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Tree Diagrams for String Links II: Determining Chord Diagrams

Blake Mellor

Mathematics Department

Loyola Marymount University

Los Angeles, CA 90045-2659

bmellor@lmu.edu

Abstract

In previous work [7], we defined the intersection graph of a chord diagram associated with a string
link (as in the theory of finite type invariants). In this paper, we look at the case when this graph is a
tree, and we show that in many cases these trees determine the chord diagram (modulo the usual 1-term
and 4-term relations).
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1 Introduction

The theory of finite type invariants allows us, via the Kontsevich integral [4], to identify knot and link
invariants with their associated weight systems, functionals on chord diagrams which obey certain relations.
Since these diagrams are purely combinatorial objects, we can take a combinatorial approach to studying
these weight systems, providing a new viewpoint on the associated knot invariants. One approach to these
chord diagrams for knots, due to Chmutov, Duzhin and Lando [2], is to study their intersection graphs. While
these graphs do not contain all of the information of the chord diagrams, they distinguish chord diagrams
in many cases [2, 6], and have an interesting algebraic structure of their own [5]. Recently, the author has
extended the notion of an intersection graph to string links [7].

In this paper we will not discuss the background of finite type invariants, instead looking at the rela-
tionship between the intersection graph and the chord diagram from a purely combinatorial viewpoint. For
a discussion of how these diagrams arise in the theory of finite type invariants, see [1]. In section 2 we
will review the definitions of chord diagrams and intersection graphs for string links. In section 3 we will
look at chord diagrams on two components. In this case, we look at a special class of trees (trimmed trees)
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(1-term relation)

= 0   

(4-term relation)

- + = 0   -

(antisymmetry relation)

+ = 0  

Figure 1: The 1-term, 4-term and antisymmetry relations.

which arise as intersection graphs, and show that they determine the associated chord diagram modulo some
standard relations, the 1-term and 4-term relations. In section 4 we address the (easier) case of diagrams
with more than two components. Finally, in section 5 we pose some questions for further research.

Acknowledgement: The author thanks Loyola Marymount University for supporting this work via a
Summer Research Grant in 2004.

2 Preliminaries

2.1 Chord Diagrams

We begin by defining what we mean by a chord diagram. Since we are only considering chord diagrams
which arise from string links, we will simply refer to these as chord diagrams, but the reader should be aware
that these differ somewhat from the more usual chord diagrams for knots.

Definition 1 A chord diagram of degree n with k components is a disjoint union of k oriented line
segments (called the components of the diagram), together with n chords (unoriented line segments with
endpoints on the components), such that all of the 2n endpoints of the chords are distinct. The diagram is
determined by the orders of the endpoints on each component.

We can naturally organize the diagrams with k components into a graded vector space with real coeffi-
cients, graded by their degree. We denote the vector space of chord diagrams of degree n on k components
by Bk

n. We impose three relations on Bk
n (motivated by knot theory), called the 1-term, 4-term and anti-

symmetry relations, shown in Figure 1 (no other chords have endpoints on the arcs shown; in the 4-term
relation, all other chords of the four diagrams are the same); we will still call the resulting vector space Bk

n.
The three arcs in the 4-term relation may belong to the same component or to different components.

It is sometimes useful to combine the vector spaces Bk
n into a graded module Bk =

⊕
n≥1

Bk
n via direct

sum. We can give the module Bk a bialgebra (or Hopf algebra) structure for any k by defining an appropriate
product and co-product:

• We define the (noncommutative) product D1 · D2 of two chord diagrams D1 and D2 as the result of
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placing D2 on top of D1 (joining the components so the orientations agree), as shown below:

D1 D2

D1

D2

=

• We define the co-product ∆(D) of a chord diagram D as follows:

∆(D) =
∑

J

D′
J ⊗ D′′

J

where J is a subset of the set of chords of D, D′
J is D with all the chords in J removed, and D′′

J is D

with all the chords not in J removed. For example:

