
group. Moreover, if we begin with a field theory of bosons, their statistics be-
come exotic as we turn on gravity. For a thorough treatment of these fascinating
phenomena, see the papers by Freidel and collaborators [13, 14], the paper by
Krasnov [23], and the many references therein.

In fact, the reason for exotic statistics in 3d quantum gravity is very simple.
In 3d spacetime, Einstein’s equations say that spacetime is flat except in regions
where matter is present. A point particle at rest bends the nearby space into a
cone. This cone is flat everywhere except at its tip, where there is a deficit angle
proportional to the particle’s mass. If we parallel transport a vector around the
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particle, it gets rotated by this angle θ:

θ

θ

More generally, if we have n particles, space will be flat except for conical
singularities at n points. If we exchange these particles by moving them around
the plane, they trace out a loop in the space of n-point subsets of the plane.
Their energy-momenta will change in a way that depends on this loop—but only
on the homotopy class of this loop, because they are being parallel transported
with respect to a flat connection. A homotopy class of such loops is just an
n-strand braid:

So, the group Bn of n-strand braids acts on the Hilbert space of states for n
identical particles. In fact, this result holds classically as well: we get an action
of Bn on the configuration space for n identical particles.

The above argument uses the fact that 3-dimensional gravity (with vanishing
cosmological constant) can be described by BF theory with the Lorentz group
SO(2, 1) as gauge group. To understand this paper, the reader only needs to
know one thing about BF theory: it involves a flat connection on space. For
completeness, however, we recall that BF theory in n-dimensional spacetime
with gauge group G involves two fields: a connection A and a g-valued (n− 2)-
form E. In the absence of matter, the Lagrangian is simply

L =
1

κ
tr (E ∧ F )

Here κ plays the role of Newton’s constant in the case of 3d gravity, and F =
dA+A ∧A is the curvature of A. The resulting equations of motion:

F = 0, dE + [A,E] = 0,

imply that the connection A is flat.
In 3d BF theory, point particles can be included by considering spacetimes

with curves removed: we think of these as the particles’ worldlines. Away from
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these worldlines the above equations still hold, while along the worldlines A
becomes singular. The holonomy around a loop circling a worldline gives an
element of the group G. A collection of n particles in the plane thus gives rise
to an n-tuple of elements of G. For simplicity, consider the case n = 2. As we
exchange two particles by rotating them around each other counterclockwise,
they trace out this braid:

As we recall in Section 3, this operation acts as the following map on G2:

(g1, g2) 7→ (g1g2g
−1
1 , g1). (1)

Applying this map twice does not give the identity, so we do not obtain an
action of the symmetric group on G2, but only an action of the braid group. In
other words, the particles have exotic statistics!

In the case of 3d gravity, the singularity of the connection along a particle’s
worldline reflects the fact that the particle’s mass creates a conical singularity
in the metric. The holonomy around the worldline, an element of G = SO(2, 1),
describes the particle’s energy-momentum. This may seem odd, since we are
used to thinking of energy-momentum as a vector in Minkowski spacetime.
However, in 3 dimensions Minkowski spacetime is naturally isomorphic to the Lie
algebra so(2, 1), and we can reinterpret Lie algebra elements as group elements
via the map:

so(2, 1) → SO(2, 1)
p 7→ exp(κp).

So, we can encode the energy-momentum p of a particle in the holonomy g =
exp(κp) resulting from parallel transport around this particle’s worldline.

Thanks to the factor of κ here, the group SO(2, 1) effectively ‘flattens out’
to so(2, 1) in the κ→ 0 limit. For example, multiplication in the group reduces
to addition in the Lie algebra plus small corrections:

exp(κp1) exp(κp2) = exp(κ(p1 + p2) +
κ2

2
[p1, p2] + · · · ) (2)

This implies that in terms of so(2, 1)-valued energy-momenta, the braiding in
equation (1) is given by

(p1, p2) 7→ (p2 + κ[p1, p2] + · · · , p1)

So, the exotic statistics reduce to ordinary bosonic statistics in the limit where
Newton’s constant goes to zero. They also reduce to bosonic statistics in the
limit where the particles are at rest relative to each other, since then p1 and p2

become proportional and their commutator vanishes.
The corrections to the usual law for addition of energy-momenta implicit

in equation (2) are interesting in themselves. Like the exotic statistics, these

4



corrections become negligible in the limit κ → 0. Under the name of ‘doubly
special relativity’, modified laws for adding energy-momentum have already
been studied by many authors. The paper by Freidel, Kowalski-Glikman and
Smolin [14] gives a good account of doubly special relativity in the context of 3d
quantum gravity; their paper also explains more of the history of this subject.

Quandle field theory

Besides exotic statistics and corrections to the usual rule for adding energy-
momenta, there is yet another surprising consequence of the switch from vector-
valued to group-valued energy-momentum as we turn on gravity in 3d physics.
The classification of elementary particles changes!

In ordinary quantum field theory on Minkowski spacetime, the Lorentz group
acts on the space of possible energy-momenta, and the orbits of this action corre-
spond to different types of spin-zero particles. When spacetime is 3-dimensional,
the space of energy-momenta is so(2, 1), and the orbits look like this:

positive-energy tardyons

negative-energy tardyons

positive-energy luxons

negative-energy luxons

tachyons

particles of zero
energy-momentum

If we write the energy-momentum as p = (E, px, py) and let p ·p = E2−p2
x−p

2
y,

we have six families of orbits, corresponding to six types of spin-zero particles:

1. positive-energy tardyons of mass m > 0: {p · p = m2, E > 0},

2. negative-energy tardyons of mass m > 0: {p · p = m2, E < 0},

3. positive-energy luxons: {p · p = 0, E > 0},

4. negative-energy luxons: {p · p = 0, E < 0},

5. tachyons of mass im for m > 0: {p · p = −m2},

6. particles of vanishing energy-momentum: {p = 0}.

Given any orbit Q ⊆ so(2, 1), the Hilbert space for a single particle of type Q
is just L2(Q).

The same philosophy applies when we turn on gravity, but now the space
of energy-momenta is not the Lie algebra so(2, 1) but the Lorentz group itself.
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This acts on itself by conjugation, and the orbits are conjugacy classes. Types
of spin-zero particles now correspond to conjugacy classes in the Lorentz group.
Near the identity these conjugacy classes look just like orbits in the Lie algebra,
so the classification of particles reduces to the above one in the limit of small
energy-momenta. However, there are important differences, which show up for
large energy-momenta.

Most notably, under the map

p 7→ exp(κp)

the Lie algebra element p = (E, 0, 0) is mapped to a rotation by the angle κE
in the xy plane. So, the holonomy around a stationary particle of energy E is
a rotation by the angle κE. This rotation does not change when we add 2π/κ
to the particle’s energy. Up to factors of order unity, this quantity 2π/κ is just
the Planck energy. If we call it the Planck energy, then masses in 3d quantum
gravity are defined only modulo the Planck mass.

This ‘periodicity of mass’ affects the classification of tardyons—that is, the
most familiar sort of particles, those with timelike energy-momentum. Instead of
positive-energy tardyons of arbitrary mass m > 0 and negative-energy tardyons
of arbitrary mass m > 0, we just have tardyons of arbitrary mass m ∈ R/ 2π

κ Z.
More generally, for any Lie group G, the various allowed types of spin-zero

particles in 3d BF theory with gauge group G correspond to conjugacy classes
Q ⊆ G. Any conjugacy class is closed under the operations

g � h = ghg−1, h� g = g−1hg,

and these operations satisfy equations making Q into an algebraic structure
called a ‘quandle’ [19], whose definition we recall in Section 5. The Hilbert
space for a single particle of type Q is just L2(Q), defined using a measure on
Q that is invariant under these operations. In an easy generalization of 3d BF
theory, we can study the exotic statistics of ‘particles of type Q’ for any quandle
Q equipped with an invariant measure. This takes advantage of the well-known
relation between quandles and the braid group [11].

