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Intonation and compensation of fretted string instruments
Gabriele U. Varieschia� and Christina M. Gowerb�

Department of Physics, Loyola Marymount University, Los Angeles, California 90045

�Received 28 May 2009; accepted 22 August 2009�

We discuss theoretical and physical models that are useful for analyzing the intonation of musical
instruments such as guitars and mandolins and can be used to improve the tuning on these
instruments. The placement of frets on the fingerboard is designed according to mathematical rules
and the assumption of an ideal string. The analysis becomes more complicated when we include the
effects of deformation of the string and inharmonicity due to other string characteristics. As a
consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex
compensation procedures can be introduced to minimize the problem. To test the validity of these
procedures, we performed extensive measurements using standard monochord sonometers and other
acoustical devices, confirming the correctness of our theoretical models. These experimental
activities can be integrated into acoustics courses and laboratories and can become a more advanced
version of basic experiments with monochords and sonometers. © 2010 American Association of Physics
Teachers.

�DOI: 10.1119/1.3226563�

I. INTRODUCTION

The physics of musical instruments is an interesting sub-
field of acoustics and connects the theoretical models of vi-
brations and waves to the world of art and musical
performance.1–4 In the sixth century B.C., the mathematician
and philosopher Pythagoras was fascinated by music and by
the intervals between musical tones. He was probably the
first to perform experimental studies of the pitches of musi-
cal instruments and relate them to ratios of integer numbers.

This connection between sound pitch and numbers is the
origin of the diatonic scale, which dominated much of West-
ern music, and also of the “just intonation system” based on
perfect ratios of whole numbers, which was used for many
centuries to tune musical instruments. Eventually, this sys-
tem was abandoned in favor of a more refined method for
intonation and tuning, the equal temperament system, which
was introduced by scholars such as Vincenzo Galilei �Gali-
leo’s father�, Marin Mersenne, and Simon Stevin in the 16th
and 17th centuries, and strongly advocated by musicians
such as J. S. Bach. In the equal-tempered scale, the interval
of one octave is divided into 12 equal subintervals �semi-
tones�, achieving a more uniform intonation of musical in-
struments, especially when using all the 24 major and minor
keys, as in Bach’s the “Well Tempered Clavier.” Historical
discussion and reviews of the different intonation systems
can be found in Refs. 5–7.

The 12-tone equal temperament system requires the use of
irrational numbers because the ratio of the frequencies of two
adjacent notes corresponds to

12�2. On a fretted string instru-
ment such as a guitar, lute, or mandolin, this intonation sys-
tem is accomplished by placing the frets along the finger-
board according to these ratios. However, even with the most
accurate fret placement, perfect instrument tuning is never
achieved mainly because of the mechanical action of the
player’s fingers, which need to press the strings down on the
fingerboard while playing, thus altering the string length and
tension and changing the frequency of the sound being pro-
duced. Other causes of imperfect intonation include the in-
harmonicity of the strings due to their intrinsic stiffness and
other more subtle effects. A discussion of these effects can be
found in Refs. 8 and 9.

Experienced luthiers and guitar manufacturers usually cor-
rect for these effects by introducing compensation, that is,
they slightly increase the string length to compensate for the
increased sound frequency, resulting from the effects we
have mentioned �see instrument building techniques in Refs.
10–14�. Other solutions have been given15–19 and in commer-
cially patented devices.20–22 These empirical solutions can be
improved by studying the problem more systematically by
modeling the string deformation, leading to a new type of
fret placement that is more effective.

Some theoretical studies of the problem have appeared in
specialized journals for luthiers and guitar builders,23,24 but
they are targeted to luthiers and manufacturers of a specific
instrument �typically the classical guitar�. In general physics
journals we have found only basic studies on guitar intona-
tion and strings25–33 and no detailed analysis of the intona-
tion.

