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DETERMINE THE CROSSING NUMBER

Jim HOSTE and Patrick D. SHANAHAN

(Received March 30, 2006)
(Revised June 15, 2006)

Abstract

A diagonal surface in a link exterior M is a properly embedded, incompressible,
boundary incompressible surface which furthermore has the same number of
boundary components and the same slope on each component of 9M . We derive
a formula for the boundary slope of a diagonal surface in the exterior of a 2-bridge
link which is analogous to the formula for the boundary slope of a 2-bridge knot
found by Hatcher and Thurston. Using this formula we show that the diameter
of a 2-bridge link, that is, the difference between the smallest and largest finite
slopes of diagonal surfaces, is equal to the crossing number.

1. Introduction

Let cr(K) denote the minimal crossing number of a knot K in the 3-sphere,
and let D(K) be the diameter of the set of finite boundary slopes of the knot. It
was conjectured by Ichihara that

(1) 2er(K) > D(K)

for all knots K. This conjecture has been proven for 2-bridge knots by Mattman,
Maybrun, and Robinson [12] and for Montesinos knots with three or more tangles
by Ichihara and Mizushima [10]. Moreover, for alternating knots, the difference
between the boundary slopes of the two checkerboard surfaces (in the reduced
alternating diagram) is always twice the crossing number. Hence,

(2) 2cr(K) = D(K)
for all alternating Montesinos knots. Neither [12] nor [10], however, discuss pos-

sible extensions of statements (1) or (2) to link exteriors. In this paper we do this
by considering a restricted set of essential surfaces in the link exterior which we
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call “diagonal” surfaces. Our main result, Theorem 2, provides a formula for the
boundary slope of a diagonal surface of a 2-bridge link L which is analogous to
the formula given by Hatcher and Thurston for the boundary slope of a 2-bridge
knot. As an application of this formula, we prove Theorem 11, that

cr(L) = Da(L)

where L is a 2-bridge link and DA (L) is the diameter of the finite slopes of
diagonal surfaces. In addition, if L is a non-split, n component, alternating link,
and if both checkerboard surfaces are diagonal, then we show in Proposition 12
that 2cr(L) < Da(L). This together with Theorem 11 suggests that

7_21 cr(L) > Da(L),

with equality in the case of alternating links, is a possible generalization of
Ichihara’s conjecture to non-split links.

The paper will proceed as follows. We begin by reexamining the beautiful
relationship between boundary slopes of 2-bridge knots or links and minimal
edge paths in diagrams of curve systems on the 4-punctured sphere developed
by Hatcher and Thurston [7] and by Floyd and Hatcher [3]. In Section 2 we
review the salient features of this theory and use results from our paper [9] in
order to derive a formula for the boundary slope of a diagonal surface. We apply
this formula to prove Theorem 11 in Section 3. Finally, in Section 4, we discuss
extensions of these ideas to n component, non-split links.

2. Boundary Slopes

We begin with some basic terminology. An essential surface S in a compact,
orientable 3-manifold with boundary is a properly embedded surface which is
both incompressible and boundary incompressible. If the 3-manifold is the exte-
rior of a link of n components, then we can choose a preferred basis {yu;, A;} for
each boundary torus 772, 1 < i < n. The intersection of S with T? is a collection
of k; simple, closed, nontrivial, parallel curves which determine an isotopy class
represented by uf* A7* for some co-prime integers p;, ¢;. The boundary slope of S
on component ¢ is defined to be the ratio p; /@i- One can also consider the 2n-
tuple (kip1,k1q1, kopo, kago, . . -y knDn, knqn) which encodes the boundary slopes
and the number of sheets of S on each boundary component.

According to Hatcher [8], a knot can have only a finite number of boundary
slopes. However for a link there may be infinitely many for each componenti
Therefore, in order to define a diameter we restrict our attention to a special
subset of surfaces. Define a diagonal surface to be an essential surface whose
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associated 2n-tuple has the form (kp, kq, kp, kq, . .. , kp, kq). That is, the bound-
ary slope and number of sheets of S on each component is the same. To each
diagonal surface we can assign the single slope p/q. If L is a non-split link, then
Floyd and Oertel [4] prove that there are a finite number of branched surfaces
in the link exterior that carry all essential surfaces. As pointed out in [8], if S
and S are two essential surfaces carried by the same branched surface, then the
intersection number 95, - 9S; is equal to zero. If S; and S, are diagonal with
2n-tuples (kp, kq, kp, kq, . . ., kp,kq) and (jr, js, jr,js,...,jr,js), then

981 - 08y = kj(pr — gs) = 0.