Exotic statistics in 4d BF theory

It would be wonderful to generalize all the above results to 4d gravity, but for
now all we can handle is a simpler theory: 4d BF theory. This may eventually
be relevant to gravity, since one can describe general relativity in 4 dimensions
either as the result of constraining 4d BF theory with a certain gauge group,
or perturbing around 4d BF theory with some other gauge group. The first
approach goes back to Plebanski [34], and it underlies a great deal of work on
spin foam models of quantum gravity [2, 30, 32], especially the Barrett–Crane
model. The second approach goes back to MacDowell and Mansouri [25], and
has recently been explored by Freidel and Starodubtsev [15]. However, we do
not dwell on these possible applications here. They only focus our attention
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towards certain choices of gauge group:

Plebanski gravity: G = SO(3, 1)

MacDowell–Mansouri gravity:

{

G = SO(4, 1) Λ > 0
G = SO(3, 2) Λ < 0

Our idea is simply to increase the dimension of everything in the previous
section by 1. Thus, we consider BF theory on a 4-dimensional spacetime with
the worldsheets of several ‘closed strings’ removed. We focus on the case where
the manifold representing space is R3 −Σ, where Σ is an ‘n-component unlink’:
a collection of n unknotted unlinked circles. A flat connection on R3 − Σ gives
us a group element for each circle, namely the holonomy of some standard loop
going around this circle:

So, just as before, we obtain n-tuples of elements of G. Moreover, any way to
exchange the circles in Σ gives a map from Gn to itself.

It is often said that exotic statistics are only possible when space has di-
mension 2 or less. However, this folklore only applies to point particles. As
pointed out by Balanchandran and others [1, 4, 29, 37, 38], exotic statistics are
possible for closed strings in 3-dimensional space, since there are topologically
nontrivial ways to exchange unknotted unlinked circles in R

3. The statistics of
such theories are governed not by the braid group Bn, but by a larger group:
the ‘loop braid group’ LBn.

Using recent work of Lin [24], we show that this group is isomorphic to the
‘braid permutation group’ of Fenn, Rimányi and Rourke [10]. This is an apt
name, because LBn has a presentation with generators si that describe two
strings trading places without passing through each other, just as if they were
point particles:

=

but also generators σi that describe one string passing through another:

6=

So, this group is a kind of ‘hybrid’ of the symmetric group and the braid group.
Indeed, the elements si generate a copy of the symmetric group Sn in LBn,
while the elements σi generate a copy of the braid group Bn.
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In a one-dimensional unitary representation of the loop braid group, the
permutation generators si all act as ±1, while the braid generators σi all act
as an arbitrary phase q ∈ U(1). We could call particles that transform in this
way ‘abelian bose-anyons’ and ‘abelian fermi-anyons’, respectively. They act
like bosons or fermions when we switch them using the generators si, but like
abelian anyons when we switch them using the generators σi.

BF theory gives us more interesting unitary representations of the loop braid
group: whenever the group G is unimodular, we obtain a unitary representation
of LBn on L2(Gn). All the groups listed above are unimodular, so we get an
interesting variety of exotic statistics for closed strings in 4d BF theory.

We can also restrict attention to a specific conjugacy class Q ⊆ G and get
a unitary representation of the loop braid group on L2(Qn), as long as Q is
equipped with a measure invariant under conjugation. As already mentioned,
in the case of 3d gravity a choice of conjugacy class in G = SO(2, 1) essentially
amounts to choosing a specific mass for our point particles, which is a very
natural thing to do. In the case of 4d BF theory with G = SO(3, 1), choosing a
conjugacy class essentially amounts to choosing a specific mass density for our
closed strings.

2 The Loop Braid Group

The loop braid group LBn consists of all ways a collection of oriented, unknot-
ted, unlinked circles can move around in R3 and come back to their original
positions, perhaps trading places. More precisely, it consists of ‘isotopy classes’
of such motions. This group thus plays the same role in describing the inter-
change of closed strings in R3 that the symmetric group Sn plays for point
particles in R3, and the braid group plays for point particles in R2. In this
section we use the work of Lin [24] to obtain two presentations of the loop braid
group. First, however, we explain the sense in which the loop braid group, the
symmetric group and the braid group are all examples of ‘motion groups’.

The general idea of a ‘motion group’ goes back at least to Dahm’s 1962
thesis [9], which unfortunately was never published. In the 1970’s and 80’s,
some papers by Wattenberg [40] and Goldsmith [16, 17] clarified and expanded
on Dahm’s work. More recently, McCool [26] and Rubinsztein [35] have studied
the motion group for unknotted and unlinked circles in R3. Surya has also
given a description of the loop braid group as an iterated semidirect product
[37]. Much of this work considers the motion of unoriented circles. Since we
use oriented circles, we obtain a smaller motion group, which lacks the ‘circle-
flipping’ operations that reverse orientations.

Quite generally, suppose that S is a smooth oriented manifold and Σ ⊆ S
is a smooth oriented submanifold. Let Diff(S) be the group of orientation-
preserving diffeomorphisms of S. Let Diff(S,Σ) be the subgroup of Diff(S)
maps that restrict to give orientation-preserving diffeomorphisms of Σ.

We define a motion of Σ in S to be a smooth map f : [0, 1]×S → S, which
we write as ft : S → S (t ∈ [0, 1]), with the following properties:
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• for all t, ft lies in Diff(S);

• for all t sufficiently close to 0, ft is the identity;

• for all t sufficiently close to 1, ft is independent of t and lies in Diff(S,Σ).

Intuitively, a motion is a way of moving Σ through S so that it comes back
to itself—not pointwise, but as a set—at t = 1. This suggests that one can
‘multiply’ motions by doing one after the other, and indeed this is true. Given
motions f and g, one can define a motion f · g called their product as follows:

(f · g)t =

{

f2t for 0 ≤ t ≤ 1
2

g2t−1 ◦ f1 for 1
2 ≤ t ≤ 1

Given a motion f we can also define a motion called its reverse, denoted f̄ , by:

f̄t = f1−t ◦ f
−1
1 .

We say two motions f and g are equivalent if f̄ · g is smoothly homotopic, as
a path in Diff(S) with fixed endpoints, to a path that lies entirely in Diff(S,Σ).
One can check that this is indeed an equivalence relation and that the operations
of product and reverse make equivalence classes of motions into a group. This
is called the motion group Mo(S,Σ).

Next we turn to examples:

• When Σ ⊂ Rd is a collection of n points and d > 2, Mo(Rd,Σ) is the
symmetric group Sn.

• When Σ ⊂ R2 is a collection of n points, Mo(R2,Σ) is the braid group
Bn.

• When Σ ⊂ R3 is a collection of n unknotted and unlinked oriented circles,
we call Mo(R3,Σ) the loop braid group LBn.

We shall use the work of Lin [24] to give two presentations of LBn. First
note that there is a homomorphism

p : LBn → Sn

which simply forgets the details of the braiding, remembering only how the
circles get permuted in the process. The image of p is all of Sn. We call the
kernel of p the pure loop braid group PLBn.

Suppose, just to be specific, that Σ = ℓ1 ∪ · · · ∪ ℓn where ℓ1, . . . , ℓn are
disjoint unit circles in the xy plane, lined up from left to right with their centers
on the x axis. Lin proves that PLBn has a presentation with generators σij

for i, j ∈ {1, . . . , n} with i 6= j. The generator σij describes a motion in which
the ith circle floats up and over the jth circle, shrinks slightly and passes down
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through the jth circle, expands to its original size, and then moves straight back
to its starting position. We draw this as follows:

σij =

i j

where for purely artistic reasons we let the jth circle move a bit to the left in
the process.

Here we are using a drawing style adapted from Carter and Saito’s work on
surfaces in 4 dimensions [8]. Crossings in a braid or knot are usually drawn with
an artificial ‘break’ in one of the strands to indicate that it lies under the other:

Similarly, Carter and Saito draw 3d projections of knotted surfaces in 4 di-
mensions, indicating by a broken surface which one passes ‘under’ the other
in the suppressed fourth dimension. In our context, we take this suppressed
dimension to be one of the spatial dimensions, in order to make room for time,
which we decree to flow downward in all our diagrams. The broken surfaces in
σij indicate whether one circle is above or below the other in the suppressed
spatial dimension, so that the following diagram and ‘movie’ illustrate the same
process:

The inverse of σij is of course obtained by running the movie backwards, which
in diagrammatic notation becomes:

σij
−1 =

i j

10



One advantage of this drawing style is that it immediately suggests Reidemeister–
like moves for loop braids, such as this:

= =

We shall study the loop braid group algebraically, relying on such diagrams for
our intuition.