Our objective is to review and improve the existing mod-
els of compensation for fretted string instruments and to per-
form experimental measures to test these models. The ex-
perimental activities described in this paper were performed
using standard laboratory equipment �sonometers and other
basic acoustic devices�. These experimental activities can be
introduced into standard laboratory courses on sound and
waves as an interesting variation of experiments usually per-
formed with classic sonometers.

II. GEOMETRICAL MODEL OF A FRETTED
STRING

We introduce here a geometrical model of a guitar finger-
board, review the practical laws for fret placement, and study
the deformations of a “fretted” string, that is, when the string
is pressed onto the fingerboard by the mechanical action of
the fingers.

We start our analysis by recalling Mersenne’s law, which
describes the frequency � of sound produced by a vibrating
string,8,9
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�n =
n

2L
�T

�
, �1�

where n=1 refers to the fundamental frequency and
n=2,3 , . . . to the overtones. L is the string length, T is the
tension, � is the linear mass density of the string �mass per
unit length�, and v=�T /� is the wave velocity.

In the equal-tempered musical scale an octave is divided
into 12 semitones,

�i = �02i/12 � �0�1.05946�i, �2�

where �0 and �i are respectively the frequencies of the first
note in the octave and of the ith note �i=1,2 , . . . ,12�. For
i=12 we obtain a frequency, which is double that of the first
note, as expected. Because Eq. �1� states that the fundamen-
tal frequency of the vibrating string is inversely proportional
to the string length L, we combine Eqs. �1� and �2� to deter-
mine the string lengths for the different notes
�i=1,2 ,3 , . . .� as a function of L0 �the open string length,
producing the first note of the octave considered�, assuming
that the tension T and the mass density � are kept constant,

Li = L02−i/12 � L0�0.943874�i. �3�

Equation �3� can be used to determine the fret placement on
a guitar or a similar instrument because the frets subdivide
the string length into the required sublengths.

In Fig. 1 we show a picture of a classical guitar as a
reference. The string length is the distance between the
saddle34 and the nut, and the frets are placed on the finger-
board at appropriate distances. We use the coordinate X, as
illustrated in Fig. 1, to denote the position of the frets, mea-
sured from the saddle toward the nut position. X0 denotes the
position of the nut �the “zero” fret�, and Xi, i=1,2 , . . ., are
the positions of the frets of the instrument. On a classical
guitar there are usually 19–20 frets on the fingerboard. They
are realized by inserting thin pieces of a special metal wire in
the fingerboard so that the frets will rise about 1.0–1.5 mm
above the fingerboard.

The positioning of the frets follows Eq. �3�, which we
rewrite in terms of X,

Xi = X02−i/12 � X0�0.943874�i � X0�17

18
�i

, �4�

where the last approximation in Eq. �4� is the one employed
by luthiers to locate the fret positions. Equation �4� is usually
called the “rule of 18,” which requires placing the first fret at
a distance from the nut corresponding to 1/18 of the string
length �or 17/18 from the saddle�; second fret is placed at a

distance from the first fret corresponding to 1/18 of the re-
maining length between the first fret and the saddle, and so
on. Because 17 /18=0.944444	0.943874, this empirical
method is usually accurate enough for practical fret
placement,35 although modern luthiers use fret placement
templates based on the decimal expression in Eq. �4�.

Figure 2 illustrates the geometrical model of a fretted
string, that is, when a player’s finger or other device presses
the string to the fingerboard until the string rests on the de-
sired ith fret, thus producing the ith note when the string is
plucked. In Fig. 2 we use a notation similar to the one de-
veloped in Refs. 23 and 24, but we will introduce a different
deformation model.

Figure 2�a� shows the geometrical variables for a guitar
string. The distance X0 between the saddle and the nut is
called the scale length of the guitar �typically between 640
and 660 mm for a modern classical guitar�. The distance X0
is not exactly the same as the real string length L0 because
the saddle and the nut usually have slightly different heights
above the fingerboard surface. The connection between L0
and X0 is

L0 = �X0
2 + c2. �5�

The metal frets rise above the fingerboard by the distance
a as shown in Fig. 2. The heights of the nut and saddle above
the top of the frets are labeled in Fig. 2 as b and c, respec-
tively. These heights are greatly exaggerated; they are usu-
ally small compared to the string length. The standard fret
positions are again denoted by Xi, and in particular, we show
the case where the string is pressed between frets i and i
−1, thus reducing the vibrating portion of the string to the
part between the saddle and the ith fret.

