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LINKED EXACT TRIPLES OF TRIANGULATED 

CATEGORIES AND A CALCULUS OF t-STRUCTURES 

.. 
Michael Berg 

Department of Mathematics 
University Hall 

Loyola Marymount University 
1 LMU Drive, Suite 2700 

Los Angeles, California, 90045-2659, USA 

e-mail: mberg@lmu.edu 

Abstract: We introduce a new formalism of exact triples of triangulated 
categories arranged in certain types of diagrams. We prove that these ar
rangements are well-behaved relative to the process of gluing and ungluing 
t-structures defined on the indicated categories and we connect our con
.structs to· a problem (from number theory) involving derived categories. We 
also briefly address a possible connection with a result of R. Thomason. 

AMS Subject Classification: 18E30 
, Key Words: exact triples of triangulated categories, t-structures 

1. Introduction 

We examine arrangements of exact triples of triangulated categories- in the 
setting of what might be called .. an initial assignment problem:, adapting the 
phrase "initial value problem" from the theory of differential equations. The 
idea, .worked out in Section 3, below, is to develop a yoga of gluing (and, 
so to speak, ungl~ing) t-structures on a prototypical arrangement of four 
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118 M. Berg 

such triples, starting with an af!~ignment of three ( out of seven) t-structures 
as the aforementioned initial assignments. It turns out that this arrange
ment of triples is not unnatural, and neither is the particular assignment 
of initial t-structures: recent. and ongoing number-theoretic work [2, 3] by 
this author concerns a set-up of precisely this type for not just triangulated, 
but derived categories ( of bounded sheaf complexes on special topological 
spaces). The larger context of that work is actually the open problem of the 
analytic proof of higher, i.e. general, reciprocity laws for algebraic number 
fields, seeing that the raison d'etre of the cited papers is to go at Kubota's 
"blueprint" for a solution [10] by sheaf-theoretic methods. Specifically, we 
show in [3] that n-Hilbert reciprocity obtains as a consequence of the van
ishing, or degeneration, of a particular "vertex" in n - 1 ( of n) arrangements 
of linked exact triples of the sort considered below. We say more about this 
number-theoretic connection in Section 5; it provides the justification for the 
t-structure calculus we introduce in what follows. · 

Because the particular notation attached to the corresponding .arrange
ments of exact triples of derived categories of the sort just mentioned is 
dauntingly cumbersome we have opted, instead, to work in the present arti
cle with suitably restricted exact triples of triangulated categories. And, as 
we just indicated, the circumstances that these hypotheses are in fact met 
by certain players occurring in [3] yields ab initio that our discourse is not 
vacuous. 

Additionally, we address in Section 4 a quasi-conjectural connection be
tween our work atld what we will call Thomason's correspondence. This· 
c_orrespondence, going back to [11], engenders a dictionary between strictly 
full triangulated subcategories of a given triangulated category with an essen
tially small object class and subgroups of the latter category's Grothendieck 
group. We convey, accordingly, what our results should look like in terms of 
corresponding Abelian groups, at least if certain largely set-theoretic criteria 
are met. 

Finally, regarding the remaining structure of this paper, we devote Sec
tion 2 to the requisite background material covering triangulated ( and oc
casionally derived) categories, exact triples and diagrams linking them, _and 
t-structures and gluing and ungluing them in the setting of an exact triple. 
We spend a considerate amount of time on the different presentations of 
gluing ( and of gluing data, of course) since we aim for the simplest possible 
formulation of the ensuing yoga oft-structures. Accordingly we impose cer
tain important hypotheses on our categories and morphisms. However, as 
already observed, these restrictions do not degenerate to vacuity. The heart. 
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of the paper is Section 3. 

2. Triangulated Categories, t-Structures 
and the Process of Gluing 

Our primary reference is [5] and we take the liberty of outlining the rele
vant parts of the theory of triangulated categories, in the extended sense 
indicated, as presented there, without citing chapter and verse. When other 
sources are indicated we mention them explicitly, of course. 

By definition, an additive category, '.D, is said to be a triangulated cate
gory if it comes equipped with a translation autofunctor 

and a class of triangles, 

- [1] : '.D -t '.D ' 
X 1--t X[l], 

X -t Y -t Z -t X[l], 

(2.1) 

(2.2) 

+1 . 
also rendered as X -t Y -t Z ~ or even simply (X, Y, Z), where the arrows 
are morphisms in '.D; morphisms of triangles are commutative diagrams of 
the form 

X-tY-tZ-t 

-!- -!- + 
X' -t Y' -t Z' -t 

X[l] 

+ 
X'[l] 

(2.3) 

and (2.3) gives an isomorphism of distinguished triangles if and only if the 
vertical arrows are isomorphisms in '.D. Beyond this, in the class of such 

· triangles the following four axioms cut out a subclass of distinguished ( or 
exact) triangles: 

(TRl) For every X E '.D, the triangle X ~X -t O -t X[l], i.e. 