Given Lin’s presentation of PLBn, we can obtain a presentation of LBn

using the short exact sequence

1 → PLBn
i

−→LBn
p

−→Sn → 1.

First, note that there is a homomorphism

j : Sn → LBn

which takes a given permutation to what Lin calls a ‘permutation path’ in the
motion group: a loop braid in which circles trade places without any circle
passing through another in a topologically nontrivial way. For example, we
can have them trade places while remaining on the xy plane. This map j
is well-defined since all such permutation paths are homotopic. Moreover, the
composite p◦j : Sn → Sn is the identity homomorphism on Sn, so j is a splitting
of the short exact sequence above.

Since j is one-to-one, we may identify elements of Sn with their images in
LBn. Since PLBn is a normal subgroup, elements of Sn act on PLBn via
conjugation. This allows us to define the semidirect product Sn ⋉ PLBn, and
thanks to our split exact sequence, we get an isomorphism

f : LBn → Sn ⋉ PLBn

g 7→ (p(g), j(p(g))−1g)

with inverse

f−1 : Sn ⋉ PLBn → LBn

(s, σ) 7→ sσ

Writing the loop braid group as a semidirect product in this way, we easily
obtain a presentation for it:
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Theorem 1. The loop braid group LBn has a presentation with generators si

for 1 ≤ i ≤ n− 1 and σij for 1 ≤ i, j ≤ n with i 6= j, together with the following
relations:

(a) the relations for the standard generators si of Sn:

sisj = sjsi for |i− j| > 1 (3)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 (4)

s2i = 1 for 1 ≤ i ≤ n− 1 (5)

(b) Lin’s relations for the generators σij of PLBn:

σijσkℓ = σkℓσij for i, j, k, ℓ distinct (6)

σikσjk = σjkσik for i, j, k distinct (7)

σijσkjσik = σikσkjσij for i, j, k distinct (8)

(c) relations expressing the action of Sn on PLBn:

siσi(i+1) = σ(i+1)isi for 1 ≤ i ≤ n− 1 (9)

skσij = σijsk for i, j, k, k + 1 distinct (10)

sjσij = σi(j+1)sj for i, j, j + 1 distinct (11)

siσij = σ(i+1)jsi for i, i+ 1, j distinct (12)

Proof. Since the presentation (a) of Sn is well-known, and Lin [24] proved
that PLBn has the presentation (b), to present their semidirect product LBn

it suffices to add relations that express the result of conjugating any of Lin’s
generators σij by the symmetric group generators sk. For 1 ≤ i ≤ n − 1 we
have:

siσi(i+1)s
−1
i =

i i+1

=

i i+1

= σ(i+1)i

12



For i, j, k and k + 1 all distinct, we have:

skσijs
−1
k =

i j k k+1

=

i j k k+1

= σij

For i, j and j + 1 distinct, we have:

sjσijsj
−1 =

i j j+1

= σi(j+1)

and using a similar picture we see that for i, i + 1 and j distinct, siσijsi
−1 =

σ(i+1)j . The reader may notice that we have not included all possible conjuga-
tions of generators of PLBn by generators of Sn—we would naively expect two
additional such classes, yielding two more relations:

sj−1σij = σi(j−1)sj−1 for i, j − 1, j distinct (13)

si−1σij = σ(i−1)jsi−1 for i− 1, i, j distinct (14)

but these follow, respectively, from (11) and (12) combined with (5). So, we
have precisely the relations in part (c), as desired. 2

From this presentation of the loop braid group we now derive a presentation
with fewer generators. We keep all the generators si, but replace the σij with
new generators defined as follows:

σi = siσi(i+1)
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for 1 ≤ i ≤ n− 1. We can draw these as follows:

σi =

i i+1

=

i i+1

where we twist the picture a bit in the second step. To see that the generators
si and σi indeed give a new presentation, note that we can express the old
generators σij in terms of these new ones as follows. First, repeatedly applying
(11) we obtain:

σij = sj−1sj−2 · · · si+1σi(i+1)si+1si+2 · · · sj−2sj−1 for i < j.

If instead of (11) we use its equivalent form (13), we obtain:

σij = sjsj+1 · · · si−2σi(i−1)si−2 · · · sj+1sj for i > j.

Rewriting these in terms of the new generators σi, and in the second case using
relation (9), we obtain a way to write σij in terms of the new generators:

σij =

{

sj−1sj−2 · · · siσisi+1si+2 · · · sj−2sj−1 for i < j
sjsj+1 · · · si−2σi−1si−1si−2 · · · sj+1sj for i > j

(15)

Sometimes it is more convenient to use an alternate formula, obtained by ap-
plying (12), its equivalent form (14), and (9) again:

σij =

{

sisi+1 · · · sj−1σj−1sj−2 · · · si+1si for i < j
si−1si−2 · · · sj+1σjsjsj+1 · · · si−2si−1 for i > j.

(16)

What these formulas say is that when j 6= i + 1 we can construct the loop
braid σij by permuting either the ith circle or the jth until they are adjacent,
braiding one through the other, and then permuting the circles back to where
they started.

The nice thing about using si and σi as generators of the loop braid group is
that si describes how two neighboring circles can trade places by going around
each other:

si =

i i+1

while σi describes how two neighboring circles can trade places with the right
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one passing over and then down through the left one:

σi =

i i+1

As a result, the generators si generate a subgroup of LBn isomorphic to the
symmetric group Sn, while the σi generate a subgroup isomorphic to the braid
group Bn. There are also ‘mixed relations’ involving generators of both kinds:

Theorem 2. The loop braid group LBn has a presentation with generators si

and σi for 1 ≤ i ≤ n− 1 together with the following relations:

(a) relations for the standard generators si of Sn:

sisj = sjsi for |i− j| > 1 (17)

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 (18)

s2i = 1 for 1 ≤ i ≤ n− 1 (19)

(b′) relations for the standard generators σi of Bn:

σiσj = σjσi for |i− j| > 1 (20)

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 (21)

(c′) the following mixed relations:

siσj = σjsi for |i− j| > 1 (22)

sisi+1σi = σi+1sisi+1 for 1 ≤ i ≤ n− 2 (23)

σiσi+1si = si+1σiσi+1 for 1 ≤ i ≤ n− 2 (24)

Proof. The proof is somewhat lengthy, so we defer it to the Appendix. It
is, however, simple to convince oneself using pictures that the given relations
express topologically allowed moves for loop braids. Perhaps the least obvious
of these is (24), for which we supply a visual proof below:

= = =

2
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If we omit relations (24) we obtain the ‘virtual braid group’ V Bn of Vershinin
[39]. This plays a role in virtual knot theory analogous to that of the usual braid
group in ordinary knot theory. If we include these relations, which say:

=

then we obtain precisely the ‘braid permutation group’ BPn of Fenn, Rimányi
and Rourke [10]. So, the loop braid group is isomorphic to the braid permutation
group.

The isomorphism LBn
∼= BPn yields a simplified diagrammatic way of work-

ing with loop braids, which is in fact the method used by Fenn, Rimányi and
Rourke in their original paper on BPn. In the theory of ‘welded braids’, the
generators σi in BPn correspond to the kind of crossings found in ordinary
braids: , while the si describe ‘welded crossings’, drawn like this: •. These
crossings are called ‘welded’ because one imagines that the two strands have
been ‘welded down’ at the crossing. The point is that elements of the abstract
group presented in Theorem 2 can be represented either as loop braid diagrams
or as welded braid diagrams, as follows:

si = •

i i+1

=

i i+1

σi =

i i+1

=

i i+1

For the pure loop braid group PLBn, the above correspondence implies the
following welded braid pictures of the generators σi(i+1) and their inverses:

σi(i+1)=

i i+1

=
•

σi(i+1)
−1 =

i i+1

=
•

The other generators σij can be obtained from these by conjugation, using (15)
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or (16). For example:

σ(i+1)i =

i i+1

=
•

Diagrammatic calcuations with welded braids—and hence with loop braids—
can be carried out by using the usual Reidemeister moves for real crossings, along
with ‘welded Reidemeister moves’:

which are of course simply graphical restatements of the relations in (a) and
(c′). The nonexistence of the following move:

•

6=

•

is the rationale for the term ‘welded braid’—we are not allowed to pass a strand
under the weld.

