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Links With Finite n-Quandles

Jim Hoste
Pitzer College

Patrick D. Shanahan
Loyola Marymount University

June 28, 2016

Abstract

We prove a conjecture of Przytycki which asserts that the n-quandle of a link L in
the 3-sphere is finite if and only if the fundamental group of the n-fold cyclic branched
cover of the 3-sphere, branched over L, is finite.

1 Introduction

While the algebraic study of racks and quandles dates back to the late 1800’s, Fenn and
Rourke in [1] credit Conway and Wraith with introducing the concepts in 1959 as an al-
gebraic approach to study knots and links in 3-manifolds. During the same time period,
several mathematicians were studying similar concepts under names such as kei, distributive
groupoids, crystals, and automorphic sets. In 1982, Joyce [5] published a ground-breaking
work which included introducing the term quandle, giving both topological and algebraic de-
scriptions of the fundamental quandle of a link, and proving that the fundamental quandle
of a knot is a complete invariant. In this article, we consider a quotient of the fundamental
quandle of a link called the n-quandle, defined for any natural number n. Whereas the
quandle of a link is usually infinite and somewhat untractable, there are many examples
of knots and links for which the n-quandle is finite for some n. In his Ph.D. dissertation,
Winker [10] developed a method to produce the analog of the Cayley diagram for a quandle.
In addition, Winker established a relationship between the n-quandle of the link L and the
fundamental group of M̃n(L), the n-fold cyclic branched cover of the 3-sphere, branched over
L. When combined with previous work of Joyce, this implied that if the n-quandle of a link
L is finite, then so is π1(M̃n(L)). Przytycki then conjectured that this condition is both
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necessary and sufficient, which we prove to be true in this paper. Our proof involves first
generalizing a key result of Joyce: the cosets of the peripheral subgroup of a knot group can
be given a quandle structure making it isomorphic to the fundamental quandle of the knot.
We extend this result to the n-quandle of a knot, showing that it can also be viewed as the
set of cosets of the peripheral subgroup in a certain quotient of the knot group. This result
allows Winker’s diagraming method to be replaced by the well known Todd-Coxeter method
of coset enumeration.

We assume the reader is familiar with the theory of racks and quandles, but include basic
definitions for completeness. The reader is referred to [1], [5], [6], and [10] for more informa-
tion. A quandle is a set Q together with two binary operations B and B−1 which satisfies
the following three axioms.

Q1. xB x = x for all x ∈ Q.

Q2. (xB y)B−1 y = x = (xB−1 y)B y for all x, y ∈ Q.

Q3. (xB y)B z = (xB z)B (y B z) for all x, y, z ∈ Q.

A rack is more general, requiring only Q2 and Q3. It is important to note that, in general,
the quandle operations are not associative. In fact, using axioms Q2 and Q3 it is easy to
show that

xB (y B z) =
(
(xB−1 z)B y

)
B z. (1)

This property allows one to write any expression involving B and B−1 in a unique left-
associated form (see [10]). Henceforth, expressions without parenthesis are assumed to be
left-associated.

Given a quandle Q, each element q ∈ Q defines a map Sq : Q → Q by Sq(p) = p B q. It
follows from axiom Q2 that Sq is a bijection and S−1q (p) = pB−1q. From axiom Q3, it follows
that Sq is a quandle homomorphism. The automorphism Sq is called the point symmetry
at q and the set of all point symmetries generate the inner automorphism group Inn(Q). A
quandle Q is algebraically connected if Inn(Q) acts transitively on Q.

Joyce discusses two functors from the category of groups to the category of quandles. These
functors and their adjoints will be of importance in this paper. The first, denoted Conj,
takes a group G to a quandle Q = Conj(G) defined as the set G with operations given by
conjugation. Specifically, xB y = y−1xy and xB−1 y = yxy−1. Its adjoint, denoted Adconj
takes the quandle Q to the group Adconj(Q) generated by the elements of Q and defined by
the group presentation

Adconj(Q) = 〈q for all q in Q | pB q = q−1 p q for all p and q in Q〉.

