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Building on the scaffolding constructed in the first two articles in this series, we now proceed
to the geometric phase of our sheaf (-complex) theoretic quasidualization of Kubota’s formalism
for n-Hilbert reciprocity. Employing recent work by Bridgeland on stability conditions, we extend
our yoga of t-structures situated above diagrams of specifically designed derived categories to
arrangements of metric spaces or complex manifolds. This prepares the way for proving n-Hilbert
reciprocity by means of singularity analysis.

1. Introduction

After developing topological and derived sheaf-categorical aspects of our quasidualization of
Kubota’s formalism [1] for n-Hilbert reciprocity, in [2, 3], we now proceed to the geometric
aspect of our construct. Our goal in the present paper is to exploit recent work by Bridgeland
[4–6] to produce an arrangement of 7n complex manifolds constituting the next level of our
architecture, with each such manifold sitting above a particular derived category. In [7] we
developed what we have called a calculus (or yoga) of t-structures on each of the indicated
7-“vertex” diagrams (with one such diagram for each element of the group of nth roots of
unity, μn); see also [3] in this connection. We now go on to collect these t-structures, or,
rather, the bounded ones (see below), into sets that admit topologization in accord with the
aforementioned contributions by Bridgeland

Most significantly, tactically speaking, t-structures are first off replaced by so-called
stability conditions. Indeed, a single t-structure can have any number of stability conditions
associated to it by coupling it to certain C-valued homomorphisms from the Grothendieck
group of the underlying derived category (of coherent sheaves). These mappings are
additionally supposed to satisfy a certain Harder-Narasimhan (HN) condition. The salient
point here is that, qua data, a Bridgeland stability condition is a bounded t-structure together
with a suitable HN “central charge.”
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Dealing these sets of stability conditions, the structure of a metric space is one of
Bridgeland’s most exciting results [5]. Moreover, under some special assumptions these
metric spaces, whose points are after all stability conditions, acquire the structure of complex
manifolds, and, if these assumptions are strong enough, even finite-dimensional (f.d.) C-
manifolds. This marvelous state of affairs is the principal motivation for our shifting our
focus from t-structures to stability conditions, in which context we presently delineate classes
of the latter belonging to a single t-structure; the idea is to cap off the architecture of sheaf
constructs we developed in Parts One and Two of the present series with an arrangement
of spaces which permit a certain kind of singularity analysis. The salient point here is that,
as we have shown in the first two parts of this series (cf., Proposition 5.1 of Part One;
Proposition 6.1 of Part Two), nothing less than n-Hilbert reciprocity will follow if, in the
aforementioned arrangement of 7n spaces (with replication, there is a common join above
˜X2

A, “in the middle”), certain n − 1 “vertices,” indexed on the nontrivial nth roots of 1, evince
degeneracies, that is to say, singularities.

Grafting the geometric structures coming out of Bridgeland’s work of just a few years
ago onto our (already multileveled) construct accordingly sets the stage for an endgame vis-
à-vis our approach to general reciprocity, which is after all our justification for this entire series
of papers. The projected final tactics will doubtlessly be informed by, for instance, homology
(perhaps even intersection homology as per Goresky-MacPherson [8–10]), suitable attendant
cohomological approaches, Morse theory, or index theory. But these choices will be made in
our next paper; our present purpose is, so to speak, geometrical, what with Part One having
a topological orientation and Part Two being concerned with homological algebra (in the
broad, modern sense).

2. Background from Parts One and Two
The raison d’ être for all these considerations is Hecke’s eighty-year-old challenge to generalize
his analytic proof of quadratic reciprocity for an algebraic number field [11] to higher
degrees. We gave detailed accounts of this foundational material in the introductory sections
of the two predecessors to this article and refer the reader to those remarks for all the
relevant details. However, for the reader’s convenience we present a compact sketch of
the current status of this open problem in the appendix; suffice it to say for now that our
point of departure (namely, Part One) is the work done by Weil [12] and Kubota [1, 13] in
the 1960s.

In the present context we take the liberty merely to sketch this background quickly so
as to be able to proceed in this section with an expeditious rendering of what we have come
to call quasidualization.

One of the main results of Part One [2] is Proposition 5.1 where, among other things,
the splitting of ˜SL2(k)

(n)
A (Kubota’s n-fold cover of SL2(k)A) on SL2(k) is cast in terms of

the existence and behavior of certain morphisms in a set of diagrams in the category Top of
topological spaces. Specifically, writing μ for μn (the nth roots of unity), X0 for SL2(k), ˜XA for
˜SL2(k)

(n)
A , and, in contrast to our choice of ξ0 in Parts One and Two [2, 3] for a typical element

of μ, setting μ = 〈ζ〉, so that ζn = 1, ζν /= 1 if 0 < ν < n, we get the diagram

μ
˜XA

j0 ∞
∐

�=1

Xζν ;�

m
ζν ;c(n)A

X0

sA

X2
0

Ωζν

m0

(2.1)
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(cf., [2, (5.9)], [3, (6.3)]), for each 0 ≤ ν ≤ n − 1. (From now on we adopt the convention of
writing μ = μn as {1 = ζ0, ζ, ζ2, . . . , ζn−1}, with ζ being a primitive nth root of unity.) We refer
the reader to our earlier papers for the exact definitions of the morphisms, except to note that,
predictably, j0 comes from a natural projection sA from a putative splitting map, and we have
chosen “m” to correspond to the according group laws, even as, in Top, we have taken care
to cloak these. Additionally each Xζν ;� is locally closed [2, Corollary 4.6] and the existence
of the Ωζν , or their construction, is the centerpiece of one of the reformulations of Kubota’s
formalism for n-Hilbert reciprocity developed in [2].

However, it is also the case that Hecke’s challenge can be settled along slightly
different lines, with the same objects in place. We state this in our updated notation.

Proposition 2.1. Setting ˜X0 = SL2(k) × μ and Yζν = ˜X2
0 ∩

∐∞
�=1Xζν ;� , n-Hilbert reciprocity follows

if one has that if ν /= 0 then Yζν = ∅.

Proof. This is Proposition 6.1 of [3]. (The salient point is that the sets Xζν ;� are carefully
defined in terms of the inverse images of Kubota 2-cocycle c(n)A ∈ H2(SL2(k)A, μ) at the ζν;
see [2, Section 4].)