It is easy from the presentation in Theorem 2 to work out the 1-dimensional
unitary representations of the loop braid group. If ρ : LBn → U(1) is such a
representation, we must have

ρ(si) = ±1

and
ρ(σi) = q

for all 1 ≤ i < n, where q ∈ U(1) is a fixed phase. We call the representa-
tions with ρ(si) = 1 bose-anyons, and the representations with ρ(si) = −1
fermi-anyons. These have been studied in physics at least since the work of
Balachandran [4], and recently Niemi has shown how they arise in the dynamics
of vortices in a quantum fluid [29].

In Section 5 we describe more interesting unitary representations of the loop
braid group, using some technology which we now develop. In related work,
Szabo [38] has obtained a different class of representations using BF theory
with abelian gauge group. Surya [37] has also studied representations of the
loop braid group.
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3 Motion Groups and Flat Bundles

In this section we recall Dahm’s [9] action of the motion group Mo(S,Σ) on the
fundamental group of S−Σ and describe how this gives a unitary representation
of the motion group on a certain Hilbert space of states for BF theory on S−Σ.

We consider BF theory in n-dimensional spacetime. So, we take ‘space’ to
be of the form X = S −Σ, where S is an oriented manifold of dimension n− 1,
and Σ ⊂ S is an oriented submanifold. We let G be a Lie group and let P → X
be a principal G-bundle. The ‘naive configuration space’ of BF theory is A0/G,
where A0 is the space of flat connections on P and G is the group of gauge
transformations. By ‘naive’ we mean that we are ignoring boundary conditions;
there are no boundary conditions to worry about when X is compact, but we
shall mainly be interested in two examples where it is not:

1. X is R2 with a finite set of points removed (describing point particles):

X = S − Σ, S = R
2, Σ = {z1, . . . , zn}.

2. X is R3 with a finite set of unlinked unknotted circles removed (describing
what one might call closed strings):

X = S − Σ, S = R
3, Σ = ℓ1 ∪ · · · ∪ ℓn.

A rigorous study of BF theory may require that we impose boundary conditions
at Σ. We ignore this issue now, leaving it for future research.

The space A0/G is a bit difficult to handle. It is often more convenient to
start by fixing a basepoint ∗ ∈ X and working with A0/G0, where

G0 = {g ∈ G : g(∗) = 1}.

The group G/G0
∼= G acts on A0/G0 in a natural way. This lets us form A0/G

as the quotient of the bigger space A0/G0 by this action of G.
The advantage of the space A0/G0 is that any point [A] in this space gives

a homomorphism
hol([A]) : π1(X) → G

which sends any homotopy class of loops [γ] to the holonomy of A around γ.
This gives a map

hol : A0/G0 → hom(π1(X), G)

which is known to be one-to-one. Note that G acts on hom(π1(X), G) by con-
jugation:

(gf)(γ) = gf(γ)g−1

where f : π1(X) → G is any homomorphism. Moreover, the map hol is compat-
ible with this group action:

hol([gA]) = g hol([A]).
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So far we have fixed a principal G-bundle P . But, in gauge theory it is often
better to treat this bundle as variable—part of the physical field along with the
connection A. For example, path integrals in quantum chromodynamics involve
a sum over bundles, which represent instantons. The mathematical advantage of
treating P as variable is that all points of hom(π1(X), G) are in the image of hol
if we allow ourselves to vary P [22]. A point in this space represents a ‘G-bundle
with flat connection over X , mod gauge transformations that equal the identity
at the basepoint’. Modding out by the rest of the gauge transformations we get
a space known as the ‘moduli space of flat bundles’, hom(π1(X), G)/G. This
is the naive configuration space for BF theory where we treat the bundle P as
variable.

Applying Schrödinger quantization to this configuration space, we obtain
the (naive) Hilbert space for BF theory:

L2(hom(π1(X), G)/G)

Of course, defining this L2 space requires that we choose a measure on the
moduli space of flat bundles. Alternatively, we can try to form a Hilbert space

L2(hom(π1(X), G))

on which G acts as follows:

(gψ)(f) = ψ(g−1f).

Again, this requires choosing a measure on hom(π1(X), G). Moreover, G will
only have a unitary representation on L2(hom(π1(X), G) if this measure is G-
invariant.

In Sections 3 and 5 we will show that for the two examples above, there
is a ‘natural’ choice of G-invariant measure on hom(π1(X), G). In both these
examples the motion group Mo(S,Σ) acts on π1(X) and thus on hom(π1(X), G).
By saying a measure on hom(π1(X), G) is ‘natural’, we simply mean that it is
preserved by this action.

Using such a natural measure to define the Hilbert space L2(hom(π1(X), G)),
we obtain a unitary representation of the motion group on this Hilbert space.
This representation describes the statistics of point particles or closed strings in
BF theory. As we have seen, in the first example the motion group is the braid
group Bn, while in the 4d case it is the loop braid group LBn. So, we obtain
‘exotic statistics’ in both cases. This fact is somewhat familiar in 3 dimensions,
but less so in 4 dimensions. So, in the following sections we first review the 3d
case, and then move on to the 4d case after a brief digression on ‘quandle field
theory’.

Before doing this, however, let us see how the motion group acts on π1(X).
The idea goes back to Dahm’s original work on the motion group [9], and it has
been nicely explained by Goldsmith [16]. The idea is simple: elements of the
motion group Mo(S,Σ) give equivalence classes of diffeomorphisms ofX = S−Σ,
and these act on homotopy classes of loops in X . The only problem is that
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the fundamental group is defined using based loops, and the diffeomorphisms
used in the definition of the motion group need not preserve the basepoint in
X . Luckily, Wattenberg [40] has shown that we can use compactly supported
diffeomorphisms in the definition of the motion group without changing this
group. In the examples above, we can assume without loss of generality that
these diffeomorphisms are supported in a fixed large ball containing Σ. So, if
we choose a basepoint ∗ ∈ S that is sufficiently far from Σ, we can assume this
basepoint is preserved by all the diffeomorphisms in the definition of the motion
group. This makes it easy to check that Mo(S,Σ) acts as automorphisms of
π1(X).

4 Point Particles in 3d BF Theory

Now let us apply the general ideas of the previous section to the case of a
plane with n punctures:

X = S − Σ, S = R
2, Σ = {z1, . . . , zn}

If we interpret these punctures as ‘particles’, we shall see that a state of 3d BF
theory on this space describes a collection of identical point particles with exotic
statistics governed by the braid group.

The fundamental group of X is the free group on n generators, so we have

hom(π1(X), G) = Gn

The n group elements here are nothing but the holonomies of a flat connection
around based loops going clockwise around the particles:

···

g1
g2 g3 gn

Having described particles as punctures in this theory, let us now consider what
sort of statistics such particles obey. The previous section shows that the inter-
change of identical particles is described by an action of the n-strand braid group
Bn on Gn, but we would like to work it out explicitly. For simplicity, consider
the case n = 2 and consider what happens when the two particles switch places.
As remarked earlier, there are infinitely many topologically distinct ways for the
particles to move around each other, but they are all powers of the braid group
generator σ1:
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If the holonomies around the two particles are g1 and g2:

g1 g2

switching them via σ1 induces a diffeomorphism of the plane which deforms the
loops around which the holonomies are taken:

To see how the system changes in this process, compare the final frame in this
‘movie’ to the first frame. Given that (g1, g2) ∈ G2 describes the holonomies
initially, a slight deformation of the loops in the final frame:

=

g2

g1

g2

g1

makes it clear that the corresponding holonomies around these loops in the final
configuration:

g′

1
g′

2
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is (g′1, g
′

2) = (g1g2g1
−1, g1). Thus the effect of switching the two particles via σ1

is to send (g1, g2) to (g1g2g1
−1, g1).

We can work out the action of σ−1
1 in the same way, or simply derive it

algebraically from the fact that it must undo the effect of σ1. The easiest way
to remember the results is with this picture:

g1 g2

g1g2g−1

1
g1

g1 g2

g2 g−1

2
g1g2

More generally, we have a right action of the braid group Bn on Gn given
as follows:

(g1, . . . , gi, gi+1, . . . , gn)σi = (g1, . . . , gigi+1g
−1
i , gi, . . . , gn).

As mentioned in the previous section, we also have a left action of G on Gn via
gauge transformations at the basepoint ∗. This works as follows:

g(g1, . . . , gn) = (gg1g
−1, . . . , ggng

−1).