Hence, S; and S; have the same slope and so there can only be a finite number
of diagonal boundary slopes for any non-split link. It follows that the diameter
DA(L) of any non-split link is finite.

We assume the reader is familiar with the fact that corresponding to each
reduced rational number p/q with 0 < p < ¢, is a 2-bridge knot if ¢ is odd or
2-bridge link if ¢ is even. However, we warn the reader that what some authors
call the 2-bridge knot or link L,/,, others call the mirror image of L,/,. In this
paper we follow the convention used in [7] which is opposite that used in (3],
[9], and [11]. In the papers by Hatcher and Thurston [7] and Floyd and Hatcher
[3], the set of essential surfaces in the exterior of a 2-bridge knot or link L,/
are completely described and classified. These papers develop a beautiful corre-
spondence between the essential surfaces in L/, and certain paths in diagrams
of curve systems on the 4-punctured sphere. For all essential surfaces in knot
exteriors, and for diagonal surfaces in link exteriors, this diagram is called D,
and is shown in Figure 1.

The diagram D; is a tessellation of H? by ideal triangles. The rationals,
together with %, are arranged around the unit circle as shown, and two fractions
% and § are connected by a geodesic if and only if ad — bc = +=1. The group
of orientation preserving symmetries of Dy is PSLoZ. Let G C PSL2Z be the
subgroup of M6bius transformations given by z — %;ig where c is even. It follows
that the ideal triangle {3, 2,1} is a fundamental domain for the action of G and
the G-images of the fundamental ideal quadrilateral Q = {4, 9, 3, 1} tessellate
H2. There are two distinct orbits of edges which are labeled A and C'.

An edge path in D; is minimal if it never contains two consecutive edges that
lie in the same triangle. According to [7] and [3], each minimal edge path in D;
from § to % determines a diagonal surface in Ly /q- (A similar correspondeflce ex-
ists for non-diagonal surfaces but involving paths in a more complicated diagram
D;.) For a particular fraction g there can only be a finite number of minimal
edge paths connecting it to %. This follows from the fact that these minimal
paths are all contained in a unique minimal chain of quadrilaterals consisting of
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Figure 1. The Diagram D;.

Q@ and a finite number of its translates under G.

In order to determine the slope of a diagonal surface we must first describe
several important features of edge paths in D;. Each edge path from % to s
corresponds to a continued fraction expansion’

1
B b be,.. b =T+
q |
by —
b 1
b
where the partial sums
&=T+[b1,b2,---,bi]
g

are the consecutive vertices on the path. At the vertex pi/q; the path turns left
with b;1; triangles on the left if bi+1 > 0 or to the right with —b,, ; triangles on

the right if b;1; < 0. For example, the path v shown in Figure 5 corresponds to
the expansion

13

3 =0+ 2-1,1,-1,1,-9).

!We follow the notational convention of [7].
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Because b; can be interpreted in terms of the amount of turning at vertex
Pi-1/Gi-1, we call the b;’s the turning numbers of the path. For any path ~ let
nﬂ,’ and n7 be the number of positive and negative turning numbers respectively.
Minimality of a path can now be stated in terms of the turning numbers: a path
is minimal if and only if all the turning numbers are 2 or more in absolute value.

We may recursively generate D; by starting with the initial pair % and % and
then introducing mediants. We first introduce the mediant £ = }, obtaining
the sequence {%, %, 91-} We now insert mediants again between each consecutive
pair of fractions to obtain {%, %, %,%, %} and so on. This process keeps the
sequence in decreasing order and also preserves the fact that the determinant
Digi+1 — Pi+1¢i of consecutive fractions is always +1. Viewed this way we see
that every vertex in D, has two parents: the fractions that gave birth to it when
taking mediants. Both parents of a link (a fraction with even denominator, and
thus corresponding to a 2-bridge link) are knots, while the parents of a knot (a
fraction with odd denominator) are a mixture of a knot and a link. Furthermore,
the numerators of the parents of a link must have opposite parity. It is not hard
to see that each vertex in a minimal path from % to g must be a parent of the
next vertex.