Figure 2�b� shows the details of the deformation caused by
the action of a finger between two frets. Previous work23,24

modeled this shape as “knife-edge” deformation, which is
not quite comparable to the action of a fingertip. We im-
proved on this assumed shape by using a more rounded de-
formation and considered a curved shape as in Fig. 2�b�. The
action of the finger depresses the string behind the ith fret by
an amount hi below the fret level �not necessarily corre-
sponding to the full height a� and at a distance f i, compared
to the distance di between consecutive frets.

It is necessary for our compensation model to calculate
exactly the length of the deformed string for any fret value i.

XX0X1X2X3X12X19
.0 ...... X5X7

.

fret positions

fingerboardbridge

saddle nut

Classical Guitar

Fig. 1. Illustration of a classical guitar showing the coordinate system, from
the saddle toward the nut, used to measure the fret positions on the finger-
board �guitar by Michael Peters; photo by Trilogy Guitars, reproduced with
permission�.

fingerboard

frets
i i-1

L0

Li

a)

b)

saddle
nutc

b

fingerboardXi Xi-1

a

a

hi
di

fi gi

li1

li2 li3

li4

X

X0

Fig. 2. Geometrical deformation model of a guitar string. �a� Original string
�of length L0� and the deformed string �of length Li� when it is pressed
between frets i and i−1. �b� The deformation model in terms of the four
different sublengths li1− li4 of the deformed string.
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As shown in Fig. 2, the deformed length Li of the entire
string is the sum of the lengths of the four different parts,

Li = li1 + li2 + li3 + li4, �6�

where the four sublengths can be evaluated from the geo-
metrical parameters as follows:

li1 = ��X02−i/12�2 + �b + c�2, �7�

li2 = hi�1 +
f i

2

4hi
2 +

f i
2

4hi
ln
2hi

f i
�1 + �1 + f i

2/4hi
2�� , �8�

li3 = hi�1 +
gi

2

4hi
2 +

gi
2

4hi
ln
2hi

gi
�1 + �1 + gi

2/4hi
2�� , �9�

li4 = �X0
2�1 − 2−�i−1�/12�2 + b2. �10�

In Eqs. �8� and �9� the sublengths li2 and li3 were obtained
by using a simple parabolic shape for the rounded deforma-
tion shown in Fig. 2�b� due to the action of the player’s
fingertip. They were calculated by integrating the length of
the two parabolic arcs shown in Fig. 2�b� in terms of the
distances f i, gi, and hi.

The distances between consecutive frets are calculated as

di = f i + gi = Xi−1 − Xi = X02−i/12�21/12 − 1� , �11�

so that given the values of X0, a, b, c, hi, and f i, we can
calculate for any fret number i, the values of all the other
quantities, and the deformed length Li. We will see in Sec. III
that the fundamental geometrical quantities of the compen-
sation model are defined as

Qi =
Li − L0

L0
, �12�

and they can also be calculated for any fret i using Eqs.
�5�–�11�.

III. COMPENSATION MODEL

In this section we will describe the model used to com-
pensate for the string deformation and for the inharmonicity
of a vibrating string, basing our analysis on the work done by
Byers.16,24

The strings used in musical instruments are not perfectly
elastic but possess a certain amount of stiffness or inharmo-
nicity, which affects the frequency of the sound produced.
Equation �1� needs to be modified to include this property,
yielding the result �see Ref. 36, Chap. 4, Sec. 16�

�n �
n

2L
� T

�S

1 +

2

L
�ESk2

T
+ �4 +

n2�2

2
�ESk2

TL2 � ,

�13�

where we have rewritten the linear mass density of the string
as �=�S �� is the string density and S the cross section area�.
The correction terms inside the square brackets are due to the
string stiffness and related to the modulus of elasticity �or
Young’s modulus� E and to the radius of gyration k �equal to
the string radius divided by two for a simple unwound steel
or nylon string�. Following Ref. 36, we will use cgs units in
the rest of the paper and in all calculations, except when
quoting some geometrical parameters for which it will be
more convenient to use millimeters.