∆(     )= + + +

It is easy to check the compatibility condition ∆(D1 · D2) = ∆(D1) · ∆(D2).
We can also define an action of B1 on Bk (in fact, k different actions). Bar-Natan [1] showed that B1 is

isomorphic to the space of chord diagrams on knots, modulo the 4-term relation. He also showed that there
is a well-defined (again, modulo the 4-term relation) commutative product on this space, where D1#D2 is
the connected sum of the diagrams D1 and D2. Extending these results, we define the product A#iD (where
A ∈ B1 and D ∈ Bk) to be the result of taking the connected sum of A (viewed as a chord diagram on a
circle) and the ith component of D. This action is well-defined modulo the 4-term relation; i.e. it does not
matter where on the ith component of D we ”glue in” A. For example:

#2 =

1 2 3 1 2 3

To end this section, we will define the notion of a share - a collection of chords in a diagram which
can sometimes be treated as a single chord (see, for example, Lemma 2 in section 3.2). Shares will be an
extremely useful tool in our proofs.

Definition 2 A share of a chord diagram D is a subset S of the set of chords in D and two arcs A and B
on the boundary components of D (A and B may be on the same or different components) such that every
chord in S has both endpoints in A ∪ B and no other chord in D has an endpoint in A ∪ B.
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2.2 Intersection Graphs

The essential value of the intersection graph for knots (in which the chord diagram consists of chords in a
bounding circle) is that it can detect when the order of two endpoints for different chords along the bounding
circle is switched, since this changes the pair of chords from (visually) intersecting to non-intersecting or
vice-versa. For chord diagrams for string links, the existence of a ”bottom” and ”top” for each component
allows us to give a linear (rather than cyclic) ordering to the endpoints of the chords on each component,
and so the notion of one endpoint being ”below” another is well-defined. We want our intersection graphs
to detect when this order is reversed.

Definition 3 [7] Let D be a chord diagram with k components (oriented line segments, colored from 1 to k)
and n chords. The intersection graph Γ(D) is the labeled, directed multigraph such that:

• Γ(D) has a vertex for each chord of D. Each vertex is labeled by an unordered pair {i, j}, where i and
j are the labels of the components on which the endpoints of the chord lie.

• There is a directed edge from a vertex v1 to a vertex v2 for each pair (e1, e2) where e1 is an endpoint
of the chord associated to v1, e2 is an endpoint of the chord associated to v2, e1 and e2 lie on the same
component of D, and the orientation of the component runs from e1 to e2 (so if the components are all
oriented upwards, e1 is below e2). We count these edges ”mod 2”, so if two vertices are connected by
two directed edges with the same direction, the edges cancel each other. If two vertices are connected
by a directed edge in each direction, we will simply connect them by an undirected edge.

Examples of chord diagrams and their associated intersection graphs are given in Figure 2. Note that
when the two chords have both endpoints on the same component i, our definition of intersection graph
corresponds to the usual intersection graph for knots. Our definition also matches our intuition in the case
of chord diagrams of two components, as shown in Figure 2.

Note also that the total number of directed edges between a vertex v labeled {i, j} and a vertex w labeled
{l, m} is given by the sum of the number of occurrences of i in {l, m} and the number of occurrences of j

in {l, m}. In particular, if a vertex v has a label {i, i}, this number will be even (0, 2 or 4). Since we count
directed edges modulo 2, this implies there is an (uncancelled) directed edge from v to another vertex w

if and only if there is also an (uncancelled) directed edge from w to v. We will say that labeled directed
multigraphs which have this property are semisymmetric.

Definition 4 A directed multigraph G, with each vertex labeled by a pair {i,j}, is semisymmetric if for
every vertex v labeled {i,i}, and any other vertex w, there is a directed edge from v to w if and only if there
is a directed edge from w to v.