A quandle Q is called an n-quandle if each point symmetry Sq has order dividing n. It is
convenient to write x Bk y for Sky (x), the k-th power of Sy evaluated at x. Thus Q is an
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n-quandle if for all x and y in Q, we have x Bn y = x. A second functor from groups to
n-quandles is defined for each natural number n and is denoted Qn. Given a group G, the
n-quandle Qn(G) is the set

Qn(G) = {x ∈ G | xn = 1}

again with the operations given by conjugation. The adjoint of this functor is AdQn. If Q
is any n-quandle, the group AdQn(Q) is defined by the presentation

AdQn(Q) = 〈q for all q in Q | q n = 1, pB q = q−1p q for all p and q in Q〉.

Quandles may be presented in terms of generators and relators in much the same way as
groups. See [1] for a rigorous development of this topic. If the quandle Q is given by the
finite presentation

Q = 〈q1, q2, . . . , qi | r1, r2, . . . rj〉,

then Winker proves in [10] that Adconj(Q) and AdQn(Q) can be finitely presented as

Adconj(Q) = 〈q1, q2, . . . , qi | r1, r2, . . . , rj〉 (2)

and
AdQn(Q) = 〈q1, q2, . . . , qi | q n1 = 1, q n2 = 1, . . . , q ni = 1, r1, r2, . . . , rj〉. (3)

Here, each quandle relation ri is an equation between two quandle elements each expressed
using the generators, the operations B and B−1, and parenthesis to indicate the order of
operations. The associated group relation ri must now be formed in a corresponding way
using conjugation. For example, if r is the quandle relation x = yB (z B−1 w), then r is the
relation x = w z−1w−1 y w z w−1.

Associated to every oriented knot or link L in the 3-sphere S3 is its fundamental quandle
Q(L) which is defined by means of a presentation derived from a regular diagram D of L as
follows. First assign quandle generators x1, x2, . . . , xn to each arc of D. Next, introduce a
relation at each crossing of D as shown in Figure 1. It is easy to check that the three axioms,
Q1, Q2, and Q3, are exactly what is needed to prove that Q(L) is preserved by Reidemeister
moves and hence is an invariant of the link. Passing from this presentation of Q(L) to a
presentation for Adconj(Q(L)) by using Winker’s formula (2), we obtain the well-known
Wirtinger presentation of π1(S3 − L). Thus for any link L, π1(S3 − L) ∼= Adconj(Q(L)).

Joyce proves in [5] that Q(L) is a complete invariant of knots. A less sensitive, but pre-
sumably more tractable invariant, is the fundamental n-quandle Qn(L) which can be defined
for each natural number n by starting with the presentation for Q(L) just described and
adding the relations xi Bn xj = xi for all pairs of generators xi and xj. Passing from this
presentation of Qn(L) to a presentation for AdQn(Qn(L)) by using Winker’s formula (3),
we see that AdQn(Qn(L)) is a quotient of Adconj(Q(L)). In particular, we may present
AdQn(Qn(L)) by starting with the Wirtinger presentation of π1(S3 −L) and then adjoining
the relations xn = 1 for each Wirtinger generator x. While the fundamental quandle of a
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xkxj

xi

Figure 1: The relation xi = xk B xj is associated to a crossing with arcs labeled as shown.

nontrivial knot is always infinite, the associated n-quandle is sometimes finite. Determining
when this occurs is the focus of this paper.

If L is a link of more than one component, then both Q(L) and Qn(L) are algebraically
disconnected with one component Qi(L) and Qi

n(L), respectively, corresponding to each
component Ki of L.