Equation �13� is valid for ESk2 /TL2�1 /n2�2, a condition
that is usually satisfied in practical situations.37 When the
stiffness factor ESk2 /TL2 is negligible, Eq. �13� reduces to
Eq. �1�. When this factor increases and becomes important,
the allowed frequencies also increase, and the overtones
�n=2,3 , . . .� increase in frequency more rapidly than the fun-
damental tone �n=1�. The sound produced is no longer har-
monic because the overtone frequencies are no longer simple
multiples of the fundamental one, as seen from Eq. �13�. In
addition, the deformation of the fretted string will alter the
string length L and, as a consequence of this effect, will also
change the tension T and the area S in Eq. �13�. These are the
main causes of the intonation problem being studied. Addi-
tional causes that we do not address in this paper are the
imperfections of the strings �nonuniform cross section or
density�, the motion of the end supports �especially the
saddle and the bridge� transmitting the vibrations to the rest
of the instrument, which also changes the string length, and
the effects of friction.

Following Byers24 we define �n= �4+n2�2 /2� and �

=�ESk2 /T so that we can simplify Eq. �13�,

�n �
n

2L
� T

�S

1 + 2

�

L
+ �n

�2

L2� . �14�

We consider just the fundamental tone �n=1� as being the
frequency of the sound perceived by the human ear,38

�1 �
1

2L
� T

�S

1 + 2

�

L
+ �

�2

L2� , �15�

where �=�1= �4+�2 /2�. In Eq. �15� L represents the vibrat-
ing length of the string, which in our case is the length li1
when the string is pressed onto the ith fret. To further com-
plicate the problem, the quantities T, S, and � in Eq. �15�
depend on the actual total length of the string Li, as calcu-
lated in Eq. �6�. In other words, we tune the open string of
original length L0 at the appropriate tension T, but when the
string is fretted, its length is changed from L0 to Li, thus
slightly altering the tension, the cross section, and �, which
is a function of the previous two quantities. This dependence
is the origin of the lack of intonation, common to all fretted
instruments, which calls for a compensation mechanism.

The proposed solution24 to the intonation problem is to
adjust the fret positions to correct for the frequency changes
described in Eq. �15�. The vibrating lengths li1 are recalcu-
lated as li1� = li1+�li1, where �li1 represents a small adjust-
ment in the placement of the frets, so that the fundamental
frequency from Eq. �15� matches the ideal frequency of Eq.
�2� and the fretted note will be in tune.

The ideal frequency �i of the ith note can be expressed by
combining Eqs. �2� and �15�,

�i = �02i/12 �
1

2L0
� T�L0�

�S�L0�

	
1 + 2
��L0�

L0
+ �

���L0��2

L0
2 �2i/12, �16�

where all the quantities on the right-hand side are related to
the open string length L0, because �0 is the frequency of the
open string note. We can write the �i using Eq. �15� as
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�i �
1

2li1�
� T�Li�

�S�Li�

1 + 2

��Li�
li1�

+ �
���Li��2

li1�
2 � , �17�

where we have used the adjusted vibrating length li1� for the
fretted note and all the other quantities on the right-hand side
of Eq. �17� depend on the fretted string length Li. By com-
paring Eqs. �16� and �17� we obtain the master equation for
our compensation model,