For convenience, we will refer to vertices with labels {i, i} (and their associated chords) as unmarked, and
to other vertices and chords as marked. In other words, a marked chord connects two different components
of the chord diagram, whereas an unmarked chord has both endpoints on the same component. If we do not
need the full structure of the labels, and need only distinguish these two types of vertices, we will talk about
marked, rather than labeled, trees. It is understood that any tree which is labeled as in Definition 3 is also
a marked tree.

Just as it is useful to consider shares as parts of a chord diagram, it is useful to consider subsets of the
vertices of a tree intersection graph.

Definition 5 A bough of a vertex v in a marked tree T is a connected component of T \v (the graph which
results from removing the vertex v and all edges incident to v). The bough is called light if it contains at
most one marked vertex and this vertex (if present) is adjacent to v in T. Otherwise the bough is heavy.

In fact, we have shown [8] that there is a close connection between the boughs of an intersection graph
and shares in the chord diagram.
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{i,j}

{i,j}

{i,j}

{i,j}

=

i j

{i,i}

{i,i}{i,i}

{i,i}

{i,i} {i,i}

=
i

{i,j}

{i,j}

{i,j}

{i,j}

=

i j

{i,j}

{j,k}
i j k

i j k
{i,j} {j,k}

{j,k}

{k,k}

{i,i}

{i,i}

Figure 2: Examples of intersection graphs for string links
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Lemma 1 [8] Assume T is a marked tree which is the intersection graph for a chord diagram D, and v is a
vertex in T. Further assume that T has at least one marked vertex. Then a bough of v is light if and only if
the corresponding chords are a share in D.

3 Tree Diagrams with 2 Components

In this section we will show that the intersection graph determines the (string link) chord diagram (modulo
the 1-term and 4-term relations) in the special case when the intersection graph is a trimmed tree (for
diagrams with 2 components). This generalizes a result of Chmutov, et al. [2], who proved that for knots
(i.e. string links with one component), tree diagrams are determined by their intersection graph.

Definition 6 An intersection graph T for a chord diagram with 2 components is a trimmed tree if it is an
(undirected) tree, and there is some vertex v in T, called the trunk of T, such that every bough of v is light
(see Definition 5).

If T is a trimmed tree with trunk v, then every marked vertex in T is adjacent to v (otherwise, v would
have a heavy bough). Moreover, every other vertex in T has at most one heavy bough; namely, the bough
containing v. Also, by Lemma 1, every bough of v corresponds to a share in D (assuming T has at least one
marked vertex). Our goal in this section is to prove:

Theorem 1 If Γ(D1) = Γ(D2) = T , where T is a trimmed tree, then D1 and D2 are equivalent modulo the
1-term and 4-term relations.

We will describe a set of elementary transformations which will provide an equivalence relation between
chord diagrams with the same intersection graphs, and then show that these transformations can be achieved
using the 1-term and 4-term relations.

3.1 Elementary Transformations

Consider a chord diagram D on two components, whose intersection graph T is a trimmed tree. Denote
the trunk of T by v; we will also use v to denote the corresponding chord in D. Consider the vertices in
T adjacent to v and the corresponding chords in D. These vertices may be both marked and unmarked:
denote the unmarked vertices v1, ..., vn and the marked vertices y1, ..., ym. Note that if w is any other vertex
of T , w will be adjacent to at most one marked vertex, contained in the same bough of w as v.

Since T is a tree, each of vi and yj belongs to a different bough of v, and so the corresponding chords
belong to non-intersecting shares in D. If D is drawn to minimize crossings between chords, these chords will
cross v in some order; without loss of generality, say the order is v1, v2, ..., vk, y1, ..., ym, vk+1, ..., vn. (Since
T is a tree, the yj ’s must be grouped together, because an unmarked chord cannot have both endpoints
between two of the yj’s and still cross v.) Similarly, if w is some other chord of D, then the chords crossing
w can be put in order w1, ..., wk, y, wk+1, ..., wr , where y corresponds to the heavy bough of w in T (if it
exists), and all the wi’s are unmarked chords corresponding to light boughs in T , and hence shares in D.

Now we can define the elementary transformations.