If K is a knot, let P be the peripheral subgroup of G = π1(S3−K) generated by the meridian
µ and longitude λ of K. In [5], Joyce defines a quandle structure on the set of right cosets
P\G by declaring PgB±1 Ph = Pgh−1µ±1h. He denotes this quandle as (P\G;µ) and then
proves that it is isomorphic to Q(K). This is the key step in Joyce’s proof that the quandle
is a complete knot invariant. It shows that the knot quandle not only determines the knot
group, but also the peripheral structure. This implies that the order of Q(K) is the index of
P in G and hence that Q(K) is infinite when K is nontrivial. The key result of this paper
is the following theorem which extends Joyce’s result to the case of Qn(L).

Theorem 1 If L = {K1, K2, . . . , Ks} is a link in S3 and Pi is the subgroup of AdQn(Qn(L))
generated by the meridian µi and longitude λi of Ki, then the quandle (Pi\AdQn(Qn(L));µi)
is isomorphic to the algebraic component Qi

n(L) of Qn(L).

Section 2 is devoted to proving Theorem 1. In Section 3 we use this result, as well as a
theorem of Joyce, to prove the conjecture of Przytycki stated in the Abstract. Theorem 1
implies that the Todd-Coxeter process for coset enumeration can be used to describe Qi

n(L)
provided it is finite. In Section 4 we describe this in greater detail and give examples.

Finally, in a separate paper, or papers, we plan to enumerate all links that have finite n-
quandles for some n. Alternatively, this project may be viewed as a tabulation of all finite
quandles that appear as an n-quandle of some link.
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2 Relating Qn(L) to Cosets in AdQn(Qn(L))

To prove Theorem 1 we make use of topological descriptions of both the fundamental quandle
Q(L) and the n-quandle Qn(L). We begin by recalling Fenn and Rourke’s formulation of
Q(L) given in [1] and then extend it to Qn(L). (Their formulation is actually for the rack
associated to a framed link.) Let X = S3−N̊(L) be the exterior of L and choose a basepoint
b in X. Define T (L) to be the set of all homotopy classes of paths α : [0, 1]→ X such that
α(0) = b and α(1) ∈ ∂X. Moreover, we require that any homotopy be through a sequence
of paths each of which starts at b and ends at ∂X. Define the two binary operations, B and
B−1, on T (L) by

αB±1 β = βm∓1β−1α (4)

where m is a meridian of L. Namely, m is a loop in ∂N(L) that begins and ends at β(1), is
essential in ∂N(L), is nullhomotopic in N(L), and has linking number +1 with L. Thus the
arc αBβ is formed by starting at the basepoint b, going along β to ∂N(L), traveling around
m−1, following β−1 back to the base point, and finally following α to its endpoint in ∂N(L).
See Figure 2. Note that the component T i(L) corresponding to the i-th component Ki of
L consists of those paths ending at ∂N(Ki). The equivalence of Q(L) and T (L) is proven
in [1]. A similar description using “nooses” is given in [5]. In order to give a topological

b

α

β

m L

L
�X

b
α

L

L
�X

 Z β

Figure 2: The topological definition of αB β.

description of Qn(L) we introduce the following definition.

Definition 2 Suppose α is a path in X with α(0) = b and α(1) ∈ {b} ∪ ∂X. Suppose
further that there exists t0 with 0 ≤ t0 ≤ 1 such that α(t0) ∈ ∂N(L). Let σ1(t) = α(tt0) and
σ2(t) = α((1− t)t0 + t). We say that the path σ1m

±nσ2 is obtained from α by a ±n-meridian
move. Two paths are called n-meridionally equivalent if they are related by a sequence of
±n-meridian moves and homotopies.
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We now define the n-quandle Tn(L) as the set of n-meridional equivalence classes of paths
with the quandle operations defined by (4). Again, paths that end at ∂N(Ki) give the
component T in(L) of Tn(L).

Theorem 3 The n-quandles Qn(L) and Tn(L) are quandle-isomorphic.