X = X -t O ~, is distinguished. If we have an isomorphism of triangles in 
(2.3) and one of these is distinguished, so is the other. For every X -:-t Yin 
'.D there is at least one Z E '.D s1,1ch that (X, Y, Z) is distinguished. 

(TR2) (Rotation) ·x--4y ~Z~X[l] is distinguished if and only if 

Y ~Z~X[l]-u[VY[l] is distinguished, too. 

(TR3) With the rows of (2.4), below, distinguished and with the solid 
vertical arrows, f,g, f[l], given, we always get a completed diagram via the 
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dotted arrow, h, 

X 

tf 
---+ X[l] 

t J[l] 
X' ---+ Y' ---+ Z' ---+ X'[l], 

making for a morphism of distinguished triangles. 

M. Berg 

(2.4) 

(TR4) (The Octahedron - Draw a Picture!) Given a pair of morphisms 
X ~ Y, Y ~ Z in l) and three distinguished triangles 

and X ~ Z ---+ C + \, there are morphisms A ~C, C ~ B in 1.), yield
ing triangle morphisms (idx, v, a), (u, idz, b) and the distinguished triangle 

A~C~Bx[l]>y A[l] (this compact phrasing of the octahedron axiom is 
adapted from {41). 

One establishes quickly that a distinguished triangle ( X, Y, Z) gives rise, 
for any A E 1.), to two long exact sequences, 

... --t Homi'>(A, X[i]) --t Homi'>(A, Y[i]) --t Homi'>(A, Z[i]) 

--t Homi'>(A, X[i + 1]) --t ... , (2.5a) 

... --t Homi'>(X[i + 1], A) --t Hom:n(Z[i], A) --t Hom:n(Y[i]A) 

--t Hom :n (X[i], A) --t ... , (2.5b) 

' ' H:1.)----t2t, (2.6) 

is a cohomological functor from 1.) to some Abelian category, 2l, meaning that 
H maps any distinguished triangle (X, Y, Z) to an exact sequence H(X) --t 

H(Y) --t H(Z), then, via TR2, 

... --t H(X[i]) --t H(Y[i]) --t H(Z[i]) --t H(X[i + 1]) --t . . . (2.7) 

is a long exact sequence in 2l. 
Next, a class, S, of morphislllS in a triangulated category, l), is called a 

localizing class if SES{=} S[l] ES, and if we have that for f, g ES in (2.4), 
above, we also obtain that h E S. The localization of 1.) at S is obtained by 
formally inverting the morphisms in S and is denoted by l) [s- 1] (properly 
speaking this is achieved through the services of a functor 1.) --t 1.) [s- 1] . ~ 
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replete with the obvious universality property; see [5], pp. 87-88). One says 
that a triple of triangulated categories, 

(2.8) 

is exact if, with P just inclusion, e: is a thick subcategory of D and ~ = 
D [ cp ( e:)-1] is the localization of D at the set 

·cp ( e:) : = { s E Mor ( e:) I 3 a distinguished triangle, X -4 Y -+ Z. + 1> , 

with Z E e:}. (2.9) 

Recall that e: is a thick subcategory of D if and only if we have that 

for any distinguished. triangle X ~ Y -+ Z ±4 for which f factors through 
some object in D, if Z E e: then X, Y E e:. 

As far as our purposes are concerned the raison d'etre for (2.8) is of 
course the mechanics of gluing t-structures, so we begin this development be 
recalling that, again by definition, a t-structure on a triangulated category, 
D, is a pair of full subcategories, ('.D:'.S0,n2::0), of D, obeying the following 
rules: if 1):'.Sn := D:'.S0[-n] and 1)2::n := 1)2::0[-n], then: 

(tl) 1):'.S1 C 1):'.SO (so, by iteration, '.I):'.S° C 1):'.Sb, if a< b) and '.D2:: 1 C '.D2::0 

(so 1)2::b c 1)2::0, if a< b). 

(t2) If XE 1):'.SO, YE '.I)2:: 1 then Hom!>(X, Y) = 0. 