Definition 7 The elementary transformations of a chord diagram D whose intersection graph is a
trimmed tree are:

1. Permuting the boughs along a chord w. If w is the trunk of D, then all the marked boughs must remain
adjacent. If w is not the trunk, and has a heavy bough, the heavy bough stays fixed while the other
boughs move around it. Moreover, unmarked boughs cannot be moved from one component to the other
(as this will change the intersection graph).

2. If the trunk of D is marked, reflecting the other marked boughs across the trunk.
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B

A

B

A

B

Figure 3: Elementary transformations

Examples of these transformations are shown in Figure 3 (A and B are boughs).

Proposition 1 Let D1 and D2 be chord diagrams such that Γ(D1) and Γ(D2) are trimmed trees. Then
Γ(D1) = Γ(D2) if and only if D1 can be transformed into D2 via elementary transformations.

Proof: It’s clear that the elementary transformations have no effect on the intersection graphs, so we only
need to show that if the intersection graphs are the same, then the diagrams are equivalent modulo the
elementary transformations. Assume that Γ(D1) = Γ(D2) = T , and let v be the trunk of T . The order
of the boughs along v in D1 differs from the order along D2 by a permutation which keeps all the marked
boughs adjacent (since they must be adjacent in both diagrams), and which keeps unmarked chords on the
same component; this can be achieved by an elementary tranformation of type 1. If v is marked, it is possible
that its marked boughs in D1 differ from the marked boughs in D2 by the direction of their slant - this can
be corrected by an elementary transformation of type 2. We can now consider the vertices adjacent to v.
Once again, we can rearrange the order of the boughs by elementary transformations of type 1; moreover,
we can consider the bough containing v (the only possible heavy bough) to be fixed during this process, so
we will not effect the results of our previous moves. Since these chords can have at most one marked bough
(the one containing v), we will never need to use transformations of type 2. Continuing inductively, moving
on to vertices farther and farther from the trunk, we can rearrange the chords of D1 until D1 = D2. ✷

3.2 Intersection Graph Conjecture

In this section we will prove Theorem 1. Our proof is modeled on the proof for knots given by Chmutov et
al [2]. Using Proposition 1, it is sufficient to show the following:

Proposition 2 If D1 and D2 are chord diagrams on two components which differ by an elementary trans-
formation, then D1 and D2 are equivalent modulo the 1-term and 4-term relations.

Before we begin to prove this proposition, we will state a few useful facts.

Lemma 2 (Generalized 4-term relation [2]) For any share and chord, the following relation holds (modulo
the usual 4-term relation):

- + = 0   -

7



Proof: Write down the 4-term relations for the given chord and every chord in the given share, and add
together all these relations. Except for the four terms of the generalized 4-term relation, every term will
appear twice with opposite sign, and so cancel. We are left with the generalized 4-term relation. ✷

Corollary 1 [2, 3] Modulo the 1-term and 4-term relations, we have the following relations among chord
diagrams:

==

=

Proof: For each pair of diagrams, keeping the shares fixed, consider all diagrams formed from the shares
and a single chord. Writing down all the generalized 4-term relations among these diagrams, and cancelling
terms using the 1-term relation, we quickly see that the three relations are equivalent. Dogolazky [3] proved
the first relation holds. ✷

Remark: Chmutov et al. [2] proved the result by solving the system of equations arising from the 4-term
relations. Dogolazky [3] pointed out that this proof only works if the space Bk

n has no elements of order 2,
and that this is not true in general. However, he provided a more complex proof to show the result is true
in general.

Our proof of Proposition 2 will consider several cases. Since any permutation can be decomposed into
transpositions, it will suffice to consider a few transpositions of boughs.

Lemma 3 The four pairs of diagrams below are equivalent modulo the 1-term and 4-term relations. The
diagram consisting of the shares A and B and the chord v is a tree diagram; there are no restrictions on the
share S. There are no other chords with endpoints on the indicated arcs, although there may be other chords
which intersect the chords shown.