Proof. In [1], the topological and algebraic-presentation definitions of the rack of a framed
link are proven to be quandle isomorphic by constructing homomorphisms f : T → Q and
g : Q→ T and then showing that both f ◦ g amd g ◦ f are the identity. The same maps can
be used to show that Tn(L) and Qn(L) are isomorphic. Rather than repeating and extending
Fenn and Rourke’s proof here, we simply enumerate the differences from which the interested
reader can easily fill in the details of the proof.

• In [1] homotopies in T allow the endpoint of a path to move around on the chosen
longitude of L given by the framing, while we allow homotopies in Tn to move the end-
point around in ∂N(L). For our maps to be well-defined, this requires the idempotency
axiom Q1 which is not present in a rack.

• In Tn we allow n-meridional moves that are not present in T . In order for our maps to
be well-defined this requires the addition of the corresponding relations qi Bn qj = qi
to Qn. �

We are now prepared to prove Theorem 1.

Theorem 1 If L = {K1, K2, . . . , Ks} is a link in S3 and Pi is the subgroup of AdQn(Qn(L))
generated by the meridian µi and longitude λi of Ki, then the quandle (Pi\AdQn(Qn(L));µi)
is isomorphic to the algebraic component Qi

n(L) of Qn(L).

Proof. Suppose that L = {K1, K2, . . . , Ks}. Without loss of generality, we shall prove
the theorem for the first component K1. We begin by fixing some element ν ∈ Qn(L)
which we think of as a path from the basepoint b in X to ∂N(K1). We now define a map
τ : AdQn(Qn(L))→ Qn(L) by τ(α) = α−1ν.

Claim 1: The map τ is onto Q1
n(L).

Proof: Let σ be a path representing any element of Q1
n(L). Move σ by a homotopy until

σ(1) = ν(1) and let α be the loop α = νσ−1. Now τ(α) = α−1ν = σν−1ν = σ.

Let Pν be the subgroup of AdQn(Qn(L)) generated by the meridian µ1 = νmν−1 and longi-
tude λ1 = ν`ν−1 of K1.
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Claim 2: τ−1(ν) = Pν .

Proof: Notice first that τ−1(ν) is a subgroup of AdQn(Qn(L)). For suppose that α, β ∈
τ−1(ν). Now τ(αβ−1) = βα−1ν = βν = ν because α−1ν = ν and β−1ν = ν implies
ν = βν. Thus to show that Pν ⊂ τ−1(ν) we need only show that µ, λ ∈ τ−1(ν). But
τ(λ) = λ−1ν = (ν`ν−1)−1ν = ν`−1ν−1ν = ν`−1 = ν because ` ⊂ ∂X. Similarly, µ ∈ τ−1(ν).

Now suppose that α ∈ τ−1(ν). This means that α−1ν can be taken to ν be a sequence of
n-meridian moves separated by homotopies. We illustrate the situation in Figure 3. The
first homotopy begins at α−1ν and ends at the path σ1ρ1 where σ1(1) = ρ1(0) is a point in
∂X. We then do an n-meridian move, replacing σ1ρ1 with the path σ1m

±nρ1. This path is
then homotopic to the path σ2ρ2 and so on until finally the last homotopy ends at ν. For
simplicity, the Figure illustrates the case of three homotopies separated by two n-meridian
moves. Notice that the “right edge” of the i-th homotopy defines a path in ∂N(K1) which
we call βi. These homotopies can be reparameterized so that the polygonal paths indicated
in each homotopy depict the new level sets. The first homotopy can now be thought of as
one between the loop α and the loop νβ1ρ

−1
1 σ−11 . We then perform an n-meridian move

to this loop and continue through the second homotopy, ending at the loop νβ1β2ρ
−1
2 σ−12 .

Eventually we arrive at the loop νβ1β2 . . . βkν
−1, an element of Pν . Thus α represents an

element of Pν and hence τ−1(ν) ⊂ Pν .

b β1

α νb

σ1 ρ1

b β2

σ1 ρ1

σ2 ρ2

mn

b β3

σ2 ρ1

ν

mn

Figure 3: Homotopies separated by n-meridian moves.