(t3) IfX ~ D:'.S0, then there exist Xo E 1):'.SO and X1 E 1)2:'.1 such that 

Xo -+ X-+ X1 +l> is a distinguished triangle in D. 
Here we have used the definition given by Kashiwara and Schapira (see 

[10, p. 11]), who merely require '.I):'.SO and 1)2::0 to be full. Usually one requires 
, strict fullness and this is certainly the case in Beilinson-Bernstein-Deligne [1], 

p. 29, the standard reference for this material. Gel'fand and Manin also use 
the latter more stringent characterization ([5, p. 133], [6, p. 278]). We write 
t('.D) (for D:'.S0 , 1)2::0), for stylistic reasons which will become clear presently, 
and convey the fact that we have a t-structure on '.D by the notation 

t(D) 

.i 
D 

The core of t('D) is then just the intersection 

core t(D) = n:'.S0 n '.I)2::0 , 

(2.10) 

(2.11) 
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and is always an Abelian category (see [5], p. 134; [6], pp. 278-279, [l), p. · 
31). In connection with what we mentioned in Introduction, namely, that 
our broader objective is to employ t-structures to establish that a particu
lar derived (whence triangulated) category is void, we note that one line of 
attack we are currently investigating involves using the core (2.11) as an op
erator on 1), i.e. on triangulated categories, tagging the desired degeneracy 
in set-theoretic terms. However, this line is separate from our immediate 
concerns. 

Therefore we now turn to the matter of gluing ( recollement) of t-struc
tures. Suppose we are given t-structures on<!:, Q: in (2.8) and seek to construct 
from those a resultant t-structure on 1): 

t ( <!:) 

-!-

t(1)) t( e:) 

-!- (2.12) 

If this arrangement exists, i.e., if we have t('.D) such that, in fact, t(<!:) = 
t('.D)nt (or, as Pis inclusion, P(t(t)) = t('.D)), meaning that t~0 = 1)~0 nt 
and 1)2:0 = 1)2:0 n <!:, and t(e:) = Q(t(1))), meaning that e:2: 0 = Q(t2:0 ), we 
need only restate this compatibility of t('.D) with t(<!:) and t(e:) to get a 
condition on (2.8) providing us with so-called gluing data: the functors P, Q 
should bet-exact, where, generally, a functor F : 1)1 -t 1)2 of triangulated 
categories is t-exact if it is exact, i.e. F commutes with translation and 
distinguished triangles, and F('.D? 0

) C '.D1° and F('.Dt0
) :::J '.D~0

. 

Under these circumstances we obtain, with · 

. ' 
J_(P(t>0 )) :={XE 1)1Hom (X, Y) = 0 for all YE P(t>0 ) }, 

(P( t<0 ) )_1_ := { X E 1) !Hom (Y, X) = 0 for all Y E P( t<0 )}, 

that t(1)) = (1)~0 , 1)2:0) satisfies 

'.D~0 = { X E J_(P(t>0)) IQ(X) E e:~0 } = J_(P(t>0)) n Q-1 (e:~0 ), (2.14a) 

But there is a sticky wicket in the game: the preceding construction presup
poses t(1)) whereas we actually seek and forteriori construction of (a) t('.D) 
from the initial data t(<!:), t(e:), given only these latter t-structures. Hap
pily this can be achieved if P, Q obey some additional hypotheses; moreover, 
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imposing certain yet further restrictions, which turn out to be milder than 
they look, we obtain a very useful reformulation of (2.14~,b). To wit: 

Proposition 2.1. Given an exact triple (2.8) with t-structurest(e:), t(~): 

t( e:) 
.!-

t(~) 
.!-

Suppose, too, that P and Q possess ieft as well as right adjoint_ functors, 
as conveyed by the following notation: 

Lp 
f--

e: ~ 
Rp RQ 
f-- +--=-

Then there exists a glued t-structure, 

t( i)) = t( e:) /\ t( ~)' 

on i), characterized by (2.13a,b), (2.14a,b). 
Proof. See reference [5], p. 137. 
It follows tautologically that 

[t(~) At(<!:)] n ~ = t(~), 

Q[t(~) At(<!:)]= t(<!:), 

(2.16) 

(2.17) 

D 

(2.18a) 

employing the same notational conveniences as before. In other words, to 
· coin a phrase, ungluing undoes gluing. Furtherrnore, we mention for the 

sake of completeness that the existence of LP and RP is equivalent to the 
existerice of LQ and RQ: two for the price of one. 

Our next goal is to bring about the aforementioned reformulation of 
(2.14a,b). The most natural way to do this is to begin with the more re
strictive case of derived categories. Accordingly we now reca:ll a number of 
salient facts covering the latter.. . 