(1)

1 2

A B

S

1 2

A B

S

=

v

v

(2)

1 2

A

B

S

1 2

A

B

S=
v

v

(3)

=

A B

S

v

S v

A B
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(4)

=

A B

S

v

S

v

A B

Our proof will proceed by induction on the total number of chords in the shares A and B; we will call this
the complexity of the diagram D, denoted c(D). Our proof of Lemma 3 will require two additional lemmas.
The first lemma is essentially identical to a lemma in [2]; we provide a proof here for clarity and to show the
(very slight) modifications needed for diagrams on string links.

Lemma 4 Suppose that Lemma 3 holds for any diagram with complexity less than m. Then:

A

B

1 2 1 2

21

A

A

B
B

=D = + #
2

where the total number of chords in the shares A and B is ≤ m.

Proof of Lemma 4: By the generalized 4-term relation, we have:

A

B

1 2

=D =
A

B

1 2

A

B

1 2

A

B

1 2

- +

Using the generalized 4-term relation again, and rewriting the last term as a product, this equals:

A

B

1 2

- +

21

A

B
#

2

A

B

1 2

Since the number of chords in the share A is less than m (unless B is empty, which is a trivial case) we can
apply Lemma 3 and permute the boughs of the first diagram. And since the multiplication #2 is well-defined,
we can rewrite the second diagram to get:

- +

21

A

B
#

2

A

B

1 2

A

B

1 2
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Applying the usual 4-term relation gives:

- +

21

A

B
#

2

A

B

1 2

A

B

1 2

Using the generalized 4-term relation once more we get:

- +

21

A

B
#

2
A

B

1 2

A

B

1 2

The second diagram vanishes by the 1-term relation. We can apply Corollary 1 to the first diagram to obtain:

1 2 21

A

A

B B
+ #

2

which completes the proof. ✷

Corollary 2 Assume that Lemma 3 holds for diagrams of complexity less than m. Then:

A

v

= i

v

A n-i
#Σ

≤0 i n≤

where the share A is a tree diagram, n ≤ m is the number of chords in the share A, the chord labeled i
represents i disjoint chords along the chord v, and An−i is the sum of all diagrams of degree n-i obtained by
taking the connect sum of disjoint boughs of A. A0 is the empty diagram, with no chords.

Proof: We will prove this corollary by induction on n. In the base case, n = 1, and A is just a single chord.
Then An−i is either A0 (the empty diagram) or A1 = A. But A1 = 0, by the one-term relation. So there is
only one term on the right-hand side of the equation, when i = 1, which gives us the original diagram.

Now assume that the corollary holds when there are fewer than n chords in the share, and assume A has
n chords. We have two cases: either A is connected (i.e. A is a single bough of the chord v), or A is made
up of several boughs of v. We will first consider the case when A is the union of several boughs. Then A

can be divided into two shares B and C, each of which contains at least one bough of v. Say that B has m
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chords and C has k chords, so 0 < m, k < n. Then, by our inductive hypothesis, we can apply the corollary
to the shares B and C, as follows:

A

v

=

B

v

C

= B m-j
#Σ

≤0 j m≤

v

C
j

= B m-j
#Σ

≤0 j m≤

l

v

jΣ
≤0 l k≤

Ck-l
#

= Σ
≤0 i n≤

i

v Σ
≤max(0, i-k) j min(m, i)≤

B m-j
#Ck-i+j#

Since each term of An−i is simply the product (via connect sum) for some j ≤ i of a term of Bm−j and a
term of Ck−i+j , we are left with the desired sum.

In the case when A is a single bough of v, we can apply Lemma 4 (since n ≤ m, so the total number of
chords in the shares B and C below is less than m):

A

v

= +
B C

v

CB

v

B

C
#

v

=

The first term is the term for i = 0; the other term can be decomposed into the terms for i > 0 as in the
previous case. This completes the proof of the corollary. ✷

Lemma 5 The diagram Jn shown below is in the center of B2 for n ≥ 0.