Claim 3: Let φ1 be the automorphism of AdQn(Qn(L)) given by conjugation by µ1. Then
φ1 fixes every element of Pν .

Proof: Suppose that νβν−1 ∈ Pν . Now

φ1(νβν
−1) = µ−11 νβν−1µ1

= (νmν−1)−1νβν−1(νmν−1)

= νm−1βmν−1

= νm−1mβν−1

= νβν−1

7



because loops in ∂N(K1) commute.

We can now turn the set of right cosets Pν\AdQn(Qn(L)) into a quandle, which we denote
as (Pν\AdQn(Qn(L));µ1) by defining

PναB
±1 Pνβ = Pνφ

±1
1 (αβ−1)β

= Pνµ
∓1
1 αβ−1µ±11 β

= Pναβ
−1µ±11 β (5)

because µ1 ∈ Pν .

Claim 4: The quandle operations defined in (5) are well-defined.

Proof: Suppose that Pνα = Pνa and Pνβ = Pνb. Then

αβ−1µ±11 β(ab−1µ±11 b)−1 = αβ−1µ±11 βb−1µ∓11 ba−1

= αβ−1βb−1ba−1

= αa−1 ∈ Pν

because conjugation by µ±11 fixes βb−1, an element of Pν . Hence PναB±1Pνβ = PνaB±1Pνb.

Claim 5: The map τ determines a quandle isomorphism between (Pν\AdQn(Qn(L));µ1)
and Q1

n(L).

Proof: Define τ : (Pν\AdQn(Qn(L));µ)→ Q1
n(L) as τ(Pνα) = τ(α). Because τ−1(ν) = Pν ,

it follows easily that τ is both well-defined and injective. Because τ is onto Q1(L), we also
have that τ is onto Q1

n(L). Thus τ is a bijection. However, τ is also a quandle homomorphism
because

τ(PναB Pνβ) = τ(Pναβ
−1µ−11 β)

= τ(αβ−1µ−11 β)

= β−1µ−11 βα−1ν

= (β−1ν)m−1(β−1ν)−1(α−1ν)

= τ(α)B τ(β)

= τ(Pνα)B τ(Pνβ).

�

8



3 Przytycki’s Conjecture

In this section we prove the conjecture of Przytycki stated in the abstract.

Theorem 4 Let L be an oriented link in S3 and let M̃n(L) be the n-fold cyclic branched

cover of S3, branched over L. Then Qn(L) is finite, if and only if π1(M̃n(L)) is finite.

Before giving the proof of Theorem 4, we point out the relationship between π1(M̃n(L))
and a certain subgroup of AdQn(Qn(L)). The reader is referred to [10] for more details. If
Mn(L) is the n-fold cyclic cover of S3 − L, then π1(Mn(L)) is isomorphic to the subgroup
E0 of π1(S3 − L) ∼= Adconj(Q(L)) consisting of those loops in S3 − L that lift to loops in
the cover. Equivalently, E0 consists of loops having total linking number zero with L, that
is, those loops α such that the sum of the linking numbers of α with each component of
L is zero. The subgroup E0 can also be described as those elements of π1(S3 − L) which,
when written as words in the Wirtinger generators, have total exponent sum equal to zero.
This concept is well-defined, and defines a subgroup, because each of the relators in the
Wirtinger presentation has total exponent sum equal to zero. This last description extends
to the quotient group AdQn(Qn(L)). Let E0

n be the subgroup of AdQn(Qn(L)) consisting
of all elements with total exponent sum equal to zero modulo n. In order to obtain the
fundamental group of the cyclic branched cover we must algebraically kill the n-th power of
each Wirtinger generator in E0, hence,

π1(M̃n(L)) ∼= E0
n. (6)

Notice further, that the index of E0
n in AdQn(Qn(L)) is n.