1

2L0
� T�L0�

�S�L0�
1 + 2
��L0�

L0
+ �

���L0��2

L0
2 �2i/12

=
1

2li1�
� T�Li�

�S�Li�

1 + 2

��Li�
li1�

+ �
���Li��2

li1�
2 � . �18�

We obtained an approximate solution39 of Eq. �18� by ex-
panding the right-hand side in terms of �li1 and by solving
the resulting expression for the new vibrating lengths li1� ,

li1� � li1�1 +

1 +

2��L0�
li1

+
����L0��2

li1
2 � −

1

�1 + Qi�1 + R��
1 +
2��L0�

L0
+

����L0��2

L0
2 �


1 +
4��L0�

li1
+

3����L0��2

li1
2 �  . �19�

In Eq. �19� the quantities Qi are derived from Eq. �12� and from the new deformation model described in Sec. II. An additional
experimental quantity R is introduced in Eq. �19� and defined as �see Ref. 24 for details�

R = 
 d�

dL
�

L0

L0

�0
, �20�

and is the frequency change d� relative to the original frequency �0 induced by an infinitesimal string length change dL relative
to the original string length L0.

The new vibrating lengths li1� from Eq. �19� correspond to new fret positions Xi� because Xi�=�li1�
2− �b+c�2� li1� for �b+c�


 li1� . A similar relation holds between Xi and li1 �see Fig. 2� so that the same Eq. �19� can be used to determine the new fret
positions from the old ones:

Xi� � Xi�1 +

1 +

2��L0�
li1

+
����L0��2

li1
2 � −

1

�1 + Qi�1 + R��
1 +
2��L0�

L0
+

����L0��2

L0
2 �


1 +
4��L0�

li1
+

3����L0��2

li1
2 �  . �21�

At this point a luthier would position the frets on the fin-
gerboard according to Eq. �21�, which is not in the canonical
form of Eq. �4�. Moreover, each string would get slightly
different fret positions because the physical properties such
as tension and cross section are different for the various
strings of a musical instrument. Therefore, this compensation
solution would be very difficult to be implemented practi-
cally and would also affect the playability of the
instrument.40

An appropriate compromise, also introduced by Byers,24 is
to fit the new fret positions �Xi��i=1,2,. . . to a canonical fret
position equation �similar to Eq. �4�� of the form

Xi� = X0�2
−i/12 + �S , �22�

where X0� is a new scale length for the string and �S is the
“saddle setback,” that is, the distance by which the saddle
position should be shifted from its original position �usually
�S�0 and the saddle is moved away from the nut�. The nut
position is also shifted, but we require keeping the string
scale at the original value X0. Therefore we need Xnut� +�S
=X0, where Xnut� is the new nut position in the primed coor-
dinates. Introducing the shift in the nut position �N as Xnut�

=X0�+�N and combining Eqs. �21� and �22�, we obtain the
definition of the “nut adjustment” �N as

�N = X0 − �X0� + �S� . �23�

This quantity is typically negative, indicating that the nut has
to be moved slightly forward toward the saddle.

Finally, instead of adopting a new scale length X0�, the
luthier might want to keep the same original scale length X0
and keep the fret positions according to Eq. �4�. Because the
corrections and the effects we have described are all linear
with respect to the scale length chosen, it is sufficient to
rescale the nut and saddle adjustment as follows:

�Sresc =
X0

X0�
�S , �24�

�Nresc =
X0

X0�
�N . �25�

This final rescaling is also needed on a guitar or other
fretted instrument because the compensation procedure we
have described has to be done independently on each string
of the instrument. That is, all the quantities in the equations
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of this section should be rewritten adding a string index
j=1,2, . . . ,6 for the six guitar strings. Each string would get a
particular saddle and nut correction, but once these correc-
tions are all rescaled according to Eqs. �24� and �25�, the
luthier can still set the frets according to Eq. �4�. The saddle
and nut will be shaped in a way to incorporate all the saddle-
nut compensation adjustments for each string of the instru-
ment �see Refs. 16 and 24 for practical illustrations of these
techniques�.