In this setting we gave, in [3, Sections 6, 7, and 8], a systematic development of
successive layers of categorical objects located in tiers above a base diagram in Top of the
type

Yζν

iζν
îζν

X̆ζν
ĭζν

˜X2
A Ŭζν

ĵζν

j̆ζν

Wζν

j

Uζν

jζν

Zζν

i

(2.2)

(again, one for each 0 ≤ ν ≤ n − 1). Here, critically, the i’s and j’s are all meant to convey that
each according arrangement is an instance of the decomposition of an X ∈ Top as

Y closed i−→ X
j←− (X \ Y )open. (2.3)

Thus, (2.2) realizes a linking of four inclusion triples of the type (2.3).
It is standard that the stratification of X given in (2.3) gives rise to an exact triple of

derived categories

DY = D+(Sh/Y )
i∗−→ DX = D+(Sh/X)

j∗−→ DU = D+(Sh/U), (2.4)

where we have written U for X \ Y . As we proved in [7], this state of affairs supports the
construction of a diagram of four corresponding linked exact triples of derived categories,
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respectively situated above the four inclusion triples constituting (2.2). Accordingly, we
obtain for each 0 ≤ ν ≤ n − 1 a diagram of linked exact triples of derived categories of the
form

DYζν

iζν ,∗
îζν ,∗

DX̆ζν

ĭζν ,∗

j∗

D
˜X2

A

j̆∗
ζν

j∗
ζν

DŬζν

DWζν
DUζν

ĵ∗
ζν

DZζν

i∗

(2.5)

Thus, in toto, we have n diagrams of the type (2.5), with shared vertices, or objects,
at ˜X2

A.
Finally, once again using our results from [7], we presented in the last section of [3] a

well-defined arrangement of t-structures on the vertex objects of (2.5), taking into account the
yoga of recollement introduced in [14]. Along these lines we introduced in [3, 7] the following
notation for recollement of t-structures, that is, (resp.) gluing and ungluing:

t(Dy) t(Dy) ∧ t(DU) t(DU)

DY
i∗

DX

j∗

DU

(2.6)

λt(DX) t(DX) �t(DX)

DY
i∗

DX

j∗

DU

(2.7)

Here (cf., [14–16]) we have also that, as regards ungluing, λt(DX) = t(DX) ∩ DY while
�t(DX) = j∗(t(DX)), using the same obvious conventions employed in [3]. All this makes,
for the currently ultimate layer of the architecture at hand, to wit:
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λt
(

DX̃ζν

)

DYζν

t
(

DX̆ζν

)

∧ t
(

DŬζν

)

t
(

DX̆ζν

)

DX̆ζν
D

˜X2
A

DŬζν
t
(

DŬζν

)

�t
(

DX̆ζν

)

DWζν
DUζν t

(

DZζν

)

∧ t
(

DŬζν

)

λt
(

DX̆ζν

)

∧
∧
(

t
(

DZζν

)

∧ t
(

DŬζν

))

DZζν t
(

DZζν

)

(2.8)

Here the main result is Proposition 8.1 of [3] asserting that t(DX̆ζν
) ∧ t(DŬζν

) = λt(DX̆ζν
) ∧

(t(DZζν
) ∧ t(DŬζν

)), making for the lion’s share of the aforementioned well definition of these
arrangements.

With (2.8), specifically with the n diagrams of this sort joined together at the ˜X2
A locale,

we are in a position to bring some sort of singularity theory into play, the term obviously
being understood in a particularly broad preliminary sense at this point.

3. Motivation for Using Bridgeland Stability Conditions

With a burgeoning “calculus” of t-structures available (cf., [7]), we can indeed bring a
particular sort of singularity analysis to bear on our construct, courtesy of recent work
by Bridgeland [4–6] already alluded to earlier. The main idea is to “inflate” the seven t-
structures in (2.8) into equivalence classes of Bridgeland stability conditions, in view of the
fact that suitable classes of such equivalence conditions carry a metric topological structure,
and sometimes even the structure of a finite-dimensional complex manifold. Thus, bearing
in mind, first, that in toto, with ν ∈ {0, 1, 2, . . . , n − 1}, the data afforded by (2.8) provides
for a collection of 6n + 1 vertices, and, second, that each of these vertices will be made to
support a class of Bridgeland stability conditions carrying a good deal of topological or even
f.d. C-manifold structure, we can realize at this level of our architecture something of an
Übermannigfaltigkeit. (We ask the reader’s indulgence regarding this linguistic whimsy, given
that the phrase “supermanifolds” has already been taken.)

It is this Übermannigfaltigkeit, be it located in Top, C-Mfd, or f.d. C-Mfd, that will
dictate the specific form our pending singularity analysis will take. An important feature in
this regard is the nature and status of the morphisms that should be defined using the yoga
of recollement as a point of departure. Thus, in (2.8), the t-structures t(DX̆ζν

), t(DŬζν
), and

t(DZζν
) can be taken as initial data yielding the other t-structures as, so to speak, secondary

data obtained by gluing and ungluing. Lifting this game to the level of Bridgeland stability
conditions, we can then raise the question of what (categorical) structure may be imparted to
these maps. It is at this stage, then, that we will return to the matter of the fine structure



6 International Journal of Mathematics and Mathematical Sciences

of these admittedly bizarre topological spaces of Bridgeland stability conditions we have
evolved, in other words, the matter of the appearance and structure of points in this final
Übermannigfaltigkeit; recall, after all, that, generally, DX = D+(Sh/X) has complexes of
sheaves on X as its objects.

As already indicated, beyond the present task of exhibiting the geometric composition
of our pending Übermannigfaltigkeit, and critically dependent on this determination, we are
called to make choices regarding the type or kind of singularity analysis we should train on
this highest tier of our architecture. The goal is to demonstrate that for ν /= 0 our structure is
degenerate at Yζν (seeing that, as per Proposition 2.1, we need that Yζν = ∅, if ν /= 0). For this
purpose it is enough to show, of course, that there is, as it were, “nothing above” these n − 1
vertices. See Proposition 6.4, below.

This geometric pathology accordingly redounds to the classes of Bridgeland stability
conditions we develop in what follows, and it is there that our final battles will eventually be
fought.

Given the condition that we are imparting point status to collections of sheaf
complexes, in this quasidualized formalism aimed at getting at n-Hilbert reciprocity along
the lines sketched by Kubota in [1], we might project that the singularity analysis that will get
the nod, down the line, to bring the aforementioned n − 1-fold degeneracy out into the open,
will include Fourier analysis in the setting of derived categories as developed by Deligne and
Laumon (cf. [17, 18]).

Furthermore, given the comparative arithmetical paucity of (2.1), on which the present
geometrical constructs are to be built, we must look toward bringing in the effects of various
objects occurring in superdiagrams of (2.1) to carry out these final manoeuvres. Since these
superdiagrams, such as those in [2, (4.20)], are only future players and are cumbersome
entities requiring explication that would take us far afield regarding what the present paper is
concerned with, we omit them at this point in the proceedings. The present order of business
is to adapt Bridgeland’s results to our needs, to develop the analysis situs, to use an outdated
phrase, underlying any upcoming singularity analysis, and to delineate some of the fine
structure of the ensuing architecture in view of future needs.