One direction of Theorem 4 follows from work that appears in the Ph.D. thesis of Joyce [6].
For completeness, and because this result does not appear in Joyce’s paper [5], we reproduce
his proof here (with some modification).

Theorem 5 (Joyce) If Qn is finite, then |AdQn(Qn)| ≤ n|Qn| and hence AdQn(Qn) is
finite.

Proof: Suppose that Qn is a finite n-quandle with elements {q1, q2, . . . , qk}. Now AdQn(Qn)
is generated by the ordered set of elements q1, q2, . . . , qk so that every element in AdQn(Qn)
is a word in these generators and their inverses.

Claim 1: If w = q ε1i1 q
ε2
i2
. . . q εmim , where each exponent is ±1, then we may rewrite w

as w = q η1j1 q
η2
j2
. . . q ηmjm , where each exponent is ±1, j1 = min(j1, j2, . . . , jm) and j1 ≤

min(i1, i2, . . . , im).

Proof: Suppose q εkik is the first occurrence of the generator with smallest index and that
k > 1. Now qik−1

Bεk qik = qt for some t and so q
εk−1

ik−1
q εkik = q εkik q

εk−1

t . If we replace q
εk−1

ik−1
q εkik

9



with q εkik q
εk−1

t in w, then either the first occurrence of the generator with smallest index
has moved one place closer to the beginning of w, or a new generator of smaller index was
introduced if t < ik. Hence, after a finite number of steps of this kind, the first generator
of w will have the smallest index and it will be no greater than any of the indices in the
original word.

Claim 2: If w = q ε1i1 q
ε2
i2
. . . q εmim , where each exponent is ±1, then we may rewrite w as

w = q η1j1 q
η2
j2
. . . q ηmjm , where each exponent is ±1 and j1 ≤ j2 ≤ · · · ≤ jm.

Proof: We proceed by induction on m. The case with m = 2 is a direct consequence
of Claim 1. Assume now that the result is true for words of length m and suppose that
w = q ε1i1 q

ε2
i2
. . . q

εm+1

im+1
. Applying the inductive hypothesis to the last m generators of w, we

may assume that i2 ≤ i3 ≤ · · · ≤ im+1. If i1 ≤ i2, we are done. If not, apply Claim 1 to
w, which will strictly decrease the index of the first generator in w, and then again apply
the inductive hypothesis to the last m generators. This cannot continue forever because the
index of the first generator in w cannot decrease below 1.

We may now write any word in AdQn(Qn) as q r11 q
r2
2 . . . q rkk and, using the fact that q ni = 1,

we may assume that 0 ≤ ri < n for each i. There are at most nk = n|Qn| words of this kind.
�

Proof of Theorem 4: Suppose L is an oriented link and Qn(L) is finite. By Theorem 5,
it follows that AdQn(Qn(L)) is finite. Hence the subgroup E0

n of AdQn(Qn(L)) is finite and

so π1(M̃n(L)) is finite by (6).

Now suppose that π1(M̃n(L)) is finite. Because E0
n has finite index in AdQn(Qn(L)), it

follows that AdQn(Qn(L)) is finite. Hence, for each component Ki of L, the set of cosets
Pi\AdQn(Qn(L)) is finite and therefore, by Theorem 1, each component Qi

n(L) of Qn(L) is
finite. �

4 Examples

From the proof of Theorem 4, all information about the knot invariant Qn(L) is encoded by
the cosets of the subgroups Pi in the group AdQn(Qn(L)). For example, Qn(L) is finite if
and only if

s∑
i=1

[AdQn(Qn(L)) : Pi]

is finite. Algorithmically computing the index of Pi in the group AdQn(Qn(L)) from a
presentation of the group is a well-known problem in computational group theory. The first
process to accomplish this task was introduced by Todd and Coxeter in 1936 [9] and is now
a fundamental method in computational group theory. In addition to determining the index

10



(if it is finite), the Todd-Coxeter process also provides a Cayley diagram that represents the
action of right-multiplication on the cosets. In this section we will apply the Todd-Coxeter
process to several examples and determine the quandle multiplication table from the Cayley
diagram of the cosets. More detailed treatments of the Todd-Coxeter process can be found
in [3] and [4].