We would like a measure on Gn that is invariant under both these group
actions, so that the braid group and gauge transformations act as unitary oper-
ators on L2(Gn). Such a measure exists whenever G is unimodular, meaning
that its left-invariant Haar measure is also right-invariant. A Lie group is auto-
matically unimodular if it is compact, or abelian, or semisimple. In particular,
the groups SO(p, q) are all unimodular. Since these groups act on Minkowski
spacetime in a way that preserves its Lebesgue measure, the Poincaré groups
ISO(p, q) are also unimodular. Also, the identity component of a unimodular
group is unimodular, as is any covering space of a unimodular group.

From this we see that the 3d Lorentz group SO(2, 1) is unimodular, as are its
identity component SO0(2, 1) and the double cover of its identity component,
namely SL(2,R). All these are reasonable choices of gauge group when treating
3-dimensional—or more properly, (2+1)-dimensional—Lorentzian gravity as a
BF theory.

Given a unimodular Lie group, Haar measure is typically not the only mea-
sure invariant under conjugation: we can multiply Haar measure by any function
that only depends on the conjugacy class. As an extreme example, we can even
try to multiply Haar measure by a ‘delta function’ supported on one conju-
gacy class. More precisely, we can look for a conjugation-invariant measure
supported on a single conjugacy class of G. In this case we might as well be
working not with G but with just the conjugacy class. It turns out that in the
case of 3d quantum gravity, this amounts to studying identical particles of a
specified mass. This leads us to our next subject: quandle field theory.
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5 Quandle Field Theory

In the previous section we considered BF theory in 3 dimensions, and were
led to a natural action of the braid group Bn on the space Gn for any group
G. Notice that we did not actually need the multiplication in G to define this
action; we only needed the operation of conjugation. This suggests that we can
work more generally, replacing the group G by some algebraic structure that
captures the properties of conjugation. Such a thing is called a ‘quandle’.

More precisely, a quandle is a nonempty set Q equipped with two binary op-
erations � : Q×Q→ Q and � : Q×Q→ Q called left and right conjugation,
which satisfy:

(i) left idempotence: x� x = x

(i′) right idempotence: x� x = x

(ii) left inverse law: x� (y � x) = y

(ii′) right inverse law: (x� y) � x = y

(iii) left distributive law: x� (y � z) = (x� y) � (x� z)

(iii′) right distributive law: (x� y) � z = (x � z) � (y � z)

for all x, y, z ∈ Q. In general, the operations of left and right conjugation in a
quandle are neither associative nor commutative.

Quandles were first introduced as a source of knot invariants by David Joyce
[19] in 1982. Many examples of quandles can be found in the work of Fenn and
Rourke [11] and other authors [6, 19, 20]. For us, the most important examples
come from taking a group G, letting Q be any union of conjugacy classes of G,
and making Q into a quandle with

g � h = ghg−1, h� g = g−1hg.

We are especially interested in the case where Q is either the whole group G or
a single conjugacy class.

We can do some of the same things with quandles as with groups. For
example, we can define a topological quandle to be a topological space that is
also a quandle in such a way that the quandle operations � and � are continuous
[36]. If G is a Lie group and Q ⊆ G is a conjugacy class, Q becomes a topological
quandle with the induced topology.

Given a topological quandle Q, we define an invariant measure on Q to
be a Borel measure that is invariant under left conjugation by any element of
Q—or equivalently, invariant under right conjugation by any element of Q. This
implies that

∫

f(x) dµ(x) =

∫

f(q � x) dµ(x)

=

∫

f(x� q) dµ(x)
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for any q ∈ Q and any integrable function f on Q. As noted earlier, invariant
measures on quandles are far from unique in general. In particular, we may
multiply an invariant measure on a Lie group by any class function and obtain
a new invariant measure.

In the previous section, we saw that the n-strand braid group Bn acts on
Gn for any group G. But, since our argument relied only on properties of
conjugation, it works just as well for a quandle. The idea is that we can braid
two elements of a quandle past each other using left conjugation:

x y

x�y x

The inverse braiding uses right conjugation:

x y

y x�y

It is well known that with these rules, the braid group relations follow from the
quandle axioms. So, generalizing our result from the previous section, we easily
obtain:

Theorem 3. Suppose Q is a topological quandle equipped with an invariant
measure. Then there is a unitary representation ρ of the braid group Bn on
L2(Qn) given by

(ρ(σ)ψ)(q1, . . . , qn) = ψ((q1, . . . , qn)σ)

for all σ ∈ Bn, where Bn has a right action on Qn given by:

(q1, . . . , qi, qi+1, . . . , qn)σi = (q1, . . . , qi � qi+1, qi, . . . , qn).

There is also a unitary operator U(q) on L2(Qn) for each element q ∈ Q, given
by

(U(q)ψ)(q1, . . . , qn) = ψ(q � q1, . . . , q � qn).

The operators U(q) represent gauge transformations when Q is a group, so we
can think of them as representing some sort of ‘gauge transformation’ even when
Q is a quandle. Of course, if Q is a conjugacy class in a group G, there will be
gauge transformations even for elements of G that do not lie in Q.
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It is instructive to work out the details in the case of (2+1)-dimensional
quantum gravity. This theory can be viewed as a BF theory with G being the
connected Lorentz group SO0(2, 1), or perhaps better, its double cover SL(2,R).
In either case we shall see that different conjugacy classes Q describe different
types of spinless particles. The Hilbert space for n particles of this type is
L2(Qn), and Theorem 3 describes the exotic statistics and gauge invariance of
this n-particle system.

In quantum field theory without gravity on 3d Minkowski spacetime, we can
describe the energy-momentum of a particle by an element p ∈ sl(2,R):

p =

(

px py + E
py − E −px

)

Note that
det p = E2 − p2

x − p2
y.

The adjoint action of SL(2,R) on its Lie algebra:

SL(2,R) × sl(2,R) → sl(2,R)

(g, p) 7→ gpg−1

preserves the determinant of p. So, the adjoint action gives an action of SL(2,R)
as Lorentz transformations on the space of energy-momenta. As explained in
the Introduction, an orbit of this action is just a type of spin-zero particle.

When we turn on gravity, we must describe energy-momenta not by elements
of the Lie algebra sl(2,R) but by elements of the group SL(2,R). Particle types
are then described not by adjoint orbits but by conjugacy classes Q ⊆ SL(2,R).
However, this new description is compatible with the old one, at least for energy-
momenta that are small compared to the Planck energy 2π/κ. The reason is
that we can identify group elements near the identity with Lie algebra elements
via the map

sl(2,R) → SL(2,R)
p 7→ exp(κp)

This maps any adjoint orbit of sl(2,R) into a conjugacy class of SL(2,R). Indeed,
it gives a one-to-one correspondence between the set of adjoint orbits close to
0 ∈ sl(2,R) and the set of conjugacy classes close to 1 ∈ SL(2,R). But, as
mentioned in the Introduction, important differences show up for large energy-
momenta.

To understand the conjugacy classes in SL(2,R), it is handy to use the
representation

SL(2,R) =

{(

a+ b c+ d
c− d a− b

)

: a, b, c, d ∈ R, a2 − b2 − c2 + d2 = 1

}

which says SL(2,R) is geometrically a ‘unit hyperboloid’ in a space of signature
(+ − −+). Since conjugate matrices have the same eigenvalues, the trace and
thus the number a is an invariant of conjugacy classes. It is not a complete
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invariant, but it is except for matrices with tr g = ±2. Every matrix in SL(2,R)
is conjugate to one of these five kinds:

conjugate to... trace

rotations 7→

(

cosα − sinα
sinα cosα

)

−2 ≤ tr g ≤ 2

boosts 7→

(

eα 0
0 e−α

)

tr g ≥ 2

antiboosts 7→

(

−eα 0
0 −e−α

)

tr g ≤ −2

shears 7→

(

1 α
0 1

)

tr g = 2

antishears 7→

(

−1 α
0 −1

)

tr g = −2.

Some explanation of this table is in order. Every ‘rotation’ maps to a rotation
in the connected Lorentz group SO0(2, 1): in other words, a transformation that
preserves a timelike vector in 3d Minkowski spacetime. Similarly, every ‘boost’
maps to a transformation that preserves a spacelike vector, and every ‘shear’
maps to a transformation that preserves a lightlike vector. Since the two-to-one
map from SL(2,R) to SO0(2, 1) maps the matrix −1 to the identity, ‘antiboosts’
get mapped to the same elements as boosts, and ‘antishears’ get mapped to the
same elements as shears. (An ‘antirotation’ would be just another rotation.)