If 2( is any Abelian category, write Kom(2l) for the Abelian category 
of cha~n complexes of objects from 2(, and write K(2l) for the category of 
chain homotopy equivalence classes from Kom(2l); in other words, K(2l) = 
Kom(2l) / "'. By mearis of the mapping cone construction we get a notion 
of· distinguished triangle for this category. Specifically, we require that if 

' . 
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x·~y· E Mor(K(2l)) then.x·~y· -t cone (/)9 -t x·[1] is a 
distinguished triangle (with x·[I] defined by (X·[1])n = xn-l) and we 
require that any z• isomorphic to cone (/)9 gives a distinguished triangle 
in (X·, y•, z·). Thus, K(2l) is a triangulated category (for the details, 
in addition to [5], see [9], p. 38 ff. Also, the reference [7] is a classic). 
Recall, next, that two chain complexes are quasi-isomorphic if and only if 
they possess isomorphic cohomology groups in all degrees. Let Qis denote 
the subclass of Mor (K(2l)) consisting of all morphisms which induce quasi
isomorphisms and note ( e.g. [7], p. 35 ff) that Qis is a localizing class. 
Then 

D(2l) := K(2l) [ Qis-1] (2.19) 

is the desired derived category and is triangulated via the preceding conven
tions. 

One of the most natural occurrences of Abelian categories is of course 
provided by the theory of sheaves: if X is a topological space then the 
category 6 [) / X is Abelian, taking our sheaves to have values in,· say, the 
category of Abelian groups, Z-modules, or, more generally, in R-0010<>, the 
category of R-modules for a given commutative ring, R, with unity. In this 
setting it turns out that if Y is a closed subset of X then the stratification 

Y~ X j__ U:=X\Y (2.20) 

gives rise to the exact triple 

(2.21) 

crl; derived (whence triangulated) categories, where we write, generally, 

'.D x := D(6£J/ X) (2.22) 

and the exact functors i* and j* are of course nothing else than direct and . 
inverse image, respectively. Therefore, not only is (2.21) an instance of 
(2.8), but the usual Grothendieck formalism gives the following counterpart 
to (2.16): 

(2.23) 
i' Rj* +-- ~ 

Here, each (exact) functor is left adjoint to the one directly below it, the ap
pearance of"!" engenders restriction to sheaves with proper support in each. 
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degree, and R denotes Verdier's functor ([12], p. 300-03, ff.) In addition to 
the four adjointness isomorphisms afforded by this situation we have, cour
tesy of the specific definitions of these functors acting on sheaf complexes, 
that 

·* . 0 ·*. ·!R. i J! = = J i* = i J* 

and 
.*. i h ~ id j*Rj* ~ id 

"'"\t + .. "'"\t + . , . .* . i·i* J J! 

as diagrams of natural transformations; also, there exist morphisms 
w : i*i* ;:• --+ jd* :F·[l] and w' : Rj*j* ;:• --+ i*i':F·[l], functorial in 
;:• + , such that, with ·u, v, u', v' the appropriate adjunction morphisms, the 
X 
triangles 

are distinguished. And now we get: 
Proposition 2.2. If (2.20), (2.21), (2.23), whence (2.24a,b,c) - (2.26a,b), 

are in place, then 

gives rise to 

by means of 

t('.Dy) 

+ 

t('.Dy) /\ t('.Du) =: t('.D X) 

+ 
'.Dx 

'.D 10 = {F· jj* ;:• E '.D&o' i* ;:• E '.Dio}' 

'.Dio.. { ;:• lj* .r• E '.Duo' i':F• E '.Dio}. 

(2.27) 

(2.28) 

(2_.29a) 

(2.29b) 

Proof. This is Theorem 1.4 on p. 48 in [l]. · 0 
With Proposition 2.2 in place, and returning to the arrangement (2.15), 

we generalize· the indicated hypotheses as follows: 
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and 

Definition 2.3. The gluing data (2.15), (2.15), i.e. 

t( e:) 
-!: 

Lp LQ 
+-- ~ 

t(~) 
.i 

e: ~ '.D ~ ~, 

~ tQ 

M. Berg 

is optimal if the counterparts of (2.24a,b,c), (2.25°,b), and (2.26°,b), hold true, 
in addition to the condition that in (2.16) each functor is left adjoint to its 
downstairs neighbor ( we leave it to the reader to write these conditions out, 
if so desired). 

The idea is, of course, that for optimal gluing data the counterpart of 
Proposition 2.2 follows mutatis mutandis, which is to say that we have the 
following corollary. 

Corollary 2.4. (2.15), (2.16) entails optimal gluing data then we obtain 

t( e:) 

.i 

t( e:) ;\ t( ~) 

·where, writing t(e:) ;\ t(~) = t('.D) = ('.D~o, 1)2'.:0), 

Proof Clear. 