4. Bridgeland Stability Conditions: The Relevant Results

Apparently the definition of a stability condition in the sense of [4–6] has its immediate
antecedents in an investigation by Douglas [19] in the area of D-branes and mirror symmetry
situated at the intersection of physics and mathematics. However, for our purposes we focus
exclusively on the mathematics in question, that is, stability conditions as part of the theory of
triangulated categories (of which derived categories comprise the most important example)
and Bridgeland’s remarkable characterization of classes of stability conditions admitting the
structure of a metric topological space.

Moreover, we will see that a Bridgeland stability condition σ is not just a pair, (z; P),
where z is a homomorphism from the Grothendieck group of the underlying triangulated
category to C and P is a certain mapping from R to the collection of full subcategories of this
category (subject to four axioms); qua data, it is also a bounded t-structure equipped with a
Harder-Narasimhan filtration on its central charge function, which can in fact be identified
with z. If we have an exact triple of triangulated (or derived) categories to deal with (or four
of these, as in (2.2)), and once a suitable pair of stability conditions is assigned to the extremes
of the triple, we can glue these extreme t-structures to get a t-structure on the middle, or mean,



International Journal of Mathematics and Mathematical Sciences 7

category. It then falls to us to determine how to extend this to the indicated metric spaces or
f.d. C-manifold, in such a way as to open the door for singularity analysis.

Despite the fact that derived categories, and rather special ones at that, will exclusively
be dealt with in this projected singularity analysis, we follow Bridgeland in presenting the
fundamentals of his stability conditions in the most general context of triangulated categories.
But the reader should bear in mind that, soon, derived categories will take over for the
upcoming triangulated categories, truncation functors will take on their prosaic meaning
engendering actual “physical” truncations of chain complexes of sheaves of Abelian groups
over topological spaces, and the ensuing cohomology will display familiar connections.

Given a triangulated category, then, whose definitions and main properties we present
at the outset, we proceed in what follows by recalling the formalism of attendant t-structures
on such a category, of recollement of t-structures on an exact triple of triangulated categories,
and the alternative formulation of some of these entities favored by Bridgeland. Subsequently
we present Bridgeland’s notions of stability conditions, slicings (sub rosa), and central
changes with a Harder-Narasimhan (HN) condition on them, and his results regarding metric
topological structure (or better) on classes of stability conditions.

Before getting down to business, however, we should make two observations. First,
our presentation of the background material on t-structures on triangulated or even derived
categories is not in any sense exhaustive. The standard sources in this regard include Gelfand
and Manin [16], Kashiwara and Schapira [15], Dimca [20], and of course Beı̆linson et al.
[14], and we have opted to be somewhat liberal as regards specific attributions. Additionally,
a good deal of the theory of t-structures as such, in the form given in the aforementioned
sources, is present in our earlier papers in this series; see especially [3, Section 7].
Furthermore, with our objective being the application of Bridgeland’s “technology” to our
architecture in order to get at a question in analytic number theory, we quickly adopt the
abbreviated notation Bridgeland favors for t-structures so that, as a result, our ensuing
discussion approaches self-containment.

Second, we stipulate at this early point in the development that the object classes of
the triangulated categories we deal with below are sets, or that the indicated categories can
be replaced by equivalent categories with this property. In other words, our categories are
either small or essentially small. The categories arising in direct connection with our number
theoretic applications meet these requirements for, generally speaking, very straightforward
reasons.

This having been said, then, in [4, 5] Bridgeland presents the following compact
definition of a t-structure.

Definition 4.1. If D is a triangulated category and f ⊂ D is a full subcategory, then f (itself) is
said to be a t-structure on D if, first, f[1] ⊂ f, and, second, if, by definition,

f⊥ := {Y ∈ D | HomD(X,Y ) = 0 ∀Y ∈ f}, (4.1)

then for every Z ∈ D there exists a distinguished triangle Z0 → Z → Z1 → Z0[1] with
Z0 ∈ f and Z1 ∈ f⊥.

Evidently this characterization of a t-structure varies from the standard one (cf., [3,
page 18]), to wit: a t-structure on D is the pair t(D) := (D≤0,D≥0) of full subcategories such
that, with D≤n := D≤0[−n] and D≥n := D≥0[−n], we have that D≤0 ⊂ D≤1 (there is a misprint
in loc. cit., where it reads D≤0 ⊂ D≥1) and D≥0 ⊃ D≥1; that if A ∈ D≤0 and B ∈ D≥1 then
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HomD(A,B) = 0; and, finally, that if A ∈ D then there exist objects τ≤0A ∈ D≤0, τ≥1A ∈ D≥1,

functorially, such that τ≤0A → A → τ≥1A
+1−−→ is distinguished. However, the connection

between these two definitions is in essence that f = D≤0 and f⊥ = D≥1, whence D≥0 = f⊥[1].
With these agreements in place, we are now in a position to confuse these two

conventions at will, or, rather, as a function of convenience and clarity. À propos, we obviously

play no favorites either between the renderings A → B → C → A[1] and A → B → C
+1−−→

for a distinguished triangle; after all, both are entirely standard in the literature.
We stipulate, too, with Bridgeland, that the t-structures we are dealing with are

bounded.

Definition 4.2. A t-structure f on a triangulated category D is bounded if

D =
⋃

i,j∈Z

(

f[i] ∪ f⊥
[

j
]

)

. (4.2)

Proceeding along, then, the heart (or core) of a t-structure t(D), on D, being the Abelian
category D≤0 ∩D≥0, is given as f∩ f⊥[1] in Bridgeland’s notation, and, for future reference, the
standard cohomological functor H◦ := τ≥0τ≤0 = τ≤0τ≥0 (see [8]) maps into the core:

H◦ : D −→ f ∩ f⊥[1]. (4.3)

Next, recall that if A is any Abelian category, its Grothendieck group, K(A), is the
quotient of the free Abelian group on A by the relation that X = X′ + X′′ in K(A) if and only
if there is a short exact sequence 0 → X′ → X → X′′ → 0 in A. In the leitmotiv case of a
derived category, say D = D(Sh/T ) for a topological space T , it is a standard fact [21] that
in the presence of the standard t-structure on D short exact sequences of chain complexes of
sheaves on T correspond to distinguished triangles in D(Sh/T ); note also that the Abelian
category Sh/T arises here as the core of the aforementioned standard t-structure D (loc. cit.).
It follows from these observations that K(Sh/T ) ∼= K(D), where K(D) is defined as the free
Abelian group of D divided out by the relation that F · = F ′· + F ′′· if and only if we have a

distinguished triangle F ′· → F · → F ′′·
+1−−→. Moreover, it turns out that this is in fact true

for triangulated categories [5, page 15]: if D is a triangulated category equipped with a t-
structure whose core is the Abelian category A, then K(D) ∼= K(A).