A minimal path is called even if all of the turning numbers are even. Note
that an even path starting at 1/0, can never traverse the diagonal (C-type edge) of
any quadrilateral. Thus, the vertices along an even path must alternate between
knots and links. Notice that there exists a unique even path from 1/0 to 0/1
and also from 1/0 to 1/1 while there exist two even paths from 1 /0 to 1/2. This
pattern persists in general. That is, each knot p/q has a unique even path, e(p/q),
connecting it to 1/0 while each link p/q has exactly two such even paths. In the
case of a link, we denote the even path which arrives via the parent with even
numerator ¢°(p/q) and the one which arrives via the parent with odd numerator
e'(p/q). These facts follow from an inductive argument as follows. Suppose p/q
is a knot. Exactly one of its parents, say a/c, is a link. By the first remark
above, any even path to p/q must arrive through a/c. Since a/c is closer to 1/0
than p/q, we may assume inductively that there exist two even paths from 1/0
to a/c. Each of these may be extended to a path to p/q by adjoining the edge
{a/c,p/q}. The final turning numbers of these two paths differ by one, hence
exactly one of them is even. If, on the other hand, p/q is a link, then both its
parents are knots. Again by our inductive hypothesis, each parent is connected
to 1/0 by a unique even path. Now both of these paths extend to even paths to
p/q because the turning number at a knot vertex along any path which consists
of A-type edges only is always even.

Given p and q define €;(p/q) as

ei(p/q) = (-n)lP/d for 0<i<yg,
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is the greatest integer less than or equal to z. These numbers play

where |z]
For example,

several important roles in relation to the 2-bridge knot or link L, /-
they can be used to express the single relation in a certain 2-generator presen-
tation of the fundamental group of the complement. Or, in the case of a link,
the sum of all the €;’s where i is odd is the linking number of the two compo-
nents (assuming a certain orientation convention). It is convenient to introduce
notation for the sum of the even and the sum of the odd €;’s. Let

La=1)/2] L(a-2)/2]
oop/e) = > eulp/e) and or(p/@)= D e2+1(p/).
=1 i=0

If v = {1/0,p1/q1,- - - , Pn/qn} is any oriented edge-path in D, from 1/0 to p,/qn,
we define m(7y) to be

n—1
Di Pi+1
miy) = det .
@ ; ( qi qi+1 )

More generally, if v is any oriented edge-path in D; we define m(~) to be the
sum of the determinants of its edges, excluding any edge containing 5

We may now state the following result which gives three different formu-
lations for the boundary slope of a 2-bridge knot corresponding to a specific
minimal path in D;. The first of these is Proposition 2 of [7]. Later in this
section we will show that the second two formulations follow from the first.

THEOREM 1. If <y is a minimal path in Dy from } to the 2-bridge knot 2,
then each of the following gives the boundary slope of the corresponding essential
surface.

LR o el (B B it |
2. Loy L mle(pia
3. =2[m(y) — 200(p/q)]

It is worth noting that the first formula for the boundary slope given above
can be thought of as a slope of 2(n¥ —n3 ) with respect to a non-preferred longi-
tude‘,‘ which .is then rewritten in terms of the preferred longitude by subtracting
the .correctlon” te.rm .2 (n:’(p /) ~ Me(p/qy)- Similarly, m(e(p/q)) and 204(p/q)
provide the correction in the second and third formulas.

In [3], Floyd and Hatcher extended the work of Hatcher and Thurston. clas-
sifying all essential surfaces in 2-bridge link exteriors. Lash [11] then deve;loped
an algorithm to compute the boundary slopes of these surfaces. Lash’s algorithm
was not published, but is described in both [6] and [9]. The following theorem
provides the analog of Theorem 1 for diagonal surfaces in 2-bridge link exteriors.
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The third of these formulations is easily derived from [9] which simplifies and
extends the work of [11].

THEOREM 2. If < is a minimal path in Dy from } to the 2-bridge link 5,

then each of the following gives the boundary slope of the corresponding diagonal
surface.