In practice, this compensation procedure does not change
the original fret placement and the scale length of the guitar
but requires very precise nut and saddle adjustments for each
of the strings of the instrument using Eqs. �24� and �25�. This
procedure is a convenient approximation of the full compen-
sation procedure, which would require repositioning all frets
according to Eq. �21�, but this solution would not be very
practical.

IV. EXPERIMENTAL MEASUREMENTS

Because all our measurements were done using a mono-
chord apparatus, we worked with a single string and not a set
of six strings, as in a real guitar. Therefore, we will use all
the equations without adding the additional string index j.
However, it would be easy to modify our discussion to ex-
tend the deformation-compensation model to a multistring
apparatus.

In Fig. 3 we show the experimental setup we used for our
measurements. Because our goal was to test the physics in-
volved in the intonation problem and not to build musical
instruments or improve their construction techniques, we
used standard laboratory equipment.

A standard PASCO sonometer WA-9613 �Ref. 41� was
used as the main apparatus. This device includes a set of
steel strings of known linear density and diameter and two
adjustable bridges, which can be used to simulate the nut and
saddle of a guitar. The string tension can be measured by

using the sonometer tensioning lever or adjusted directly
with the string tensioning screw �on the left of the sonometer,
as seen in Fig. 3�. In particular, this adjustment allowed the
direct measurement for each string of the R parameter in Eq.
�20� by slightly stretching the string and measuring the cor-
responding frequency change.

On top of the sonometer we placed a piece of a classical
guitar fingerboard with scale length X0=645 mm. The geo-
metrical parameters in Fig. 2 were a=1.3 mm �fret thick-
ness�, b=1.5 mm, and c=0.0 mm �because we used two
identical sonometer bridges as nut and saddle�. This arrange-
ment ensured that the metal strings produced a good quality
sound, without “buzzing” or undesired noise when the
sonometer was played like a guitar by gently plucking the
string. Also, because we set c=0, the open string length is
equal to the scale length: L0=X0=645 mm.

The mechanical action of the player’s finger pressing on
the string was produced by using a spring loaded device
�also shown in Fig. 3, pressing between the sixth and seventh
fret� with a rounded end to obtain the deformation model
illustrated in Fig. 2�b�. Although we tried different possible
ways of pressing on the strings, for the measurements de-
scribed in this section, we always pressed halfway between
the frets �f i=gi=di /2� and all the way down on the finger-
board �hi=a=1.3 mm�. In this way, all the geometrical pa-
rameters of Fig. 2 were defined and the fundamental quanti-
ties Qi of Eq. �12� could be determined.

The sound produced by the plucked string �which was
easily audible due to the resonant body of the sonometer�
was analyzed with different devices to accurately measure its
frequency. At first we used the sonometer detector coil or a
microphone connected to a digital oscilloscope or to a com-
puter through a digital signal interface, as shown also in Fig.
3. All these devices could measure frequencies accurately,

Fig. 3. Experimental apparatus com-
posed of a standard sonometer to
which we added a classical guitar fin-
gerboard, visible as a thin black object
with 20 metallic frets glued to a
wooden board to raise it almost to the
level of the string. Also shown is a
mechanical device used to press the
string on the fingerboard and several
different instruments used to measure
sound frequencies. This digital tuner is
shown near the center, just behind the
sonometer.

51 51Am. J. Phys., Vol. 78, No. 1, January 2010 Gabriele U. Varieschi and Christina M. Gower

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

157.242.200.164 On: Fri, 28 Oct 2016 23:32:28



but we used a professional digital tuner,42 which could dis-
criminate frequencies at the level of �0.1 cents43 for most of
our measurements.

V. STRING PROPERTIES AND EXPERIMENTAL
RESULTS

For our experimental tests we chose three of the six steel
guitar strings included with the PASCO sonometer. Their
physical characteristics and the compensation parameters are
described in Table I.