1 2

n
=

nJ

Proof: Dogolazky [3] showed that certain linear combinations of chord diagrams In (represented as a uni-
trivalent diagram) are in the center of B2 for n ≥ 1. A discussion of the isomorphism between the spaces of
chord diagrams and unitrivalent diagrams can be found in [1]; we will not reproduce it here, since it is not
required for the remainder of the paper. It is an easy exercise in induction to show that Jn = (−1)nIn+1, so
Jn is also in the center. ✷

Proof of Lemma 3: We will start by proving relation (1); the proofs of the other parts are similar.
We are inducting on the complexity of the chord diagram (i.e. the number of chords in the shares A and
B). The base case is when the complexity is 0; in this case the result is given by Corollary 1.
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For our inductive step, we assume the diagram has complexity c(D) = m, and assume the lemma holds
for all diagrams with complexity less than m. Denote the number of chords in the shares A and B by a and
b respectively. Since a and b are both at most m, we can apply Corollary 2 to the diagram on the left-hand
side to get:

= A a-i
#Σ

≤0 i a≤
≤0 j b≤

1 2
B b-j

#

1 2

A B

S

v

1 2

ji

S

Here, a chord labeled, for example, i denotes a share consisting of i disjoint chords. So it suffices to consider
the case when the shares A and B each consist of collections of disjoint chords. But by Corollary 1, this
means the diagram consisting of the shares A and B and the chord between them is simply Ja+b, which is
in the center of B2 by Lemma 5.

To prove the other three relations, notice that relation (4) is the same as relation (1), except that the
oriented line segments belong to the same component. Relation (2) is also the same as (1), except that we
have reversed the orientation of one line segment. But, by the antisymmetry relation, this only changes the
diagrams by a sign, so the equality still holds. Finally, relation (3) is the same as (2), when the line segments
belong to the same component. This completes the proof. ✷

So far, we have only shown that we can permute neighbouring marked or unmarked boughs. The next
case we need to consider is moving an umarked bough from one end of an unmarked chord to the other,
possibly across marked chords.

Lemma 6 The two diagrams below are equivalent modulo the 1-term and 4-term relations. No other chords
have endpoints on the solid line segments, though there may be chords (including chords to other components)
with endpoints on the dashed segments.

A B AB

=

Proof: As before, our proof is by induction on the complexity of the diagram - the number of chords in the
shares A and B. If the complexity is 0, then A and B are empty, and the relation follows from Corollary 1.
So we may assume the relation holds for diagrams with complexity less than m.

Assume the diagrams in the relation have complexity m. If we apply Lemma 4 to the diagram on the
left-hand side, we obtain:

A B

=
A

B
#

A B

+

Applying Lemma 4 to the diagram on the right-hand side gives almost the same result, except that the
shares A and B (and the single chord) are at the other ends of the chord. But since these shares have fewer
than m chords, we may apply our inductive hypothesis to move them to the other end as needed. This
completes the proof. ✷

All that remains is to show that diagrams which are equivalent modulo the second elementary transfor-
mation (flipping the marked chords across the trunk of the tree) are also equivalent modulo the 1-term and
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4-term relations. But, in fact, we have already done this - this is part (2) of Lemma 3. This completes the
proof of Proposition 2. Together, Propositions 1 and 2 prove Theorem 1.

Remark: Perhaps surprisingly, if the intersection graph is an untrimmed tree it does not determine the
diagram modulo the 1-term and 4-term relations (for diagrams on two components). A counterexample was
given by Dogolazky [3], who showed by a computer calculation that the two diagrams in Figure 4 are not
equal in B5

2 .

Figure 4: Unequal tree diagrams with the same intersection graph.