Consider the right-hand trefoil knot K and fix n = 3. From the Wirtinger presentation we
obtain the presentation

AdQ3(Q3(K)) = 〈x, y | x3 = 1, y3 = 1, x−1y−1xyxy−1 = 1〉.

A meridian for K is µ = x and a (nonpreferred) longitude is λ = yxxy. The Todd-Coxeter
process produces a coset table whose rows are numbered by indices α ∈ {1, 2, . . . , κ} that
represent cosets of P . The columns are labeled by the generators and their inverses and
encode the action of AdQ3(Q3(K)) on the cosets by right-multiplication. An additional
column will be added to give a representative φ(α) ∈ AdQ3(Q3(K)) of coset α.

We initialize the coset table by letting 1 represent the trivial coset P , thus φ(1) = e is a
representative of this coset (we use e here for the identity element of AdQ3(Q3(K)) to avoid
confusion). Since µ = x ∈ P , we have Px = P , this information is encoded in a helper table
where P is represented by index 1 and is encoded in the coset table as a relation 1x = 1. Of
course, it follows from this that 1x−1 = 1 as well, so there are two defined entries in row 1
of the coset table.

x y x−1 y−1 φ
1 1 1 e

x
1 1

Since λ = yxxy ∈ P we also produce a helper table to encode 1yxxy = 1. Additional entries
in the table are required to represent the cosets 1y, 1yx, and 1yxx. These entries are defined
by adding indices 2, 3, and 4, respectively, and adding additional information to the coset
table for these indices coming from the helper table. For example, 2 is defined to be the
coset 1y and, thus, 1y = 2 and 2y−1 = 1 are encoded in the coset table. At this point a
deduction also occurs. Since 1yxxy = 1, we see in the helper table that 4y = 1.

x y x−1 y−1 φ
1 1 2 1 4 e
2 3 1 y
3 4 2 yx
4 1 3 yx2

y x x y
1 2 3 4 1

This completes the initial set up of the coset table and is referred to as scanning the generators
of P . The Todd-Coxeter process next proceeds to scan the relations of AdQ3(Q3(K)) for
all indices. This encodes the fact that if α is any coset and w = e ∈ AdQ3(Q3(K)), then
αw = α in the coset table since Pφ(α)w = Pφ(α) in AdQ3(Q3(K)). We scan the three
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relations x3 = e, y3 = e, and x−1y−1xyxy−1 = e, in this order, for each index, defining new
indices and obtaining new deductions along the way.

Scanning x3 for α = 1 gives no new information. Scanning y3 gives no new definitions but
does produce the deduction 2y = 4 and scanning x−1y−1xyxy−1 defines the indices 5 and 6
as shown in the coset tables below.

x y x−1 y−1 φ
1 1 2 1 4 e
2 3 4 1 y
3 4 2 yx
4 1 3 2 yx2

y y y
1 2 4 1

x y x−1 y−1 φ
1 1 2 1 4 e
2 3 4 6 1 y
3 4 2 yx
4 5 1 3 2 yx2

5 6 4 yx3

6 2 5 yx3y

x−1 y−1 x y x y−1

1 1 4 5 6 2 1

At this point we see that the representative for coset 5 is φ(5) = yx3. Since x3 = e in the
group φ(5) = yx3 = y = φ(2) and so the cosets 5 and 2 are the same. This information is
determined by a coincidence which occurs when scanning x3 for α = 2. Filling in the entries
of the helper table from left to right, 2x = 3, 3x = 4, 4x = 5. However we require 2xxx = 2
thus we see that 5 = 2. In the coset table we process this coincidence by replacing all values
of 5 with 2, merging the data from row 5 into row 2, and then deleting row 5. In merging the
data from 5 to 2 we see a new coincidence, namely 6 = 4 and so we repeat the coincidence
procedure for 6 = 4 before moving on to the next scan.