(2.29) 

D 

3. The Yoga of Gluing t Structures on Linked Exact Triples 

Consider the arrangement 
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i~ 
t(~)-> ~ --- '.D - ~ - t(~) 

1 ~t 
J 

f '' 

(3.1) 

where all triples ( of triangulated categories, of course) are exact and meet 
the hypotheses of Proposition 2.1: all inclusions and localization morphisms 
possess left and right adjoints. Thus we get, in particular, gluing data for 
t(~) and t(<E) vis a vis the "vertex" '.D, so that we get, first, the glued 
t-structure t(~) A t( <e) =: t('.D ). Second, ungluing t('.D) along the triple 
2( -+ '.D -+ J, we get the t-structures t('.D) n 2( and imt('.D) (its meaning 
being obvious), respectively on 2( and J. But then compatible t-structures 
on <!: and (!3, being t( <!:) and t( (!;), are determined a forteriori such that 
t(2t) At(<!:) = t(~) and t((!:5) A t(<e) = t(J). Using the indicated not~tional 
conventions we encode this behavior as follows: 

[t(~)/\t(~)] nQ! ...... 2{ · l ~)At(~) 

t(l.l3) -> 1)3 --- '.D --- ~ -- t( ~) 

l ~f . 
im t(IJ3) ... , .. ti: J, ... im [t(l.l3) /\ t(~)] 

l 
<Bc· .. ·im[t(l.l3) I\ t(<c)] n cB . (3.2) 

Now, working along 2( -+ 1) -+ J, the central vertex, '.D, obviously 
also supports the t-str~cture ([t(~) A t(<E)] n2t) A (im[t(~) A t(<e)]), and 
we should like there to be agreement: 1 t('.D) := t(~) A t( <E) = 2t('.D) := 

([t(~) A t(<E)] n 2t) A (im[t(~) At(<e)]). Since gluing and ungluing are 
mutually inverse operations, however, this condition, 1t('.D) =2 t('.D), stating 
in essence that_the initial data (t(~), t(<e)) should determine only one glued 
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t-structure on '.D regardless of .~hether the surrounding vertices are made 
to take part in the process, is tantamount to requiring that the initial data 
(t(~), t(~), t(~)) should yield but a singlet-structure on '.D. This means 
that, if we label morphisms as follows, 

2l 

-1~ 
Q3 .., -+ '.D 6 -+(E 

~l ~ f. 
<! J 

1 ( 
G 

then (2.3oa,b) provides that 1t('.D) = 2t('.D) if and only if 

L,(X) E ~~o {::} L('!9(X) E ~~0 and L'T}(X) E ~~0 n 2t' 

L,(X) E ~2:0 {::} R('!9(X) E ~2:0 and R,,,(x) E ~2:0 n 2t, 

and this sets the stage for the following proposition. 
Proposition 3.1. Consider the diagram 

2l 

.l~ 

(3.3) 

<!> t- t(G) (3.5) 
of linked exact triples supporting optimal gluing data and equipped with the 
initial assignment oft-structures (t(~), t(~), t(~)), as shown. Let 

1t('.D) = t(~) /\ t(~), . (3.6a) 

2t('.D) . ( [t('B) /\ t(~)] n iii) /\ [t(<B) /\ t(~)] , (3.6b) 
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. and .Buppose, furthermore, that 

Then 

L(,a) =L aL,' 

R(,a) = RaR,. 

129 

(3.9) 

Proof. For the sake of keeping tabs ~·n what is happening inflate and 
complete (3.5) as follows: 

t(2l) = (2t:5°, 2t?:0
) = t(!B) n 2l ~ 2l 

a 
'l 

t((!) = ((:SO, (?:O) = ,6t(23) _. ( 

= t(15) t\ t(<!:) 

= t(2l) t\ t(J) = 

= [t(23) n 2l)] A [t(e5) /\ t(<!:)] 15 - t(<5) = (15::;, 15?:) 

So we get, via (2.16) and Definition (2.3), that 
L( LE L'Y L.5 LT/ -·· - +- +- +- -

0 ' -+J 
( 

-+ ~. 23 'Y -+ i) 6 
-+ <!:, 2( T/ -.i) 

R( R£ R'Y Rt5 RT/ 
+- +- +- +- +- +-

and then 
J:::;o ={FE Jl!:{.F) E ~:::;o, L((F) E ®:::;0}, 

J2:0 = {FE Jlt:(F) E ~2:0, R((F) E Q32:0}, 

-2t~o = ~:::;o n 2l, 2(2:o = ~2:0 n 2t, 

e,::::;o = /3~:::;o, e,:2:0 = /3<!:2:o , 

L9 

0 

R9 

(3.10) 

-.(!: 

(3.1~ a,b,c) 

(3.12a) 

(3.12b) 

(3.13a,b) 

(3. l4a,b) 
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11:>:SO ={DE ;.Ql8(D) E ~:so, L,(D) E 2_,:SO}, 

11:>~0 = { D E '.DI 8(D) E ~~0
' R,(D) E 2-1~0

} ' 

21:>:S0 = { fl E 1) IO(D) E J:S0, L'f/(D) E 2(:S0} , 

21:>~0 = { D E '.D IO(D) E J~0
, R 'fJ(D) E 2(~ 0}. 