The open string notes and related frequencies were chosen
so that the sound produced using all the 20 frets of our fin-
gerboard would span from two to three octaves, and the ten-
sions were set accordingly. We used a value for Young’s
modulus typical of steel strings, and we measured the R pa-
rameter in Eq. �20�. The rescaled saddle setback �Sresc and

the rescaled nut adjustment �Nresc from Eqs. �24� and �25�
were calculated for each string using the procedure outlined
in Sec. III.

We then carefully measured the frequency of the sounds
produced by pressing each string onto the twenty frets of the
fingerboard in two modes: Without any compensation, that
is, setting the frets according to Eq. �4�, and with compensa-
tion, that is, after shifting the position of saddle and nut by
the amounts specified in Table I and retuning the open string
to the original note.

Table II illustrates the frequency values for string 1, ob-
tained in the two modes and compared to the theoretical
values of the same notes for a “perfect intonation” of the
instrument. The measurements were repeated several times
and the quantities in Table II represent average values. Fret
number zero represents the open string being plucked, so
there is no difference in frequency for the three cases. For all
the other frets, the frequencies without compensation are

Table I. Summary of the physical characteristics and the compensation parameters for the three steel strings
used in our experimental tests.

String 1 String 2 String 3

Open string note C3 F3 C4

Open string frequency �Hz� 130.813 174.614 261.626
Radius �cm� 0.0254 0.0216 0.0127
Linear density � �g/cm� 0.0150 0.0112 0.0039
Tension �dyne� 5.16	106 5.88	106 4.41	106

Young’s modulus E �dyne /cm2� 2.00	1012 2.00	1012 2.00	1012

R 130 199 78.7
Rescaled saddle setback �Sresc �cm� 0.733 0.998 0.518
Rescaled nut adjustment �Nresc �cm� 2.31 2.41 1.35

Table II. Frequencies of the different notes obtained with string 1. Theoretical perfect intonation values �in hertz� are compared to the experimental values with
and without compensation. Also shown are the frequency deviations �in cents� from the theoretical values for both cases.

Frequency, Frequency, Frequency deviation, Frequency Frequency deviation
Fret No. Note perfect intonation no compensation no compensation with compensation with compensation

0 C3 130.813 130.813 0 130.813 0
1 C3

# 138.591 143.832 64.3 137.958 7.9
2 D3 146.832 150.551 43.3 147.323 5.8
3 D3

# 155.563 159.126 39.2 155.363 2.2
4 E3 164.814 168.407 37.3 164.070 7.8
5 F3 174.614 178.348 36.6 173.933 6.8
6 F3

# 184.997 188.754 34.8 184.763 2.2
7 G3 195.998 200.386 38.3 195.878 1.1
8 G3

# 207.652 212.105 36.7 207.632 0.2
9 A3 220.000 224.644 36.2 220.081 0.6
10 A3

# 233.082 237.495 32.5 233.136 0.4
11 B3 246.942 252.345 37.5 247.123 1.3
12 C4 261.626 266.338 30.9 261.505 0.8
13 C4

# 277.183 281.958 29.6 277.076 0.7
14 D4 293.665 298.545 28.5 293.688 0.1
15 D4

# 311.127 315.276 22.9 311.463 1.9
16 E4 329.628 334.822 27.1 329.787 0.8
17 F4 349.228 353.408 20.6 348.785 2.2
18 F4

# 369.994 373.545 16.5 370.330 1.6
19 G4 391.996 396.597 20.2 393.335 5.9
20 G4

# 415.305 418.742 14.3 417.068 7.3
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considerably higher than the theoretical values for a perfectly
intonated instrument, which results in the pitch of these notes
perceived as being higher �or sharper� than the correct
pitch.44 When we played our monochord sonometer in the
first mode, it sounded out of tune. The frequency values ob-
tained by using our compensation correction sounded much
closer to the theoretical values, thus effectively improving
the overall intonation of our monochord instrument.