x y x−1 y−1 φ
1 1 2 1 4 e
2 3 4 664 1 y
3 4 2 yx
4 652 1 3 2 yx2

65 66 64 yx3

66 62 65 62 yx3y

x x x
2 3 4 5 = 2

Scanning x−1y−1xyxy−1 for α = 2 completes the table. The process terminates after the
table is complete and all relations have been scanned for all indices. In our example, no
additional coincidences occur and the completed table is shown below.
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x y x−1 y−1 φ
1 1 2 1 4 e
2 3 4 4 1 y
3 4 3 2 3 yx
4 2 1 3 2 yx2

Table 1: Completed coset table for P\AdQ3(Q3(K)) where K is the trefoil knot

It is important to note that the operation encoded by the coset table is that of right-
multiplication. It is not the operations of B±1 in the quandle P\AdQ3(Q3(K)). The multi-
plication table for the quandle can be easily worked out, however, from the coset table and
the definition of the operations Pg B±1 Ph = Pgh−1x±1h since µ = x. From the completed
coset table, the quandle Q3(K) has four elements P , Py, Pyx, and Pyx2. So, for example,
PyBPyx = Pyx−1y−1xyx. This coset is represented by 1yx−1y−1xyx = 4 in the coset table.
Therefore, Py B Pyx = Pyx2. The full multiplication table for Q3(K) is given below.

B P Py Pyx Pyx2

P P Pyx2 Py Pyx
Py Pyx Py Pyx2 P
Pyx Pyx2 P Pyx Py
Pyx2 Py Pyx P Pyx2

Table 2: The multiplication table for Q3(K) where K is the trefoil knot.

Applying the Todd-Coxeter method in the case of the trefoil for n = 2, 3, 4, 5, enumerating the
cosets of both the trivial subgroup as well as P = 〈µ, λ〉, we obtain the data in Table 4. These

calculations agree with the well known fact that π1(M̃n(K)) for the trefoil with n = 2, 3, 4,
or 5 is, respectively, the cyclic group of order 3, the quaternion group of order 8, the binary
tetrahedral group of order 24, and the binary icosahedral group of order 120. See [7].

n |P | |Qn(K)| |AdQn(Qn(K))| |π1(M̃n(K))|
2 2 3 6 3
3 6 4 24 8
4 16 6 96 24
5 50 12 600 120

Table 3: The order of AdQn(Qn(K)) and index of P for the right-handed trefoil.

As another example, consider the (2, 2, 3)-pretzel link L and fix n = 2. Starting with the
standard pretzel diagram with Wirtinger generators x, y, z, we obtain the following presen-
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tation of AdQ2(Q2(L)).

〈x, y, z |x−1z−1xzxy−1x−1y = 1, y−1x−1yxyzyz−1y−1z−1 = 1,

y−1x−1yxyzyz−1y−1x−1y−1xyx−1z−1z = 1, x2 = 1, y2 = 1, z2 = 1〉

with P1 = 〈x, x−1zxy−1〉 and P2 = 〈y, y−1x−1yzyz−1xzyzy−1〉. Applying the Todd-Coxeter
process gives |AdQ2(Q2(L))| = 96, |Q1

2(L)| = 8, and |Q2
2(L)| = 24. These calculations agree

with those given in [2] where it is shown using Winker’s diagramming method [10] that if L is
the Montesinos link of the form (1/2, 1/2, p/q; e) and q is odd, then |Q1

2(L)| = 2|(e− 1)q− p|
and |Q2

2(L)| = 2q|(e− 1)q − p|.
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