But now (3.12a,b) - (3.14a,b) imply that 

M. Berg 

2'.D:S0 = {DIEB(D) E ~:so, L(e E (B:SO, L'f/(D) E 2_,:SO n 2l}, (3.17a) 

2'.D~0 = {DIEB(D) E ~~0 , R(0(D) E Q5~0
, R'TJ(D) E 2.1~ 0 n2t}, (3.17b) 

which provides that 1 t('.D) = 2t('.D) if and only if 

8(D) E ~:so, L,(D) E 2-1~0 ¢=> E0(D) E ~:so, L(0(D) E (B:SO, 

L'fJ(D) E (B:SO n 2(, (3.18a) 

8(D) E ~~0 , R,(D) E 2-1~0 ¢=> E0(D) E ~~0 , R(0(D) E (B~o, 

R'f/(D) E fil~o n 2(. (3.18b) 

First, L(0(D) E Q5:S0 , R(0(D) E (B~o obtain tautologically from (3.10), of 
course. Additionally, (3.10) yields that 8 = EB leaving us the t_ask of verifying 
that L,(D) E 2-,:so is equivalent to L'TJ(D) E 2-,:so n 2(, and similarly with L, (resp. 2.,:S 0 ) replaced by R, (resp. 2.1~ 0 ). But (3.10) also gives that 
'f/ = ,a whence using (3.7a) and the fact that ais just inclusion (cf. (2.8)), 
L,(D) E 2-1~ 0 {::} La, L,(D) = L(,a)(D) = L'TJ(D) E 2-1~ 0 n 2(, The other 
·result proceeds in exactly the same way. This completes the proof. D 

It turns out that our chosen arrangement (3.1) is actually slightly rnore 
general than what we encounter in applications, as will become evident 
presently. Specifically, we should specialize to the case where ~ = Q5 in 
(3.1), and tailor our initial t-structure data accordingly. Diagram (3.2) then 
becomes 

t(IB) /\ t(Q:) 

i 
[t(Q3)At(~)Jnm ..... ,-2(. ~ ~·-/ Q:t-'.-:--t(~) 

\_ /1)~ I 
t(IJ3) --t 113 J~ .. ··- im[t(IB) /\ t(l!)J 

~/ 
im ~(Q3) ...... ~ ct ,<;, ••••. • · im[t(IB) /\ t( t)J n ct (3.19.). 
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· w~ch apparently precipitates the requirement that im [t(SB) A t( f)] n e: and 
im t(SB) should agree, at least if we demand that (3.19). should qualify as 
a commutative diagram. In view of (3.3) this would mean that we should 
require that 07 = ( /3. In point of fact, however, it is not clear that this is 
always the case, and, to boot, there is no binding requirement in place either, 
as far as forcing im t(SB) = im[t(SB) A t(f)] n e: is concerned. This having 
been said, we contend that our initial arrangement, as given by (3.1), (3.2), 
(2.3), and (3.5), is the proper one to go with, in that it certainly subsumes 
the arrangement (3.19). ·' 

On the more gen~ral subject of linked exact triples arranged as in (3.3), 
leavirig aside for the moment any consideration of t-structures and gluing 
data, it is also the case that these occur in more or less natural contexts. For 
example, if we have an ambient topological space, X, with closed subspaces 
F and Y such that Y is relatively closed in F, then W := F\Y is relatively 
open in F, U := X\Y is open, U := X\F is open in X and relatively open 

V . 

in U, and Z := U\U is relatively closed in U. This makes for a diagram 

y 

1~ 
F ---+ X +---- i) 

I ~! 
w u 

1 
z '(3.20) 

where each triple • -4 • +- • is an instance of (2.20). Accordingly we 
need only invoke (2.21) to get 
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'.Dy 

1~ 
'.DF --+ '.Dx -+ '.Do, 

1 ~f 
'.Dw '.Du 

1 
'.Dz (3.21) 

as an instance of (3.3), given that derived categories are triangulated. One 
explicit instance of this formalism (where, it turns out, W = Z, and so 
Dw = '.Dz) is realized by the assignments X = R2

, Y = {(0,0)}, Fis 
the x-axis; another instance, the motivation for the present investigation, is 
forthcoming in [3]. 