The above chart counts certain conjugacy classes more than once. First of all,
there is an overlap at tr g = 2, since the identity rotation is also the identity shear
and identity boost. Similarly, there is an overlap at tr g = −2, since a rotation
by π is also an antishear and an antiboost. Finally, all shears (resp. antishears)
with α > 0 are conjugate to each other, and all shears (resp. antishears) with
α < 0 are conjugate to each other. These are all the redundancies.

Knowing this, we can list all the conjugacy classes in SL(2,R) without any re-
dundancies. However, it is less tiresome to list the conjugacy classes in SO0(2, 1),
since the elements ±g ∈ SL(2,R) get identified in SO0(2, 1), so we do not need
to worry about ‘antiboosts’ and ‘antishears’.

Here are all the conjugacy classes in SO0(2, 1), and the corresponding five
types of spin-zero particles:

1. For any 0 < m < 2π/κ there is a conjugacy class containing the image of

(

cosκm/2 − sinκm/2
sinκm/2 cosκm/2

)

∈ SL(2,R).

This corresponds to a tardyon of mass m.
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2. For any 0 < m <∞ there is a conjugacy class containing the image of

(

eκm/2 0

0 e−κm/2

)

∈ SL(2,R).

This corresponds to a tachyon of mass im.

3. There is a conjugacy class containing the image of

(

1 1
0 1

)

∈ SL(2,R).

This corresponds to a positive-energy luxon.

4. There is a conjugacy class containing the image of

(

1 −1
0 1

)

∈ SL(2,R).

This corresponds to a negative-energy luxon.

5. There is a conjugacy class containing the image of

(

1 0
0 1

)

∈ SL(2,R).

This corresponds to a particle of vanishing energy-momentum.

The factors of 1/2 here arise from the double cover SL(2,R) → SO0(2, 1). As
explained in the Introduction, masses of tardyons really take values in the circle
R/ 2π

κ Z.
Each conjugacy class Q ⊆ SO0(2, 1) admits an invariant measure which is

unique up to an overall scale. So, Theorem 3 applies: we can form a Hilbert
space L2(Q) for particles of type Q, and more generally an n-particle Hilbert
space L2(Qn), on which the braid group and SO0(2, 1) gauge transformations
act as unitary transformations.

6 Strings in 4d BF Theory

All the work in the previous two sections generalizes nicely from 3 to 4
dimensions, using the loop braid group as a substitute for the braid group. Let
space be R3 with n unknotted and unlinked circles removed:

X = S − Σ, S = R
3, Σ = ℓ1 ∪ · · · ∪ ℓn.

The fundamental group of X is the free group on n generators, so for any Lie
group G we have

hom(π1(X), G) = Gn.
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As explained in Section 3, a point in this space represents a G-bundle with
flat connection over X , mod gauge transformations that equal the identity at
a chosen basepoint. The n elements of G describing this point are just the
holonomies around the circles ℓ1, . . . , ℓn. Physically, we think of these circles
as string-like ‘topological defects’ where the flat connection on space becomes
singular.

We explained quite generally in Section 3 how the motion group Mo(S,Σ)
acts on hom(π1(X), G). In the present case the motion group is just the loop
braid group LBn, and its generators act on hom(π1(X), G) = Gn as follows:

(g1, . . . , gi, gi+1, . . . , gn)si = (g1, . . . , gi+1, gi, . . . , gn),

(g1, . . . , gi, gi+1, . . . , gn)σi = (g1, . . . , gigi+1g
−1
i , gi, . . . , gn).

This is easy to see using pictures. For example, the generator σ1 has the fol-
lowing effect:

g1
g2

g2
g1

By an argument like the one we made in Section 3 for the ordinary braid group
action in 3d BF theory, it follows that σ1 acts on the holonomies g1, g2 by
switching them while left conjugating g2 by g1:

g1 g2

g1�g2 g1

Similarly, the inverse of σ1 acts to switch the group elements while right conju-
gating g1 by g2:

g1 g2

g2 g1�g2
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The generator s1 simply switches the holonomies g1 and g2:

g1 g2

g2 g1

It is easy to see that if G is unimodular, this action of the loop braid group on
Gn gives rise to a unitary representation of the loop braid group on L2(Gn).
And, just as in 3 dimensions, we can generalize this result to the case of a
quandle:

Theorem 4. Suppose Q is a topological quandle equipped with an invariant
measure. Then there is a unitary representation ρ of the loop braid group LBn

on L2(Qn) given by

(ρ(σ)ψ)(q1, . . . , qn) = ψ((q1, . . . , qn)σ)

for all σ ∈ LBn, where LBn has a right action on Qn given by:

(q1, . . . , qi, qi+1, . . . , qn)si = (q1, . . . , qi+1, qi, . . . , qn)
(q1, . . . , qi, qi+1, . . . , qn)σi = (q1, . . . , qi � qi+1, qi, . . . , qn)

There is also a unitary operator U(q) on L2(Qn) for each element q ∈ Q, given
by

(U(q)ψ)(q1, . . . , qn) = ψ(q � q1, . . . , q � qn).

Proof. While the proof is straightforward, it is worth comparing Theorem 5.1
of Fenn, Rimányi and Rourke [10]. This says that the braid permutation group
BPn is the group of automorphisms of the free quandle on n generators. Since
BPn is isomorphic to the loop braid group LBn, it follows that LBn acts on Qn

for any quandle Q. The action is precisely as above. 2

Let us illustrate these ideas in the case where the gauge group is the con-
nected Lorentz group SO0(3, 1) or its double cover SL(2,C). With either of
these gauge groups, BF theory in 4 dimensions is sometimes called ‘topological
gravity’.

In Section 5 we recalled the classification of conjugacy classes in SO0(2, 1)
and its double cover SL(2,R). The classification for SO0(3, 1) and its double
cover SL(2,C) is very similar, but simpler, because every complex number has
a square root. It is also more familiar, since any element of

SL(2,C) =

{(

a b
c d

)

: a, b, c, d ∈ C, ad− bc = 1

}

gives a fractional linear transformation

z 7→
az + b

cz + d
.
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Such transformations are precisely the conformal transformations of the Rie-
mann sphere. Note that both 1 and −1 in SL(2,C) map to the identity fractional
linear transformation, so the conformal group of the Riemann sphere is

SL(2,C)/{±1} ∼= SO0(3, 1).

Indeed, Lorentz transformations can be thought of as conformal transformations
of the ‘celestial sphere’: the set of light rays through an observer at the origin
[31]. A list of conjugacy classes in SO0(3, 1) can thus be read off from the well-
known classification of conformal transformations of the Riemann sphere [28].
But in fact, it is easy enough to construct this list from first principles.

Every element of SO0(3, 1) is either conjugate to the image of the shear

(

1 1
0 1

)

∈ SL(2,C)

or conjugate to the image of

(

λ 0
0 λ−1

)

∈ SL(2,C)

for some λ 6= 0. The conjugacy class of the latter element is unchanged if we
make the replacement λ 7→ 1/λ, and its image in SO0(3, 1) is unchanged if we
make the replacement λ 7→ −λ. These replacements (and their composite) are
the only ways we can change λ without changing the conjugacy class of the
corresponding element of SO0(3, 1). Using this, we can see there there are five
types of conjugacy classes in SO0(3, 1):

1. For any real m with 0 < m ≤ π/κ there is a conjugacy class containing
the image of

(

eiκm/2 0

0 e−iκm/2

)

∈ SL(2,C).

An element conjugate to one of this form is called elliptic.

2. For any purely imaginary m with 0 < Im(m) < ∞ there is a conjugacy
class containing the image of

(

eiκm/2 0
0 e−iκm/2

)

∈ SL(2,C).

An element conjugate to one of this form is called hyperbolic.

3. For any m ∈ C with 0 < Re(m) < 2π/κ and 0 < Im(m) < ∞ there is a
conjugacy class containing the image of

(

eiκm/2 0

0 e−iκm/2

)

∈ SL(2,C).

An element conjugate to one of this form is called loxodromic.
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4. There is a conjugacy class containing the image of

(

1 1
0 1

)

∈ SL(2,C).