L (nf=n3) = 3[(n8o(p/0) — Margp/a) + (Wi o) — M)
2. ~[m(y) - § (m(e®(p/q)) +m(e' (p/q)))]
3. =[m(y) - 0a0(p/q)]

The similarity between Theorem 1 and Theorem 2 can be further enhanced
by thinking of the “correction” terms as being obtained by averaging over all even
paths. For example, there are two even paths to a link and so (m(e®) +m(e'))/2
is the average value of m(~) averaged over all even paths 7. Since there is only
one even path to a knot, m(e) is again the average value of m averaged over all
even paths.

Continuing to compare Theorems 1 and 2, we also see that it is necessary
to multiply by a factor of 2 when going from links to knots. This makes sense
because when the two components of a link are “joined” to form a single knot,
and boundary curves on each component are connected to form a single boundary
curve, the numbers of longitudes and meridians comprising each of the original
boundary curves must be combined. Since diagonal surfaces have the same data
on each component this combination amounts to multiplication by 2.

The remainder of this section will be devoted to proving Theorems 1 and 2. A
number of lemmas are required to relate the quantities n;’ e Y m(v) and oo(p/q)
for different paths . We begin with a result describing how m(vy) changes when
7 undergoes a simple change.

Let C be the minimal chain of quadrilaterals from % to g. Suppose that 7 is
any path in C from %)- to g and that T is a triangle in C having one or two edges
in . If we remove from ~ the edges of 7 and then replace them with the edges
of T that are not in «y we obtain a new path in C from from 5 to 5. We call this
a triangle move. We may further refine our definition to left and right triangle
moves depending on whether T lies to the left or right of the original path.

LEMMA 3. Changing v by a left triangle move increases m(y) by 1.

PrOOF. Every quadrilateral in C is the image of the fundamental quadri-

lateral by an element
% e
e d
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where ¢ is even and ad — bc = 1. Thus, the vertices of the quadrilateral are (in

counter-clockwise order)

aba+2b a+ b}
c'dc+2d c+df’
Furthermore, the diagonal connects % to i;l'—g. Let T3 be the triangle with vertices
{28, ‘C’—j_’—g} and 75 the triangle with vertices {g, %f;—g. ‘F‘IT—L‘;’ . If we orient the
boundary of each triangle counter-clockwise, then it is a simple matter to check
that m(dT;) = —1 for i = 1,2. Now suppose that ' is obtained from 7 by a left
triangle move across the triangle 7. If m(vy) = x + y where y is the contribution
to m(~) due to the edges of T in v, then the edges of T"in 7' contribute y + 1 to

m(~'). Hence

mEA)=z+y+1=m(y)+1

Therefore, a left triangle move always increases m by 1. C

There are two paths in C from % to g which we will call the upper and lower
paths. Topologically, C is a disk. The lower path follows the perimeter of C
from § to  in the counter-clockwise direction while the upper path follows the
perimeter in the clockwise direction. Except when ¢ = 1, neither path can contain
three edges in a row from a single quadrilateral since C is minimal. However, it
is possible that two edges in a row are from the same quadrilateral. In this case,
if the vertex common to the two edges has an even denominator, then the path
is not minimal. If we replace each such occurrence with the diagonal of that
quadrilateral, then the path will be minimal. Call these two paths the lower
minimal path v, and the upper minimal path ~y,. (If ¢ =1, then p/q = 0/1, or
1/1 and 7 = 74.)

LEMMA 4.  The determinant of every edge in both the lower path and the
lower minimal path of C (except for the first edge, which contains %) zs —1. The
determinant of every edge in both the upper path and the upper minimal path of
C (except for the first edge, which contains %) zs +1.

PROOF. We show first that as we traverse the perimeter of C in the counter-
clockwise direction the determinant of each edge, other than the edge {1,921},
is —1. If C consists of a single quadrilateral then this is easy to check. OPlr&
ceedirligdby induction, imagine that the last quadrilateral of the chain has been
attached to all the previous ones along t 8.5 <
is reached before % as one travels coungterl:l::aloiclljfise Cf;gxi’ lw hf’zIfEuZheb vertex' .