In Table II we show the frequency deviation of each note
from the theoretical value of perfect intonation with and
without compensation. The frequency shifts are expressed in
cents43 rather than in hertz because the former unit is a more
suitable measure of how the human ear perceives different
sounds to be in or out of tune. The frequency deviation val-
ues illustrate more clearly the effectiveness of the compen-
sation procedure: Without compensation the deviation from
perfect intonation ranges between 14.3 and 64.3 cents; with
compensation this range is reduced to between 7.9 and
+7.3 cents.

We plot our results for string 1 in terms of the frequency
deviation of each note from the theoretical value of perfect
intonation. Figure 4 shows these frequency deviations for
each fret number �corresponding to the different musical
notes in Table II� without compensation �circles� and with
compensation �triangles�. Error bars come from the standard
deviations of the measured frequency values.

We also show in Fig. 4 the pitch discrimination range �the
region between the dashed lines�, that is, the difference in
pitch that an individual can effectively detect when hearing
two different notes in rapid succession. Notes within this
range will not be perceived as different in pitch by the ear. It
can be easily seen in Fig. 4 that all the values without com-
pensation are well outside the pitch discrimination range and
thus will be perceived as out of tune �in particular as sharper
sounds�. In contrast, the values with compensation are within
the dashed discrimination range of about �10 cents.45 The
compensation procedure has almost made them equivalent to
the perfect intonation values �corresponding to the zero cent

deviation, perfect intonation level, dotted line in Fig. 4�.
Note that fret number zero corresponds to playing the open
string note, which is always perfectly tuned; therefore the
experimental points for this fret do not show any frequency
deviation.

We repeated the same type of measurements for strings 2
and 3, which were tuned at higher frequencies as open
strings �respectively, as F3 and C4; see Table I�. In this way
we obtained measured frequencies with and without compen-
sation for these two other strings, similar to those presented
in Table II. For brevity, we omit these numerical values, but
we present in Figs. 5 and 6 the frequency deviation plots, as
we did for string 1 in Fig. 4.

Fig. 4. Frequency deviation from perfect intonation level �black dotted line�
for notes obtained with string 1. Red circles denote results without compen-
sation, while blue triangles denote results with compensation. Also shown
�region between green dashed lines� is the approximate pitch discrimination
range for frequencies related to this string.

Fig. 5. Frequency deviation from perfect intonation level �black dotted line�
for notes obtained with string 2. Red circles denote results without compen-
sation, while blue triangles denote results with compensation. Also shown
�region between green dashed lines� is the approximate pitch discrimination
range for frequencies related to this string.

Fig. 6. Frequency deviation from perfect intonation level �black dotted line�
for notes obtained with string 3. Red circles denote results without compen-
sation, while blue triangles denote results with compensation. Also shown
�region between green dashed lines� is the approximate pitch discrimination
range for frequencies related to this string.
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The results in Figs. 5 and 6 are similar to those in Fig. 4:
The frequencies without compensation are much higher than
the perfect intonation level, and the compensation procedure
is able to reduce almost all the frequency values to the region
within the dashed curves �the pitch discrimination range�.
The discrimination ranges in Figs. 5 and 6 were calculated
respectively as �8.6 and �5.2 cents due to the different
frequencies produced by these two other strings.

For the three cases we analyzed we conclude that the com-
pensation procedure is very effective in improving the into-
nation of each of the strings. Although more work on the
subject is needed �in particular we need to test nylon strings,
which are more commonly used in classical guitars�, we
have shown that the intonation problem of fretted string in-
struments can be analyzed and solved using physical and
theoretical models, which are more reliable than the empiri-
cal methods developed by luthiers during the historical de-
velopment of these instruments.
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Laboratory Clock. This clock was purchased by the Kenyon College physics department in 1926 as part of the
fittings for the new Samuel Mather Science Hall. Attached to the bottom of its meter-long pendulum is a sharp needle
that passes through a mercury bubble once per second, thus completing an electrical circuit. Along with a power
supply, a series of runs of bell wire and numerous telegraph sounders, this was used to provide an audible tick all over
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the Greenslade Collection, still keeping excellent time. �Photograph and Notes by Thomas B. Greenslade, Jr., Kenyon
College�
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