With these notions and facts in place we come to the main player in the game.

Definition 4.3. A Bridgeland stability condition, or just a stability condition, on a triangulated
category D is the data σ = (zσ ; Pσ), where, first,

zσ : K(D) −→ C (4.4)

is a group homomorphism called the central charge of σ, and where, second,

Pσ : R −→
{

full additive subcategories of D
}

(4.5)
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is a so-called slicing of D, with this data being by definition subject to the following four
axioms.

(i) If E ∈ Pσ(ϕ), ϕ ∈ R, then arg zσ(E) = πϕ; that is to say, zσ(E) = |zσ(E)| · eiπϕ.

(ii) For all ϕ ∈ R, Pσ(ϕ + 1) = Pσ(ϕ)[1].

(iii) If A1 ∈ Pσ(ϕ1), A2 ∈ Pσ(ϕ2), and ϕ1 > ϕ2, then HomD(A1, A2) = 0.

(iv) If E is a nonzero object in D (written somewhat abusively as E/= 0), there is a finite
sequence of real numbers,

ϕ+
σ(E) := ϕ1 > ϕ2 > · · · > ϕi−1 > ϕi > · · · > ϕn−1 > ϕn =: ϕ−σ(E), (4.6)

and a corresponding collection of distinguished triangles,

Ei−1 −→ Ei −→ Ai −→ Ei−1[1], (4.7)

rendered Ei−1 → Ei (with Bridgeland), such that Ai ∈ Pσ(ϕi) for every 1 ≤ i ≤ n, and Ai we
have (uniquely up to isomorphism)

0 = E0 E1 E2 · · · Ei−1 Ei · · · En−1 En = E

A1 A2 Ai An

(4.8)

Given this decomposition of E ∈ A, we say that E has mass

mσ(E) :=
n
∑

i=1

(zσ(Ai)). (4.9)

It turns out that there is an equivalent way of characterizing stability conditions which
is better suited to our near-future needs. First of all, for any Abelian category A we get the
following definition.

Definition 4.4. A stability function on A is a group homomorphism

z : K(A) −→ C (4.10)

with the property that if 0/=E ∈ A then z(E) ∈ H, the (usual) complex upper half-plane. And
then the phase of E ∈ A is the real number

ϕ(E) :=
1
π

arg z(E) (4.11)

in (0, 1].

Definition 4.5. One says that 0/=E ⊂ A is semistable if one has that, for all 0/=E′ ⊂ E, ϕ(E′) ≤
ϕ(E).
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With these definitions in hand we obtain the notion of a H(arder-) N(arasimhan)
stability function as follows.

Definition 4.6. A stability function z, as per (4.10), satisfies a Harder-Narasimhan (HN)
condition if every 0/=E ∈ A admits a finite chain of subobjects

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ei−1 ⊂ Ei ⊂ · · · ⊂ En−1 ⊂ En = E (4.12)

such that, for each i, the quotient object Ei/Ei−1 is semistable in A and the inequality
ϕ(Ei/Ei−1) > ϕ(Ei+1/Ei) is satisfied.

Accordingly, on one hand, we have the data afforded by a stability condition σ =
(zσ ; Pσ) in keeping with (4.4), (4.5), and (i)–(iv), above, while, on the other hand, we have
the notion of an HN stability function, z : K(A) → C, on the Grothendieck group of an
Abelian category, together with the notion of a t-structure on D. However, we know, too,
from Proposition 4.7, that if A is the core of a (suitable) t-structure on D then K(A) and K(D)
can be identified, and, in view of the proposition that (iv), specifically (4.5), can evidently
be regarded as Harder-Narasimhan data, this suggests that there should be an identification
possible between certain central charges zσ and HN stability functions z. Indeed, starting
with zσ , that is, with σ = (zσ ; Pσ), define, for any interval I ⊂ R, the set

Pσ(I) :=
{

0 − objects of D
}
∐

{

E ∈ D | ϕ−σ(E), ϕ+
σ(E) ∈ I

}

, (4.13)

and write, for convenience (and with Bridgeland), Pσ((ϕ,∞)) = Pσ(> ϕ), Pσ([ϕ,∞)) = Pσ(≥
ϕ), Pσ((−∞, ϕ)) = Pσ(< ϕ), and Pσ((−∞, ϕ]) = Pσ(≤ ϕ). It is easy to see that Pσ(> ϕ)[1] =
Pσ((ϕ,∞))[1] = Pσ((ϕ + 1,∞)) ⊂ P((ϕ,∞)) = Pσ(> ϕ), and that the same sort of thing
happens for Pσ(≥ ϕ). It accordingly stands to reason that each of these subcategories of D

should qualify as a t-structure (in Bridgeland’s sense) on D; indeed, if, for example, Pσ(>
ϕ) =: fσ,ϕ is such, then Pσ(≤ ϕ) = f⊥σ,ϕ. Naturally, the t-structure of choice (to correspond to a
given Pσ) is fσ,0, which we just term fσ from now on; in other words, tPσ (D) = (fσ, f⊥σ[1]) =
(Pσ(> 0),Pσ(≤ 1)) and core fσ = core tPσ (D) = fσ ∩ f⊥σ[1] = Pσ((0, 1]), an Abelian category.
Under these circumstances, then, we identify the Grothendieck groups K(D) and K(core fσ).
(Given that our focus is not on t-structures and stability conditions for their own sake, we do
not pursue the details of these arguments here. Again, the interested reader is referred to the
literature mentioned earlier.)

Next, having indicated a means whereby to go from Pσ ∈ σ = (zσ ; Pσ) to a t-structure,
fσ , we note that the fact that the central charge zσ satisfies condition (iv), above, and the
easily verified proposition that the aforementioned t-structure has core fσ ∩ f⊥σ[1] implies the
following conclusion.

Proposition 4.7. As a function on this core, zσ is in fact a Harder-Narasimhan function.

Putting these things together we obtain that σ determines the data (zσ, fσ), of an HN-
stability function and a t-structure on D. Furthermore, the opposite implication is true, too,
so that we obtain (verbatim Bridgeland) the following.
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Proposition 4.8. “To give a stability condition on D is equivalent to giving a bounded t-structure on
D and a stability function on its heart with the Harder-Narasimhan property.”

Proof. See [4, page 10] or [5, page 15].