It is of course true that the arrangement (3.3) we have chosen to focus 
on here is not the only way in which to interlink exact triples of triangu
lated categories: however, it is clear that it is a minimal arrangement for 
four such triples. Also, our assignment of initial t-structures as given in 
(3.5) is certainly not the only available option, but it is evidently typical 
for a trio, and this configuration is featured in [3] for reason~ belonging to 
the number-theoretic problem considered there (and discussed at somewhat 
greater length in Section 5). In any case, with the foregoing analysis of the 
chosen diagrams we proper to lay a foundation for a general yoga, or calcu
lus, of initial assignment problems for t-structures situated on diagrams of 
linked exact triples of triangulated categories. 

4. Regarding Thomason's Correspondence 

In his famous paper [11] Thomason showed (very expeditiously) that for an 
essentially small triangulated category, 1'>, the covariant functor Ko sets up 
a bijective correspondence between '.D's strictly full and dense triangulated 
subcategories and the subgroups of the (Abelian) Grothendieck group. It 
should obviously be very useful indeed if we could somehow bring this corre
spondence, which we will refer to as Thoma.son's correspondence, to bear on 
the yoga of gluing and ungluing t-structures on diagrams like (3.5) as devel
oped in Section 3. This kind of application of Thoma.son's correspondence. 
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wolJ.}d of course involve a number of verifications or additional restrictions, 
given that we would have to make sense of not only the image of gluing in 
the target category 2(b (of Abelian groups), but, before that, of the image 
of localization in the sense of the morphism Q as per (2.8) and (2.9). But 
if a subclass of triangulated categories could be identified, characterized by 
being altogether amenable to Thoma.son's correspondence, then calculations 
on diagrams like (3.5) should be directly transferrable to suitable lattices 
of subgroups of Abelian groups. This applies specifically to the problem we 
address in the next section, arising in nu~ber theory. This said, we st-art the 
ball rolling in the present section by investigating a number of preliminary 
questions along the indicated lines. 

First, regarding the question of essential smallness of an ambient trian
gulated category, 1), i.e. the stipulation that its object class, taken modulo 
isomorphism, can be taken to be a set, for present convenience we posit that 
D's object class is in fact a set already, i.e. D is small. Since this is really 
quite a binding hypothesis, steps will have to be taken in order to apply 
this line to future applications but we do not address this contingency here. 
However, once we have sets to deal with, we are on safe ground as far as 
taking intersections is concerned and we observe that this is an extremely 
useful condition given that so many of the operations involved in the yoga of 
Sections 2 and 3 involve intersection. Indeed, both localization and gluing 
qualify under this heading. 

Second, Thomason's correspondence proper presupposes that we are 
dealing with triangulated subcategories of 1) which are also strictly full and 
dense, the latter adjective meaning that every object in D can be realized as a 
direct summand of an object isomorphic to an object in the given dense sub
category. Manifestly, then, if Thoma.son's correspondence is to be brought 
.to bear on t-structures, t(D), then we would have to have that both x,:'.S0 and 
D~0. are strictly full, dense and triangulated. For. the moment, we will just 
agree to stipulate that our t-structures obey these requirements, although 
this will have to be checked carefully as far as applications are concerned. 

Now we come to 
Definition 4.1. If D is a small triangulated category, its Grothendieck 

group, Ko(l)) is the free Abelian group of isomorphism classes in D, modulo 
the Euler relations, entailing tha(ryl = rxl EB rzl in K 0 (1)) if and only if 
(X, Y, Z) is a distinguished triangle in 1). 

The ~equisite universality property attached to Ko, which acts covari
antly on exact functors, is this: for every 1), as above, we get a mapping 

D/~ ~ Ko(l)) (4.1) 



134 M. Berg 

satisfying the condition that if A is any Abelian group in which the Euler 

relations hold, and if '.D / ~ /4 A is arbitrary, then we get 

~ A 
-!- :3!F 
Ko('.D) 

(4.2) 

In other words, every mapping from '.D's isomorphism classes to an Abelian 
group with Euler relations factors through E!>sub· It turns out, however, that 
Ko is more than a covariant functor equipped with a universality condition, 
and this is part and parcel of the Thomason correspondence. Specifically, 
Thomason showed in Section 3 of [11] that there is an induced bijective 
correspondence between the strictly full, dense, triangulated subcategories, 
2l C '.D, and the subgroups of Ko(2l) <1 Ko('.D). And the correspondence is 
completely natural: inverse to the association of 2l to Ko(2l), we have the 
association of any H <1 K 0 ('.D) to the subcategory 

er. H := { x E '.DI r x 1 E H} . (4.3) 

Thus we have the mutually inverse relations 

for 2l a subcategory of '.D of the given type and H <1Ko(2l). This puts us in a 
position to prove, by way of an illustration of what might be had down the 
line, 

Proposition 4.2. If 2l, s.B are strictly full,· dense, triangulated subcat
. ,egories of the ambient small triangulated category, '.D, then K0 (2l n ~) = 
Ko(2l) n Ko(s.B). 