An element conjugate to one of this form is called parabolic.

5. There is a conjugacy class containing the image of

(

1 0
0 1

)

∈ SL(2,C).

This class contains only the identity element.

Now let us return to BF theory with gauge group SO0(3, 1), taking space
to be R3 with a collection of unknotted unlinked circles ℓ1, . . . , ℓn removed.
For brevity let us call these circles ‘closed strings’. A flat connection on space
will have some holonomy gi ∈ SO0(3, 1) around the ith string. The above list of
conjugacy classes lets us list possible ‘types’ of strings, just as we used conjugacy
classes in SO0(2, 1) to list types of point particles in 3d gravity:

1. If gi is elliptic, it acts on Minkowski spacetime as a spatial rotation in
some reference frame. In this reference frame, parallel transport around
the string ℓi is a spatial rotation by some angle 0 < θ ≤ π about some
axis. (A rotation by an angle θ > π is a rotation by θ − π about the
opposite axis.) This angle θ is proportional to the real number m which
appears in item 1 of the above list, as follows:

θ = κm.

By analogy to 3d gravity, we could call the string a tardyon in this case,
and call the number m its ‘mass density’. The number m is real and takes
values 0 < m ≤ π/κ.

2. If gi is hyperbolic, it acts on Minkowski spacetime as a boost in some
reference frame. In this reference frame, parallel transport around the
string ℓi is a boost with rapidity 0 < β < ∞ along some axis. The
rapidity β is proportional to the imaginary number m which appears in
item 2 of the above list, as follows:

β = κIm(m).

By analogy to 3d gravity, we could call the string a tachyon in this
case, and call the number m its ‘mass density’. The number m is purely
imaginary and takes values in the upper half of the imaginary axis: 0 <
Im(m) <∞.

3. If gi is loxodromic, it acts on Minkowski spacetime as a combined rotation
and boost about the same axis in some reference frame. In this reference
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frame, parallel transport around the string ℓi is a combination of a rotation
by an angle 0 < θ < 2π and a boost with rapidity 0 < β < ∞ about the
same axis, where

θ = κRe(m), β = κIm(m).

This case has no analogue in 3d gravity. We can still think of m as some
sort of mass density, but it is complex, with 0 < Re(m) < 2π/κ and
0 < Im(m) <∞.

4. If gi is parabolic, it acts on Minkowski spacetime as a Lorentz transfor-
mation fixing a single null vector. By analogy to 3d gravity, we could call
the string a luxon in this case, and say m = 0.

5. If gi is the identity, we can say the string carries no energy-momentum,
and again say m = 0.

Each of these conjugacy classes Q ⊆ SO0(3, 1) is a quandle. The question
then arises which of these quandles admits an invariant measure, and whether
this measure is unique up to scale. One can work this out on a case-by-case
basis.

One important case is when Q is the conjugacy class containing all rotations
by some fixed angle 0 < θ < π. This conjugacy class corresponds to a ‘tardyonic’
closed string with a given mass density 0 < m ≤ π/κ. It is easy to see that
this conjugacy class Q indeed admits an invariant measure. To see this, note
that to specify a rotation by the angle θ one must first pick a future-pointing
unit timelike vector u ∈ R

4, to split Minkowski spacetime into space and time,
and then pick a unit spacelike vector v orthogonal to u, to serve as the axis of
rotation. The allowed choices of u lie in the hyperboloid

H = {(t, x, y, z) : t2 − x2 − y2 − z2 = 1, t > 0}.

This hyperboloid H is a Riemannian submanifold of R4. An allowed choice of u
together with v amounts to a point in SH , the unit sphere bundle of H . So, we
have Q ∼= SH . Since the unit sphere bundle of a Riemannian manifold is itself a
Riemannian manifold in a natural way, we get a well-defined Lebesgue measure
on SH and thus Q, which is invariant under SO0(3, 1), since our construction
respected the Lorentz group symmetry.

Given an invariant measure on Q, we obtain a Hilbert space L2(Qn) for n
strings of type Q. Note that we do not try to ‘symmetrize’ the states in this
Hilbert space. Instead we describe the statistics using a representation of the
loop braid group, following Theorem 4. Of course, one should work out the
details explicitly, but we leave this for future research.

7 Conclusions

Much more needs to be done to ferret out the physical significance of the theory
we have been considering here. First, there are some nice projects for the
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mathematician. One should determine for various Lie groupsG which conjugacy
classes Q ⊆ G admit invariant measures, and when these invariant measures are
unique up to an overall scale. We have only done this for G = SO0(2, 1), but
for applications to 4d physics other groups are more relevant—especially the
Lorentz, Poincaré, deSitter and anti-deSitter groups. Then, given a conjugacy
class Q ⊆ G with an invariant measure, one should work out explicitly the
representation of the loop braid group LBn on the Hilbert space L2(Qn), if
possible decomposing this representation into irreducibles, so as to understand
in detail the workings of the exotic statistics. It would also be interesting to
study how, in the κ → 0 limit, the exotic statistics approach ordinary bosonic
statistics.

For the physicist, one interesting project would be to study the dynamics
and interactions of the ‘closed strings’ discussed at the purely kinematical level
here. In a paper with Perez [3] we describe a Lagrangian whereby these objects
can couple to the fields in BF theory. We work out the equations of motion and
propose a strategy for quantizing the resulting theory, analogous to the known
quantization of point particles coupled to 3d gravity [33].

A more ambitious project would be to generalize all our results from col-
lections of unlinked unknotted circles to arbitrary embedded graphs. Finally, a
still more ambitious project would be to use these ideas as part of a perturbative
expansion of MacDowell–Mansouri gravity about 4d BF theory, as proposed by
Freidel and Starodubtsev [15].

8 Appendix

Here we present a proof of Theorem 2 on p. 15.

Proof. We begin by demonstrating that the relations in the statement of The-
orem 2 follow from those given in Theorem 1. It clearly suffices to show that
the relations in (b′) and (c′) follow from the relations in (a), (b) and (c).

In what follows, we make frequent use of the correspondence between gener-
ators σij of PLBn and generators σi of LBn as given in (15) and (16). In fact,
since these follow from different relations in the presentation of Theorem 1, it
suffices for our purposes to take one expression from each of these, say

σij =

{

sisi+1 · · · sj−1σj−1sj−2 · · · si+1si for i < j
sjsj+1 · · · si−2σi−1si−1 · · · sj+1sj for i > j

(25)

These representations of σij follow directly from the definition of σi along with
the relations (9), (11), and (12).

• Relation (22): We wish to show that sjσi = σisj for |i− j| > 1. To check
this, we begin with relation (10) in the form:

sjσi(i+1) = σi(i+1)sj ,
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where |i− j| > 1. Using (25) above, this becomes:

sjsiσi = siσisj .

Applying relation (3) of to the left-hand side and then cancelling si from each
side gives sjσi = σisj when |i− j| > 1, which is (22).

• Relation (23): We wish to show that sisi+1σi = σi+1sisi+1 for 1 ≤ i ≤
n− 2. Beginning with relation (11) with j = i+ 1, we obtain:

si+1σi(i+1) = σi(i+2)si+1.

By (25) this gives:
si+1siσi = sisi+1σi+1sisi+1.

Multiplying on the right by si+1si and on the left by sisi+1, we have:

σisi+1si = sisi+1sisi+1σi+1

= sisisi+1siσi+1 by (4)

= si+1siσi+1 by (5)

This can be rewritten as sisi+1σi = σi+1sisi+1, which is (23).

• Relation (24): We wish to show that σiσi+1si = si+1σiσi+1 for 1 ≤ i ≤
n− 2. To verify this we use relation (7) with i, i+ 1 and i+ 2, which gives:

σi(i+2)σ(i+1)(i+2) = σ(i+1)(i+2)σi(i+2).

By (25) this becomes:

(sisi+1σi+1si)(si+1σi+1) = (si+1σi+1)(sisi+1σi+1si).

Applying relation (23) on the left hand side gives:

sisi+1sisi+1σiσi+1 = (si+1σi+1)(sisi+1σi+1si).

Multiplying by sisi+1si on the left produces:

si+1σiσi+1 = sisi+1sisi+1σi+1sisi+1σi+1si

= si+1siσi+1sisi+1σi+1si by (18)

= σiσi+1si by (23)

which is (24).