‘ 2 , by our in-
ductive hypothesis, ad — be = —1. If ¢ is even, then the perimeter of C has
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been changed by replacing the edge {2, %} with the sequence of three edges
{ %,ﬁ},{:—ﬁ’.z—f%}.{z+?b.§ }. Each of these three new edges has deter-
minant 1. If instead d is even, the edge {2, %} is replaced with the sequence
{{%,%—H},{%ﬁ, L—Lg}. {L—‘%’, %}}. Once again, the determinants of these new
edges are all 1. Since reversing the direction of an edge negates its determinant,
we see that every edge of the upper path has a determinant of +1.

If the lower path is not minimal, then we may change the lower path to the
lower minimal path by left triangle moves where, moreover, each triangle move
replaces two edges with one edge. Such a move increases m by 1 and hence the

new edge still has a determinant of —1. A similar argument applies to the upper
minimal path. O

LEMMA 5. Let v be any path from 1/0 to p/q in C. Then

—m(y) =nd —nJ.

PROOF. Our strategy is to first prove the result for a specific path v and
then show that it remains true as 7 is changed to any other path by triangle
moves. Let v be the lower (not necessarily minimal) path in C. It follows that
r =0 and all the turning numbers by, by, ..., by, are positive. Thus n,f =~ B
n -0 =n. But, from Lemma 4, m(y) = —n. Thus, —m(y) =ni —nJ.

Now suppose that + is any path in C and we change v by a left triangle move.
By Lemma 3 this will increase m by one. We wish to show that nd —n; decreases
by one. Consider first the case where one edge of v is replaced by two edges.
The new path has one more vertex and one more turning number. It is not hard
to see that the new turning is negative while all the other turning numbers keep
the same sign. Hence, n; increases by one and the difference n — n7 decreases
by one.

If the left triangle move exchanges two edges for one, then we may treat it as
a right triangle move that exchanges one edge for two. The proof is now nearly
the same as before except that the new turning number contributes to n?yL in§tead
of nJ. Therefore such a right triangle move increases ni —n; by one while m
decreases by one. : O

? bl
We now turn our attention to the €;’s in order to relate go to m andn™—n".
LEMMA 6. If0 < i < gq—1, then

ei(p/q) = (-1)" €q—i(P/4):

PROOF. There is a beautiful, and quite useful, geometric interpretation of
the ¢;’s. Figure 2 shows a line of slope p/q extending from (0,0) to (g, p). It cuts
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/./

e=-1 //’/
e —1 /

q

Figure 2. The heights of the dots on the line of slope p/q give the ¢€;’s.

the line z = i at a point P; with height ip/q. Thus |ip/q] is the height of the
integer lattice point just beneath P;. Each time the line passes through another
horizontal line in the lattice, the signs of the €;’s change. The result now follows

if we consider rotating this figure 180 degrees around its center. O

The following result follows directly from Lemma 6 and also can be visualized
nicely in Figure 2.

LEMMA 7. If q is odd, then

oo(p/q) = (—1)** o1 (p/q).

If p/qg = (a + b) /(c + d) is the mediant of a/c and b/d, then we would like to
relate the sum of the even or odd ¢;’s for p/q to the corresponding sums for its
parents a/c and b/d. The next lemma provides the first step in this direction.

LEMMA 8. Let a,b,c, and d be positive integers such that ged(a,c) =
ged(b,d) =1, 0 < a/c < b/d and ad — bc = —1. Let p/q = (a + b)/(c +d)
be the mediant of a/c and b/d. Then

ei(a/c) =€(p/q) for 0<i<e, and
€i(b/d) =€(p/q) for 0<i<d.
PROOF. We give a geometric proof based on Figure 3. Consider the paral-

lelogram P which is the image of the unit square, (0,1] x [0,1] under the linear
transformation 7" given by
r—( ¢ d
G )
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(g:p)
ol st
o
b
,4/
(0, 0) d c

Figure 3. The parallelogram contains no lattice points in its interior.

No integer lattice point lies in the interior of P since T takes the interior of
the unit square to the interior of P. For 0 < i < ¢, the points (i,ia/c) and
(i,ip/q) lie in P and hence cannot have an integer lattice point between them.
Thus |ia/c| = |ip/q| and so €;(a/c) = €i(p/q). A similar argument shows that
€i(b/d) = ei(p/q) if 0 < @ < d.