In light of this characterization we take the liberty of identifying any data σ = (zσ ; Pσ)
with the data (zσ |core fσ ; fσ) where fσ := Pσ(> 0), in accord with our earlier remarks.

5. Equivalence Classes of Stability Conditions

Returning to our construct (2.8), which is the blueprint, as it were, for the Übermannigfaltigkeit
on which we propose to carry out singularity analysis, the seven indicated t-structures
(arising from three given ones) need to be “inflated” to Bridgeland stability conditions if
we propose to use Bridgeland’s topological results (loc. cit.). The obvious first requirement
we face, however, is the imperative that the rather ramified recollement interplay depicted in
(2.8) be carried over to these stability conditions. In other words, if we want (2.8) to evolve
into a proper diagram with each of the seven t-structures in question replaced by a stability
condition (i.e., a point on our expected Übermannigfaltigkeit), then the aforementioned move
of “inflation” must commute with recollement. This requirement would make it incumbent on
us to pick very special HN-functions on the cores of the seven given t-structures whereby to
effect this inflation. Indeed, we would have to address the autonomous problem of extending
the process of recollement to Bridgeland stability conditions in a well-defined and systematic
fashion. Thus, given, for example, an arrangement of triangulated categories

C
P−−−−−−→ D

Q−−−−−−−→ E (5.1)

making up an exact triple [7, 15], and given a Bridgeland stability condition σ = (zσ ; Pσ) =
(zσ ; fσ) on D, we have à priori that fσ yields t-structures λfσ and �fσ on C and E, respectively;
here we have taken the obvious luxury of writing λfσ and �fσ instead of λtPσ (D) and �tPσ (D),
where Pσ(> 0) = fσ, Pσ(≤ 1) = f⊥σ[1]. But we still need to address the issue of attendant
central charges: we are given that zσ ∈ Hom(K(core fσ); C) ∼= Hom(K(D); C), and we need
suitable λzσ ∈ Hom(K(core λfσ); C) ∼= Hom(K(C); C) and �zσ ∈ Hom(K(core �fσ); C) ∼=
Hom(K(E); C), making for stability conditions λσ, �σ, on C, E, respectively, such that zλσ =
λzσ and z�σ = �zσ. Additionally, we have to arrange that the fact that recollement engenders
that gluing and ungluing undo each other carries over to the level of stability conditions.

On the other hand, if we look ahead to our goal of carrying out a special kind of
singularity analysis on the Übermannigfaltigkeit we seek to manufacture, it is clearly possible
to do an end run, and avoid the difficulties raised above by introducing what we might
call a “fat” equivalence relation on the set of stability conditions, placing the full burden
of commuting with recollement on the t-structures occupying the stability conditions’ second
coordinates. Specifically, we have the following.

Definition 5.1. If σ = (zσ ; Pσ) and τ = (zτ ; Pτ) are both stability conditions being defined on
the same underlying derived category D, then σ ∼ τ if and only if Pσ = Pτ , or, equivalently,
fσ = fτ , using our earlier nomenclature conventions.
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The effect of this equivalence is to attach to each t-structure f in the game, specifically

to each of the seven t-structures appearing in (2.8), a “fat” equivalence class �f
�

of Bridgeland
stability conditions. Thus, each t(D) = (D≤0,D≥0) in (2.8), which can be rendered as f = D≤0

(so that D≥0 = f⊥[1]: see Section 3, above), is effectively inflated into the class �f
�

simply by
attaching to f, now identified with an appropriate P, all suitable central charges z, taking into
account that the data (z; P) = (z; f) (via f = P(> 0)) is equivalent to the data provided by a
stability condition.

Furthermore, isolating P in this way is in fact tantamount to restricting our attention
to slicings of D, as opposed to the obviously more restrictive stability conditions. Indeed in
[5] we find the following.

Definition 5.2. A slicing of a given triangulated category D is the data P(ϕ), ϕ ∈ R, cut out
by the counterparts to (ii), (iii), and (iv) in the earlier definitions of a stability condition:
P(ϕ + 1) = P(ϕ)[1]; A1 ∈ P(ϕ1); A2 ∈ P(ϕ2), ϕ1 > ϕ2 ⇒ HomD(A1, A2) = 0; and each
nonzero E ∈ D associates to a sequence ϕ1 > ϕ2 > · · · > ϕn (for some n) such that

0 = E0 E1 E2 · · · Ei−1 Ei · · · En−1 En = E

A1 A2 Ai An

(5.2)

with the triangles distinguished and Ai ∈ P(ϕi) for 1 ≤ i ≤ n.

With Bridgeland, write Slice(D) for the set of all slicings of D, and, provisionally,
Stab(D) for the set of stability conditions on D (with another defining condition to be
discussed presently: see Section 6). Then, evidently, Stab(D) ⊆ Slice(D) × HomZ(K(D),C)
(loc. cit., pages 17-18). For our purposes, however, instead of working with the structurally
sparser Slice(D), we focus on Stab(D), which, courtesy of Bridgeland’s metric, provides the
topological structures holding the most promise.

Parenthetically, it is without question fascinating in its own right to pursue the
question of extending recollement from t-structures to stability conditions in the narrow
and exacting sense discussed above, and we propose to look into this matter in a separate
investigation [22]. But for what we have in mind here, that is, our projected singularity
analysis, that much fine structure is evidently not needed.

6. Bridgeland’s Metric and Topological Spaces of Stability Conditions

We now head for the remarkable result Bridgeland presented in [4–6] to the effect that
collections of stability conditions can be endowed with the structure of a metric space
and, under the right circumstances, even that of a f(inite-) d(imensional) C-manifold. This
material is provided in complete detail in Bridgeland’s papers so we present it here without
proofs, soon to tailor these results to our needs in Sections 6 and 7. Before any of this, however,
we need to say something about the matter of the proper characterization of Stab(D), that is
to say, the question of local finiteness of Bridgeland stability conditions.



International Journal of Mathematics and Mathematical Sciences 13

Definition 6.1 (see [5, page 17]). A stability condition σ = (zσ ; Pσ) is locally finite if there
exists an ε > 0 such that, for all ϕ ∈ R, Pσ(ϕ − ε, ϕ + ε) is both Artinian and Noetherian, that
is, finite as a category.

Stab(D) is the set of locally finite stability conditions on the triangulated category, D.
Thus, our earlier fat equivalence classes certainly induce a natural partitioning of

Stab(D), as it stands. However, Bridgeland also notes that the indicated constructions of
metrics on sets of stability conditions, or even on slicings (see immediately below) of D,
go through unchanged without the condition of local finiteness, so we postpone judgment
for now regarding whether to include this requirement as part of the characterization of our
Stab(D)’s, with the obvious abuse of language in place. Regardless, Stab(D) splits up, or
partitions, into fat equivalence classes as defined in Section 4.