Proof. 

'r.Ko(2l)nKo(SB) ={XE '.DI fxl E Ko(2l) nKo(~)} 

={x1 1xl EKo(2l)}n{XI fxl EKo(s.B)}='r.Ko(2t)n'r.Ko(SB) =2ln~ 

= 'r.Ko(2tnSB), 

by (4.3) and (4.4a). But now_ we note that the condition that the relations 
(4.4a,b) entail a pair of inverses to conclude that 'r. must be injective. So 
K 0 (2l) n K 0 (s.B) = K 0 (2l n ~), as required. D 

As we mentioned above, we offer this facile result as a first step to
ward realizing images of localization, gluing, and eventually the full yog31 
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of (-structures introduced above, in the evocative setting of the category of 
Abelian groups. However, we postpone these undoubtedly rather ambitious 
pursuits till a future writing. 

5. A Connection with Number Theory 

Other recent and ongoing work of ours J2, 3], already cited repeatedly in 
the foregoing, is aimed at attacking a cent~al open problem in analytic num
ber theory through sheaf theoretic means. The configurations of linked exact 
triples of triangulated categories considered in the preceding sections, specif
ically (3.3) and (for derived categories) (3.20), arise in [3], where the prox
imate objective is to use the initial t-structures assignment problem posed 
by the set-up (3.5) to establish that if certain as yet unspecified conditions 
hold for some of these initial t-structures, the upper left vertex of (3.20) 
must in fact be empty. In the context of our so-called quasi-dual to Kub
ota's formalism for n-Hilbert reciprocity, developed in [2], this vanishing (for 
n - 1 of n assignments of this upper left vertex) is enough to yield n-Hilbert 
reciprocity; therefore, if this is carried out through the services of a suit
able Grothendieck-Deligne-type generalization of the Fourier transfo~m we 
should have a solution of Hecke's open problem, going back to [8], of the 
analytic proof of higher reciprocity for a number field ( the central problem 
alluded to above). 

In [3] we consider instances of (3.21), completed in the sense of (3.5), of 
the following sort (with "p" indicating perversity): 

, I\;,.· 
1(

0
,• i . "' 

p ( ) ic0 .. t '.D - --t '.D .. ---' -x~,, Xeo 

j" l 

(5.1) 
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with the following diagram of.~tratified topological spaces (as per (3.10)) as 
foundation: 

Here XA = SL2(k)A x Un, 
(n) 

CA 

i 

(5.2) 

ct) E H2(SL2(k)A, µn) being Kubota's 

adelic 2- cocycle [10], and we suppress group structure; of course µn is the 
group of n-th roots of 1 situated {by hypothesis) in the ambient algebraic 
number field k then, for eo E µn, the space Yeo is the closure of the intersec-

tion (Ye0 ) of (ct))- 1 (eo) with (SL2(k) x µn)2, and the space .X(o is defined 
(n) 

CA 

by the characterization (c~))- 1 (eo) x µ 2
. The remaining four spaces obtain 

by the complementation rules engendered by the stipulation that each of 
the four triples • --t • +-- • in (5.2) should be instances of (2.20). It 
follows that the corresponding four triples • --t • --t • in (5.1) are 
instances of (2.21), and exact, and, as we indicated in Section 2, the gluing 
data ( cf. (2.23)) supported by these four exact triples is optimal. One infers . 
immediately that Proposition 3.1 applies: 

Pt('.D Xeo) /\ Pt('.D Ueo) 

= ([Pt('.D Xeo) /\ Pt('.Dueo )] n '.Dfeo) /\ [Pt('.D Zea) /\ Pt('.D Zeo )] . (5.3) 

The idea is to show that if eo #- 1 then Ye0 = ¢, which would follow 
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· qui<:kly if '.Dyfo = ¢. In turn the latter condition is implied by the cir
cumstance that, for eo 'I= 1, the derived category '.Dyeo fails to support a 
t-structure. Taking the data (5.3), or (5.1), of course, in toto, with eo vary
ing over µn, we seek (in [3] and future work) a set of initial assignments 
(Pt('.D x ) , Pt('.Du ), Pt('.D z" ) ) , tailored to the arithmetic aspects of the 

{o {0 ~a 
specially engineered spaces in (5.2), and a particular "t-structure calcula-
tion", yielding the aforementioned "collapse" of all but one of the vertices 
Yeo, namely Yi. It would then follow immediately from the definition of 

the Yfo that c~) = 1 on SL2 (k)2, which, following Kubota [10] is precisely 
n-Hilbert reciprocity. 
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