(The fact that the parallelogram P has an area of 1 unit is the basis of a
neat parlor trick! See page 96 of [5].) g

Using Lemma 8 we may now express o;(p/q) in terms of its parents. The
following formulae can all be discovered by examining Figure 33

LEMMA 9. Assume the hypotheses of Lemma 8.
If q is even, then

oo(p/q) = oola/c) + oo(b/d), and
o1(p/q) = o1(a/c) + o1(b/d) + (-1)".
If q is odd, then

oola/c) + (=1)PT1o1(b/d) if cis odd,
oo(p/9) = { og(b/d) +(-1)PHloi(a/c) ifdis odd.

PROOF. Suppose ¢ is even and therefore both ¢ and d are odd. Using
Lemmas 6 and 8 we obtain

(g—2)/2

oo(p/a) = Y eilp/q)

i=1
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32
(c-1)/2 (g—2)/2
= Z eg,(p/q) -+ Z 621'(1’/‘1)
i i=(c+1)/2
(e-1)/2 (g—2)/2
Z 621 a/c) == Z €q—2i(p/q)
=1 1= (C+1)/2
(d—1)/2
= og(a/c) + Z €2:(p/q)
i=1
(d—1)/2

= ogo(a/c) + Z €2i(b/d)

=1

= oo(a/c) + oo(b/d).

If we consider the sum of the odd ¢;’s instead, we obtain

(g—2)/2
o1(p/q) = Z €2i+1(p/q)
(013())/2 (g—2)/2
= > eml/o)+el@/a)+ Y, einp/q)
=y i=(c+1)/2
(c—3)/2 (g-2)/2
Z enpifafc) + (LU 4 N o o ) (n/g)
i=0 i=(c+1)/2
(d—3)/2
=o1(a/c) + (-1)°+ Y e241(p/q)
=0
(d-3)/2
=o1(a/e) + (-1)°+ Y e2i41(b/d)
=0

=o1(a/c) + (-1)* + o1(b/d).
The cases when ¢ is odd are similar and are left to the reader.

PROPOSITION 10. If q is even, then

m(e’(p/q)) = 00(p/q) — 01(p/q), and
m(e'(p/q)) = o0(p/q) + o1(p/q).

If q is odd, then

m(e(p/q)) = 200(p/q).
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R S 5 R

T !

Figure 4. The last quadrilateral in the minimal chain from 1/0 to either
Ror S.

PRrOOF. We use an induction on the number of quadrilaterals in C. If C is
a single quadrilateral, then the proposition is easily verified.

To prove the inductive step, we must consider two cases depending on how the
last quadrilateral is attached to the chain. The two cases are shown in Figure 4.
Here P,Q,R and S represent reduced fractions with R the mediant of P and @,
and S the mediant of P and R. The denominators of @ and S are even and
these vertices correspond to links. The opposite is true of P and R. Finally, the
numerators of P and R have opposite parity. In both cases the arrow is used
to indicate that the quadrilateral is attached to the previous quadrilateral in the
chain along the edge PQ.

Consider the case shown on the left side of Figure 4. We first show that
the result holds for the vertex R and then use this to prove the result for the
vertex S. Throughout the proof we shall use the notation [n(A)] to denote the
numerator of vertex A modulo 2. From Lemma 9 we have

200(R) = 209(P) + (—1)"®*+124,(Q).

Using our inductive hypothesis for vertex P and the fact the n(R) and n(P) have
opposite parity we can rewrite this equation as

(3) 200(R) = m(e(P)) + (—1)"")201(Q).

The unique even path e(P) to P is the extension of an even path to one of its
parents and there are two cases to consider depending on whether P is a parent
of Q or vice versa. Suppose first that P is a parent of Q. The two even paths
to Q arrive through its parents. Thus by definition we have that elnPN(Q) is
obtained from e(P) by adjoining the edge PQ. Since the determinant of edge
PQ is —1 we have

(4) m(eP)(Q)) = m(e(P)) — 1.
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There are two even paths to Q and the even path to R is the extension of one of
them. It cannot be the extension of em(P)](Q) since in this case the last turning
number would be —1. Hence it must be the extension of e*®)1(Q). (Here we

use the fact that P and R have numerators of opposite parity). Thus
(5) m(e(R)) = m(e" Q) +1

since the determinant of QR is +1. If instead, @ is the parent of P then it turns
out that Equations 4 and 5 are still true, the proof of which is an exercise that

we leave to the reader.