Next, regarding the aforementioned metric, or distance function between stability
conditions, first Bridgeland proves the following.

Proposition 6.2. The assignment

(P1,P2) �−→ sup
0/=E∈D

{∣

∣

∣ϕ−P2
(E) − ϕ−P1

(E)
∣

∣

∣,
∣

∣

∣ϕ+
P2

(E) − ϕ+
P1

(E)
∣

∣

∣

}

(6.1)

defines a metric on Slice(D); to be proper, this rule actually defines or generalized metric in the sense
that the range is the set of extended nonnegative real numbers, [0,∞].

An equivalent way of presenting this metric is via the rule

(P1,P2) �−→ inf
{

ε ≥ 0 | P2
(

ϕ
)

⊂ P1
(

ϕ − ε, ϕ + ε
)

, ∀ϕ ∈ R
}

. (6.2)

For proofs, the reader is referred (again) to [5, page 17]. Then, recalling that generally σ =
(zσ ; Pσ), Bridgeland obtains the following.

Proposition 6.3. The mapping

d : Stab(D) × Stab(D) −→ [0,∞]

(σ1, σ2) �−→ sup
0/=E∈D

{

∣

∣ϕ−σ2
(E) − ϕ−σ1

(E)
∣

∣,
∣

∣ϕ+
σ2
(E) − ϕ+

σ1
(E)

∣

∣,

∣

∣

∣

∣

log
mσ2(E)
mσ1(E)

∣

∣

∣

∣

} (6.3)

provides a metric on Stab(D).

For the proof, consult [5, pages 24–26].
Returning to the construct (2.8), which is, the figure that needs to be replicated n-fold

(indexed on 0 ≤ ν ≤ n−1) in order to manufacture the framework for our Übermannigfaltigkeit
by means of defining a hub at the ˜X2

A locale, that is, in the common derived category D
˜X2

A
,

it is clearly notationally unwieldy to situate seven Stab(D−)’s in the indicated places. More
importantly, in view of our future singularity analysis, in which metric space topology or
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even C-manifold structure is to be exploited, a more evocative notation is desirable. So, we
will systematically write

MD = Stab(D) (6.4)

for the indicated derived categories, D.
Moreover, in order to mitigate the cumbersome notation that results from the

subscripted categories occurring in (2.8), we also write, systematically,

MX = Stab(DX) (6.5)

and carry this convenience over to the other players in the game.
Accordingly, systematically writing Bridgeland’s f’s in place of the more traditional

t’s currently found in (2.8), then writing fX to signal the t-structure data t(DX) = (D≤0
X ,D

≥0
X ),

with D≤0
X = fX, D≥0

X = f⊥X[1] as before, and then denoting the according fat equivalence class

by �f
�
X ⊂ MX , we can now recast (2.8) as follows, highlighting not the individual t-structures

but the fat classes and theM−:

MȲζν ⊃ �λf
�
X̆ζν

DYζν

iζν ,∗
îζν ,∗

�λfX̆ζν
∧ (fZζν

∧ fŬζν
)�

= �fX̆ζν
∧ f
�
Ŭζν
⊂ MX̃2

A

MX̆ζν
⊃ �f�

X̆ζν
DX̆ζν

j∗

ĭζν ,∗
D

˜X2
A

j̆∗
ζν

j∗
ζν

DŬζν
�f
�
Ŭζν
⊂ MŬζν

MWζν
⊃ ��f�

X̆ζν
DWζν

DUζν

ĵ∗
ζν

�fZζν
∧ f
�
Ŭζν
⊂ MUζν

DZζν

i∗

�f
�
Zζν
⊂ MZζν

(6.6)

With μ = 〈ζ〉, we have in (6.6), that is to say, in the (full) data provided by these diagrams,
all the ingredients needed to define our Ubermannigfaltigkeit, which we will denote as Ωn,
placing us in the position to launch the singularity analysis alluded to above.

It behooves us at this stage to note that we are indeed closing in on our objective.

Proposition 6.4. In order to obtain n-Hilbert reciprocity for the global field k, it suffices to show that
the n − 1 locales DYζν

, ν = 1, 2, . . . , n − 1, are void; equivalently, it suffices to show that all the action
takes place above DY 1

.

Proof. This follows from Proposition 2.1.

By way of anticipation of Section 8, coming up, and, more importantly, the projected
fourth and last paper in this series, we note two obvious but exceedingly important facts at
this stage of the proceedings. First, the guiding idea is that Ωn should exhibit n− 1 “fissures,”
so to speak, coming from the nullity of the aforementioned n − 1 locales, so that our ultimate
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task will be along the lines of proving that these fissures are present by means of proving
that a particular pathological situation arises at the level of function spaces (of a type to be
determined) on indicated subsets of Ωn. Evidently this bears a similarity to what occurs in
regards to homology as a measure of the shape of a geometric object, in the presence of, say,
a duality with suitably defined cohomology.

Second, the structure of Ωn as a geometrical object, which on a more local level
involves the geometric structure of the M−, immediately takes us in the direction of
geometrical and topological questions arranged in a natural sequence in such a way that
resolving the later questions or problems would translate to hypotheses whose impositions
on players in (6.6) would yield more structure for Ωn. We say more about this in Section 8
below.

7. The “Points” ofMD

All the M− of (6.6) live above topological spaces supporting derived categories of sheaves
(which, in due course, we take to be of a conveniently special sort, i.e., coherent sheaves),
and these M−, which are also denoted as MD for D being any such derived category, are
partitioned into fat classes of stability conditions. So it is important to address the question
of the appearance of the points that make upMD as a metric space via (6.3). Employing the
notation of Section 5, this means that we have to explicate the inclusions

MD ⊃ �σ
� � σ � fσ, (7.1)

where �σ
�

is a fat equivalence class of Bridgeland stability conditions; for example, σ =
(zσ, fσ) is an individual Bridgeland stability condition with central charge zσ and t-structure
fσ ; it is fσ which, identified with a suitable t(D), takes us back to the players in the initial
diagram (2.8). So, properly speaking, a point of MD is a σ, so we start by briefly revisiting
the definitions of zσ and fσ as given above.

We have, accordingly, that σ = (zσ ; fσ) = (zσ ; Pσ), where zσ is a central charge, that
is, an HN stability function, a group homomorphism mapping the Grothendieck group of D

into C (cf., (4.4)), and Pσ is a slicing of D (as per (4.5)); then the relationship between Pσ and
the Bridgeland stability conditions fσ is given by the stipulation that Pσ(>0) = Pσ((0,∞)) =
fσ , so that qua t-structure we have t(D)(=:tσ(D)) = (Pσ(>0), Pσ(≤1)) = (fσ, f⊥σ[1]). So, in
relation to the nomenclature originating with [14] if we also write tσ(D) = (D≤0,D≥0), then
D≤0 = Pσ(> 0) = fσ and D≥0 = Pσ(≤ 1) = f⊥σ[1].