4 Tree Diagrams with more than 2 Components

The case of tree diagrams with more than two components is actually simpler than the case of two com-
ponents, since there are greater restrictions on the trees which can be realized as intersection graphs. The
following theorem was proven in [8]:

Theorem 2 Let T be a connected, labeled directed tree with n colors (so each vertex has a label {i, j}, where
1 ≤ i, j ≤ n). Let mi,j denote the number of vertices with label {i, j}. Then T is an intersection graph for
a connected chord diagram on n components if and only if the following conditions are met (possibly after
relabeling the tree by a permutation of 1,..., n):

1. The labels of adjacent vertices must have at least one color in common.

2. T is semisymmetric (see Definition 4).

3. If v has label {i,j} and w has label {i,k}, where i, j and k are all distinct, then there is a directed edge
between v and w.

4. mi,j = 0 if |i − j| > 1.

5. mi,i+1 = 1 for 2 ≤ i ≤ n − 2, m1,2 ≥ 1 and mn−1,n ≥ 1.

6. No two marked vertices are connected by a path of undirected edges.

Let T be a tree satisfying the six conditions above, so it is the intersection graph for some chord diagram
D. Our goal is to reconstruct D from T , at least modulo the 1-term and 4-term relations. Consider the
graph F which results from removing all the directed edges in T . By the last condition above (and the
fact that T was connected), each component of this diagram will contain a single marked vertex. Exactly
one of these marked vertices will be labeled {i, i + 1} unless i = 1 or i = n − 1, in which cases there may
be more than one. So each component of F is the intersection graph for a trimmed tree diagram on two
components, and by Theorem 1 this diagram is determined by its intersection graph (modulo the 1-term and
4-term relations). All that remains is to arrange these diagrams to form D. This arrangement is determined
by the directions of the directed edges of T , except for the components with marked chords labeled {1, 2} or
{n− 1, n}. For example, if n > 4 and there is a directed edge from the (unique) vertex of T labeled {2, 3} to
the (unique) vertex labeled {3, 4}, then the chords corresponding to the component of F containing the first
marked chord will be placed below the chords corresponding to the component of F containing the second
marked chord. The chords at the ends need to be treated a little more carefully. The components with a
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chord labeled {1, 2} naturally fall into two groups: those which lie below the (unique) chord labeled {2, 3},
and those which lie above this chord. Within these two groups, however, the order of the components can
be rearranged without affecting the intersection graph. However, these rearrangements are all permutations
of the components, which by Lemma 3 do not change the diagram modulo the 1-term and 4-term relations.
The same is true for the components with a chord labeled {n − 1, n}. So, modulo the 1-term and 4-term
relations, we can reconstruct the diagram D from the intersection graph T . We can conclude:

Theorem 3 If D1 and D2 are connected tree diagrams on n components (n > 2) which have the same
intersection graph, then D1 and D2 are equivalent in Bn.

Note that, unlike for diagrams on 2 components, we do not need to restrict to a smaller class of tree
diagrams, because of the greater constraints imposed by Theorem 2.

5 Questions

We noted at the end of Section 3 that, in general, tree diagrams on two components are not determined by
their intersection graphs. However, the example found by Dogolazky [3] lies in the torsion subgroup of B5

2 -
the difference ∆w of the two diagrams in Figure 4 has order 2.

Question 1 Do all counterexamples to the Intersection Graph Conjecture for tree diagrams have finite order?
In other words, is the conjecture true if we look at the quotient of B2 by its torsion subgroup?

Stanford has shown that, while ∆w is nontrivial in B5
2 , any realization of it as a difference of two singular

string links is trivial modulo the ”topological” 1-term and 4-term relations. So one could also ask:

Question 2 Is any counterexample to the Intersection Graph Conjecture for tree diagrams trivial when
realized as a linear combination of singular string links?

Given that intersection graphs characterize chord diagrams for trimmed trees, it would be interesting to
use this to find a basis for the space of trimmed tree diagrams.

Question 3 What is the dimension of the space of chord diagrams spanned by diagrams whose intersection
graphs are trimmed trees? What is a basis for this space?

And, of course, it is natural to ask whether we can move beyond trees.

Question 4 To what extent do intersection graphs determine chord diagrams in general?
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