Thus, in any case, we see that m(e(P)) = m(e®)(Q))+1. Substituting this
into Equation 3, using the inductive hypothesis for vertex Q twice, and finally
using Equation 5 we obtain:

200(R) = m(ePN(Q)) + 1 + (-1)""201(Q)
= 00(Q) - (-1)"Po1(Q) + 1 + (-1)"P201(Q)
= 00(Q) + (-1)"Plgy(Q) + 1
= m(e"P+1(Q)) + 1
= m(e(R)).

Hence the result is true for vertex R. Now consider vertex S in the left-hand
side of Figure 4. From Lemma 9 we have:

00(S) =0o(P) + 0o(R) and
a1(S) = 01(P) + o1 (R) + (-1)™P),

Adding these two equations and using Lemma 7, the inductive hypothesis,
and the result we have already proven for vertex R, we obtain

200(R) + 1 if n(P) is even;
200(P) — 1 if n(P) is odd.
i { m(e(R)) + 1 if n(P)is even;

m(e(P)) — 1 if n(P) is odd.
=m(e'(8)),

00(S) + a1(S) ={

since the determinant of RS is +1 and the determinant of PSis -1
If instead we subtract, we obtain ;

. _ [ 200(P) — 1 if n(P) is even;
0(S) — o1(S) {200(R)+1 ifn(P)i:deI.l
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g { m(e(P)) — 1 if n(P) is even;
| m(e(R)) +1 if n(P) is odd.
= m(e(9)).

The case for the right-hand side of Figure 4 is similar. O

We may now prove Theorems 1 and 2.

PROOF OF THEOREM 1. Part 1 of Theorem 1 is Proposition 2 of [7]. Part 2
now follows from Lemma 5 and part 3 follows from Proposition 10. O

PROOF OF THEOREM 2. Part 3 of Theorem 2 may be derived from [9] as
follows. Lemma 3 of [9] states that the boundary slope of a diagonal surface
corresponding to a minimal edge-path v with no C-type edges is m(y). To
express this slope with respect to a preferred longitude we must subtract oo(p/q)
as described at the end of Section 3 in [9]. Finally, as mentioned already, the
definition of L, /, used in [9] is the mirror image of what is used here. Thus, the
boundary slope is —[m () — o0(p/q)]-

If v contains C-type edges, then Theorem 6 of [9] applies. For diagonal
surfaces, the theorem gives a boundary slope of £ — P+ N. Here x = m(y')
where 7' is a path with no C-type edges obtained from v by P left triangle
moves and N right triangle moves. Hence, by Lemma 3, z — P + N = m(7).
Again, we must subtract oo(p/q) and negate the result.

Part 2 of Theorem 2 now follows from Proposition 10. Finally, part 1 follows
from Lemma 5. O

3. Diameter and Crossing Number

If Lis a link, let DA(L) be the diameter given by the difference between
the maximum and minimum (finite) slopes of diagonal surfaces in L. If in fact L
is a knot this reduces to the usual notion of diameter. Finally, let cr(L) denote
the crossing number of L. The results of the previous section now allow us to
relate the diameter of either a 2-bridge knot or link to its crossing number. We
do this in the following theorem, which in the case of knots was proven in [12]
using different techniques.

THEOREM 11. If L is a 2-bridge knot or link with n components, then
2
DA(L) = 5 cr ()t

PRroor. Suppose L = L, is any 2-bridge knot or link and C is the minimal
chain of quadrilaterals from % to g. Let ¢ and 7, be the lower and upper minimal
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Figure 5. The path 7 has turning numbers 2, -1,1,-1,1,—-2.

paths in C respectively. From Lemma 3 we see that m(y) and m (7. ) provide the
extreme values of m since left triangle moves increase m by one. From Theorems 1
and 2 it follows that the diameter is

Da(l) = 2 [m(7) — m()].

It remains to show that m(~v,)— m(v,) equals the crossing number.

We illustrate the idea of the proof of this fact with the example g = é—i shown
in Figure 5.