Parenthetically, the cumbersome quality of the preceding identifications can possibly
be somewhat mitigated by employing the fact that t-structures are self-dual [15, page 412];
however, that would engender yet more notational variations because of the fact that this
self-duality of t-structures involves opposite triangulated categories. Seeing that from now
on we work primarily with Bridgeland’s t-structures (that is to say, f’s “by themselves”), this
turns out not to be an issue.

Going on, then, if σ = (zσ ; fσ) is a typical point ofMD = Stab(D), writing alsoMX for
MD when D = DX in accord with (2.8) and (6.6), then we have fσ = fτ . In the presence of our

earlier fat equivalence relation,MD is partitioned into a disjoint union of such �σ
�
.

Finally, seeing that the triangulated categories appearing in (6.6) are in fact derived
categories of sheaf complexes, a point σ = (zσ ; fσ) engenders in fσ a full subcategory of an
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underlying DX = Db(Sh/X), or even D+(cohSh/X), where cohSh/X stands for the category
of coherent sheaves on X (which is often rendered more compactly as Coh(X), e.g., by
Bridgeland in [23]). So, qua data, the points of the various MX in the game, and, as we
will soon see, of our construct Ωn, are innately tied to chain complexes of sheaves on the
topological space X, with the reason being that D(Sh/X) = K(X)Qis, the localization of the
category K(X) = Kom(X)/ � (chain complexes of sheaves on X modulo chain homotopy) at
the localizing class of quasi-isomorphisms [15, 16, 21].

This augers for unusual characterizations of functions on (or along) paths on Ωn and
thus for interesting opportunities in singularity analysis. But we are being premature: before
anything else we have to deal with the matter of the global structure of Ωn.

8. The Large-Scale Structure of Ωn: Toward Singularity Analysis

The building blocks for Ωn are of course the n diagrams (6.6) with ν running through
{0, 1, 2, 3, . . . , n − 1}. With the seven structures M− in (6.6) being topological spaces, we can
certainly form, first, the n spaces

Ωζn :=MWζν
×MX̆ζν

×MYζν
×M

˜X2
A
×MŬζν

×MUζν
×MZζν

(8.1a)

≈ M
˜X2

A
×MYζν

×MWζν
×MX̆ζν

×MŬζν
×MUζν

×MZζν
(8.1b)

≈ M
˜X2

A
×MYζν

×Θζν (8.1c)

for each 0 ≤ ν ≤ n − 1; here we have defined, en passant,

Θζν :=MWζν
×MX̆ζν

×MŬζν
×MUζν

×MZζν
. (8.2)

Obviously, the prevailing topology is the product topology.
The reason for our rendering Ωζν as (8.1c) is that, first, ˜X2

A is the shared locale (in
Top) underlying all n of our diagrams (6.6), and, second, that, as we established already in
Propositions 2.1 and 6.4, meeting Hecke’s challenge depends on having Yζν = ∅ if ν /= 0, which
is of course quite the same as having Yζν = ∅ for ν /= 0, that is, 1 ≤ ν ≤ n − 1, or, equivalently,
having the corresponding DYζν

degenerate for 1 ≤ ν ≤ n− 1. Thus, the objects in our structure
above these empty locales are themselves null, or degenerate, too, meaning that we have, at
last, the following.

Proposition 8.1. n-Hilbert reciprocity for the number field k will follow if the n−1 topological spaces
MYζν

, 1 ≤ ν ≤ n − 1, are degenerate (i.e., zero).

Proof. If Yζν = ∅, then any Abelian sheaf F on Yζν is evidently just the constant sheaf 0. So,
Sh/Yζν = {0}, or, more precisely, Ob(Sh/Yζν) = 0. Immediately, therefore, D(Sh/Yζν) = 0,
too. Realizing a Bridgeland stability condition on DYζν

⊂ D(Sh/Yζν) as σ = (z; P), obtain

that z : K(D(Sh/Yζν)) = (0) → C, that is, z ≡ 0, and for all ϕ ∈ R, P(ϕ) ⊂ D(Sh/Yζν) = {0},
that is, P ≡ 0 too. Thus σ = (0, 0).
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So the handwriting is on the wall: with ˜X2
A as the single locale shared between the n

seven-vertex diagrams in Top underlying everything we have above along these lines, we
define

Ωn :=M
˜X2

A
×

n−1
∏

ν=0

(

MYζν
×Θζν

)

(8.3)

in Top, still exploiting the product topology. We get, as an immediate consequence of
Proposition 8.1, the following critical fact.

Corollary 8.2. n-Hilbert reciprocity for k follows ifΩn ≈ M ˜X2
A
×MY 1

×
∏n−1

ν=0Θζν .

Proof. Clear from the foregoing.
And this brings us to the endgame. The quasidualization of Kubota’s formalism for

n-Hilbert reciprocity for the number field k by sheaf complex theoretic methods developed
in [2, 3] has finally reached the stage where the game will be won if the geometrical (or
topological) construct Ωn, as above, is revealed to be singular in the sense presented by
Corollary 8.2. Thus, to be sure, if [2] dealt with laying out the topological foundation of our
strategy, and [3] subsequently focused on the ensuing homological algebra, then the present
considerations can be rightly termed geometrical in the particular sense that we now have
a construct, at worst a metric space, at best an f.d. C-manifold (and the latter structure may
only appear at certain factors of Ωn), where singularity analysis would bring the matter to
resolution.

The apparent best-case scenario for singularity analysis on Ωn would be if it
were amenable to being dealt a finite-dimensional complex manifold structure. Following
Bridgeland [4, 23], this would mean requiring the sheaves in our construction to be
coherent, which is not a problem, of course, and, more problematically, having certain rather
stringent conditions in place on the underlying topological spaces. Specifically, Bridgeland’s
hypotheses include that these spaces should be complex projective manifolds; admittedly
these entail sufficient conditions, not necessary ones, but it is already evident that this much
structure comes at a high price, and it is not yet clear how important finite dimensionality
should be, given what we have in mind.

On the other hand, it is certain that, as a Cartesian product of metric spaces, Ωn is
itself a metric space and this affords us the luxury of a handful of preliminary observations,
along the following lines. Evidently the first possibility vis-à-vis revealing degeneracy at
the aforementioned n − 1 locales is to carry out a Morse-theoretic analysis of the situation,
using particularly elementary Morse functions in the process. The main extrinsic objection to
this consists in recalling that Hecke’s original challenge asks for an analytic resolution of the
problem, so the function-theoretic element in such a Morse-theoretic approach would have
to be introduced in what might be a somewhat unusual fashion.