• Relation (20): We wish to show that σiσj = σjσi for |i − j| > 1. To do
so, we use relation (6) with i, i + 1, j, j + 1, which are clearly all distinct for
|i− j| > 1. We therefore have:

σi(i+1)σj(j+1) = σj(j+1)σi(i+1),
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which, by (25), becomes:
siσisjσj = sjσjsiσi.

Applying (22) to both sides of this equation, followed by relation (3), we obtain:

σiσj = σjσi

with |i− j| > 1, which is (20).

• Relation (21): We wish to show that σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤
n− 2. To check this we start with relation (8) with i, i+1, and i+ 2, which are
clearly all distinct. Thus, we have:

σi(i+1)σ(i+2)(i+1)σi(i+2) = σi(i+2)σ(i+2)(i+1)σi(i+1).

Using the correspondence given in (25) and cancelling si from both sides, we
obtain:

si+1σi+1siσi+1si+1siσi = σiσi+1si+1sisi+1σi+1si

= σiσi+1sisi+1siσi+1si by (4)

= σiσi+1siσisi+1 by (23), (5)

= si+1σiσi+1si+1 by (24).

Cancelling si+1 on the left and multiplying by si+1 on the right produces:

σiσi+1σi = σi+1siσi+1si+1siσisi+1

= σi+1σiσi+1

where in the last step we used (7) in the form siσiσi+1si+1 = σi+1si+1siσi. This
is (21).

The loop braid group thus has generators that satisfy all of the relations
of the braid permutation group. It remains to show that these relations are
sufficient, which we do by demonstrating that the relations in the statement of
Theorem 1 follow from those given in Theorem 2. In this direction of the proof
it is convenient to use both of the equivalent expressions (15) and (16) as the
correspondence between generators σi and σij .

• Relation (9): This relation simply says siσi(i+1) = σ(i+1)isi, which is im-
mediate from (25) since both sides are equal to σi.

• Relation (10): We wish to show skσij = σijsk, whenever i, j, k, k + 1 are
distinct. When either k+ 1 < i < j or i < j < k, sk commutes with each of the
factors in the expansion

σij = sisi+1 · · · sj−1σj−1sj−2 · · · si+1si
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by (17) and (22). Similarly, when k+ 1 < j < i or j < i < k, sk commutes with
each factor in

σij = sjsj+1 · · · si−2σi−1si−1 · · · sj+1sj .

When i < k < k + 1 < j we also need two applications of (18):

skσij = sksi · · · sj−1σj−1sj−2 · · · si

= si · · · sk−2sksk−1sksk+1 · · · sj−1σj−1sj−2 · · · si by (17)

= si · · · sk−2sk−1sksk−1sk+1 · · · sj−1σj−1sj−2 · · · si by (18)

= si · · · sk−2sk−1sksk+1 · · · sk−1sj−1σj−1sj−2 · · · si by (17)

= si · · · sj−1σj−1sj−2 · · · sk+1sk−1sksk−1sk−2 · · · si by (17), (22)

= si · · · sj−1σj−1sj−2 · · · sk+1sksk−1sksk−2 · · · si by (18)

= σijsk by (17)

The only remaining case is j < k < k + 1 < i, which is handled similarly.

• Relation (11): We wish to show that sjσij = σi(j+1)sj whenever i 6= j+ 1.
When i < j we have:

sjσij = sisi+1 · · · sjsj−1σj−1sj−2 · · · si+1si by (17)

= sisi+1 · · · sj−1sjsj−1sjσj−1sj−2 · · · si+1si by (18)

= sisi+1 · · · sj−1sjσjsj−1sjsj−2 · · · si+1si by (22)

= σi(j+1)sj by (17), (25)

and the case i > j + 1 is similar.

• Relation (12): The proof that siσij = σ(i+1)jsi is essentially the same as
the proof of (11) above.

• Relation (6): We wish to show σijσkℓ = σkℓσij , whenever i, j, k, and ℓ are
distinct. Naively there are 4! orderings of i, j, k, ℓ to consider, but symmetry of
the relation implies only 8 are independent. All cases are proved similarly; we
demonstrate only the case i < j < k < ℓ:

σijσkℓ = (si · · · sj−1σj−1sj−2 · · · si)(sk · · · sℓ−1σℓ−1sℓ−2 · · · sk)

= sk · · · sℓ−1(si · · · sj−1σj−1sj−2 · · · si)(σℓ−1sℓ−2 · · · sk) by (17), (22)

= sk · · · sℓ−1σℓ−1(si · · · sj−1σj−1sj−2 · · · si)(sℓ−2 · · · sk) by (22), (20)

= (sk · · · sℓ−1σℓ−1sℓ−2 · · · sk)(si · · · sj−1σj−1sj−2 · · · si) by (17), (22)

= σkℓσij .

• Relation (7): We wish to show that σikσjk = σjkσik when i, j, k are dis-
tinct. We have three independent cases: i < j < k, i < k < j, and k < i < j.
In the case i < j < k, we first note that if j 6= i+ 1, then by (10) and (11) we
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have:

σikσjk = sj−1(σikσ(j−1)k)sj−1

and σjkσik = sj−1(σ(j−1)kσik)sj−1.

By repeated application of these facts, it suffices to consider the subcase where
j = i + 1. Similarly, if k 6= j + 1, we can use (10) and (12) to reduce to the
case where k = j+1. Thus it suffices to consider only the cases where i, j, k are
consecutive:

σi(i+2)σ(i+1)(i+2) = (sisi+1σi+1si)(si+1σi+1)

= sisi+1sisi+1σiσi+1 by (23)

= si+1siσiσi+1 by (18)

= si+1sisi+1σiσi+1si by (24)

= si+1σi+1sisi+1σi+1si by (23)

= σ(i+1)(i+2)σi(i+2).

This proves the case i < j < k. The remaining two cases are similar.

• Relation (8): We wish to show that σijσkjσik = σikσkjσij when i, j, k are
distinct. In light of (7) this equation is symmetric under the interchange of i and
k, and this symmetry reduces the number of independent cases to 3: i < j < k,
i < k < j, and j < i < k. In the case i < j < k, we first note that if j 6= i+ 1,
then by (10) and (11) we have

σijσkjσik = sj−1(σi(j−1)σk(j−1)σik)sj−1

and σikσkjσij = sj−1(σikσk(j−1)σi(j−1))sj−1

By repeated application of these facts, it suffices to consider the subcase where
j = i + 1. Similarly, if k 6= j + 1, we can use (10) and (12) to reduce to the
case where k = j+1. Thus it suffices to consider only the cases where i, j, k are
consecutive:

σi(i+1)σ(i+2)(i+1)σi(i+2) = (siσi)(σi+1si+1)(sisi+1σi+1si)

= siσiσi+1sisi+1siσi+1si by (18)

= siσiσi+1siσisi+1 by (23)

= sisi+1σiσi+1σisi+1 by (24)

= sisi+1σi+1σiσi+1si+1 by (21)

= σi(i+2)σi(i+1)σ(i+2)(i+1)

= σi(i+2)σ(i+2)(i+1)σi(i+1) by (7)

This proves the case of i < j < k. The other two independent cases are similar.
Thus, the relations of Theorem 2 imply those of Theorem 1. 2
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As pointed out by Blake Winter, one can also prove Theorem 2 as follows.
Fenn, Rimányi, and Rourke [10] show that the braid permutation group BPn

is isomorphic to the subgroup, of Aut(Fn) generated by all permutations of
basis elements, together with all operations of conjugating one basis element by
another. LetX be R

3 with unlinked unknotted circles ℓ1, . . . , ℓn removed. As we
have seen, π1(X) = Fn, the free group on n generators, so by the work of Dahm,
the loop braid group acts as automorphisms of Fn. Let D : LBn → Aut(Fn)
be the resulting homomorphism. Goldsmith [16] shows that the image of D is
precisely the above subgroup of Aut(Fn) and that, moreover, D is one-to-one.
It follows that LBn and BPn are isomorphic. Since Fenn, Rimányi and Rourke
prove that BPn has the presentation given in Theorem 2, it follows that LBn

also has this presentation.
After this paper appeared on the arXiv, Sumati Surya pointed out that The-

orem 2 can also be proved using results of Fuks-Rabinowitz [11] and McCullough
and Miller [27].
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