From Lemma 4 we have that m(y,) = ¢ — 1 and m(y) = —j + 1 where i and
J are the number of edges respectively in the two paths. Thus m(~,, ) — m(7ye) =
1472

The area between ~, and v, is made up of triangles which, except for the
first and last triangle, have one edge on one path and the opposite vertex on the
other path. Label the first triangle U, the last triangle £ and all the intermediate
triangles either / or L depending on whether or not they contain an edge on
the upper or lower path. This labeling determines a unique path ~ which keeps
all the triangles labeled U on its left and all the triangles labeled £ on its right.
The path vy is shown dashed in Figure 5. Note that, as in this example, 7 may
not be minimal. The turning numbers for ~ alternate in sign and the,sum (;f
the absolute values of these turning numbers is clearly equal to the number of
triangles that have been labeled. Since each triangle contains one edge of 7, or
7Ye, except for the first and last, this number equals i + j — 2. Finally, it is :vell
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known that 7 corresponds to the continued fraction which gives the standard
alternating 4-plat diagram of the link. (See for example, Proposition 12.13 of

[1].) Thus, the sum of the absolute values of the turning numbers is exactly the
crossing number of L. a

4. Final Remarks

In the introduction it was mentioned that the difference between the slopes of
the two checkerboard surfaces in the reduced alternating diagram of an alternat-
ing knot is equal to twice the crossing number. That is, for an alternating knot
K we have Do (K) > 2cr(K). However, this inequality does not immediately
generalize to one for alternating 2-component links. While [2] guarantees that
checkerboard surfaces in reduced, alternating diagrams of non-split links are es-
sential, they may not be diagonal. For example, one of the checkerboard surfaces
for the Whitehead link has slopes of —4 and —2 on the two components. On the
other hand, there are infinitely many examples of alternating links for which both
checkerboard surfaces are diagonal. (For example, the three-component pretzel
link (3,2,3,2,3,2) has diagonal checkerboard surfaces with slopes —2 and 8, and
the three-component Montesinos link K(1/2,13/17,1/2,3/5,1/10,3/5) has diag-
onal checkerboard surfaces with slopes —10 and 10). For alternating links where
both checkerboard surfaces are diagonal we have the following result.

PROPOSITION 12. Let L be a non-split alternating link of m components,
and assume that both checkerboard surfaces in a reduced alternating diagram of
L are diagonal. Then

2
Da(L) 2 g cr(L).
The proof of this proposition makes use of the following lemma.

LEMMA 13. Let L be a non-split alternating link of n components. Let
S and T be the two checkerboard surfaces in a reduced alternating diagram of
L. If s; and t; are the boundary slopes of S and T respectively on the the i-th
component, then

n

}:(Si —ti)

i=1

22 er(l)

PROOF. By [2] both-S and T are essential surfaces. The surface S is a
collection of non-nested planar disks connected to each other by twisted bands
as shown in Figure 6. By examining any such disk of 5, it is easy to see that all
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Figure 6. Right and left twisted bands in a checkerboard surface.

of the twisted bands are the same handedness because L is alternating. Further-
more, since the disks of 7" are the complementary planar regions of the disks of 5.
it follows that the bands of 7" have the opposite handedness. Without loss of gen-
erality, assume that S has only right twisted bands while 7" has only left twisted
bands. From Figure 6 the contribution to the boundary slope on component i is
easily computed. The following table summarizes these contributions.

band type crossing type contribution
4] +1
right twisted | i = j, positive +2
1 = j, negative 0
Tty -1
left twisted | i = j, positive 0
1 = j, negative -2

For 1 <i < n, let a; be the number of crossings in the reduced diagram where
component ¢ passes over a different component. For self-crossings, let P; and N,
be the number of positive and negative self-crossings respectively for component
i. Using the table we see that s; = a; + 2P; and t; = —a; — 2N;. Therefore.

Y (si-t)= 2) (ai + P + N;) = 2cr(L). O
=1

=1

The proof of Proposition 12 is now simple. Since both S and 7" are diagonal,
si=sj=sandt; =¢t; =t foralll < i,J < n. Therefore, by Lemma 13 we have
n|s —t| =2cr(L) and the result follows.
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