A more promising and not altogether disjoint approach, from the outset algebraic-
topological in flavor, is to go at Ωn with the machinery of intersection homology and
cohomology (cf., [8–10]). This line is particularly attractive because of the earlier observation
(Section 6) to the effect that Ωn’s points involve in some innate sense chain complexes with
the prospect of using the formalism of functorial integral transforms as per Grothendieck,
Deligne, Laumon (cf., [17, 18]), and so on. This route would be more likely to lead to a final
singularity analysis on Ωn centered on the Fourier transform’s relatively recent incarnation
as a functor between derived categories [15].
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Finally, there is some hope of going with a combination of the preceding approaches,
together with functional analysis (of a very abstract sort), so as to couch the indicated
singularity analysis in terms of spectral theory. This is again very appealing on the obvious
grounds that such a resolution of Hecke’s challenge would be genuinely analytic. These are
matters for the next (and hopefully final) paper in this sequence.

Appendix

Hecke’s original proof of relative quadratic reciprocity (for an arbitrary algebraic number
field, k, rather than the base field, Q: the absolute case) is effected by means of passing from
a functional equation for what are now called the Hecke ϑ-functions to a reciprocity between
Gauss sums from which a generalized Gauss-Euler reciprocity law is easily derived. Our
point of departure, however, is an equivalent formulation of this proof due to Weil [12] and
rephrased by Kubota [13].

In Weil’s treatment, Hecke’s Fourier analytic deduction of the centrally important
ϑ-functional equation is replaced by an application of the Stone-Von Neumann theorem
to produce a projective unitary representation of the symplectic group. This projective
representation is now called the Weil representation (or the oscillator representation), which,
in the setting of the adèlization of the symplectic group, allows a natural group action on a
certain functional having a Fourier analytic character. This functional, now called the Weil Θ-
functional, is in fact invariant under the induced action of the subgroup of rational points, and
so, given that the 2-cocycle produced by the (adèlic) Weil representation is built up from 2-
Hilbert symbols, this invariance translates to the product formula giving 2-Hilbert reciprocity
which, of course, is equivalent to Gauss-Euler reciprocity. It is not too difficult an exercise to
get Hecke’s ϑ-functional equations from the indicated invariance of the Weil Θ-functional
(cf., [12]).

In Weil’s presentation of this argument, Hilbert-Hasse reciprocity is addressed, and
the aforementioned 2-cocycle, making for a double cover of the symplectic group, both
3-adically and adèlically, is not explicitly given in terms of the 2-Hilbert symbol. This
transition was effected by Kubota in [13], and unitary representations of symplectic groups
were simultaneously replaced by (second) cohomology of special linear groups (again 3-
adically and adèlically, of course). To wit, it is a standard fact of representation theory [24],
or algebraic topology, that the behavior outlined above, that is to say, the splitting of the
according adèlic 2-cocycle on the rational points with the 2-cocycle and its constituent 2-
Hilbert symbols taking values in {1,−1} = μ2, engenders that the accompanying double cover
of SL2(k)A, written, ˜SL2(k)

(2)
A = SL2(k)A×c(2)A

μ2, is also split on SL2(k) (the all-important
rational points). As already suggested, it is this splitting, following from the invariance of
the adèlic Weil Θ-functional under the action of SL2(k) facilitated by the (projective) Weil
representation, that permits us to characterize this line of argument as a genuine Fourier-
analytic derivation of quadratic reciprocity.

Getting back to Hecke, at the end of [11] he had asked for a generalization of this
analytic proof of quadratic reciprocity to arbitrary degrees n ≥ 2, and Kubota went on to this
matter in [1], in the indicated context of unitary group representations and low-dimensional
group cohomology. Although not laying down a proof of higher reciprocity (because of his
need to presuppose it in his discussion, as we will see momentarily), Kubota presented a
promising formalism, dealing with n-fold covers of SL2(k)A, through which to approach
Hecke’s challenge with various new tools. Specifically, he defined an n-fold (metaplectic)
cover ˜SL2(k)

(n)
A = SL2(k)A×c(n)A

μn, where μn (⊂ k, by assumption) is the group of nth roots of



International Journal of Mathematics and Mathematical Sciences 19

unity, and c
(n)
A ∈ H2(SL2(k)A, μn), Kubota’s (2-)cocycle, is built up from n-Hilbert symbols;

see [2, Section 3] for specifics. As we indicated in [2, Section 3], if one demonstrates that
c
(n)
A splits on SL2(k) by analytic means, Hecke’s challenge is met. Kubota did not give this

derivation in [1] where only the stated equivalence was set forth, and the problem remains
open. In this connection see also [25, page 51].

References

[1] T. Kubota, OnAutomorphic Functions and the Reciprocity Law in a Number Field, Lectures in Mathematics,
no. 2, Kyoto University, Kinokunya Bookstore, Kyoto, Japan, 1969.

[2] M. Berg, “Derived categories and the analytic approach to general reciprocity laws. I,” International
Journal of Mathematics and Mathematical Sciences, vol. 2005, no. 13, pp. 2133–2158, 2005.

[3] M. C. Berg, “Derived categories and the analytic approach to general reciprocity laws. II,” International
Journal of Mathematics and Mathematical Sciences, vol. 2007, Article ID 54217, 27 pages, 2007.

[4] T. Bridgeland, “Derived categories of coherent sheaves,” http://arxiv.org/abs/math/0602129.
[5] T. Bridgeland, “Stability conditions on triangulated categories,” Annals of Mathematics, vol. 166, no. 2,

pp. 317–345, 2007.
[6] T. Bridgeland, “Spaces of stability conditions,” http://arxiv.org/abs/math/0611510.
[7] M. Berg, “Linked exact triples of triangulated categories and a calculus of t-structures,” International

Journal of Pure and Applied Mathematics, vol. 31, no. 1, pp. 117–138, 2006.
[8] M. Goresky and R. MacPherson, “Intersection homology theory,” Topology, vol. 19, no. 2, pp. 135–162,

1980.
[9] M. Goresky and R. MacPherson, “Intersection homology. II,” Inventiones Mathematicae, vol. 72, no. 1,

pp. 77–129, 1983.
[10] F. Kirwan and J. Woolf, An Introduction to Intersection Homology Theory, Chapman & Hall / CRC,

London, UK, 2nd edition, 2006.
[11] E. Hecke, Vorlesungen über die Theorie der Algebraischen Zahlen, Chelsea, London, UK, 2nd edition, 1970.
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