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Abstract. Automatic earthquake detection and classification
is required for efficient analysis of large seismic datasets.
Such techniques are particularly important now because ac-
cess to measures of ground motion is nearly unlimited and
the target waveforms (earthquakes) are often hard to detect
and classify. Here, we propose to use models from speech
synthesis which extend the double stochastic models from
speech recognition by integrating a more realistic duration
of the target waveforms. The method, which has general
applicability, is applied to earthquake detection and classi-
fication. First, we generate characteristic functions from the
time-series. The Hidden semi-Markov Models are estimated
from the characteristic functions and Weighted Finite-State
Transducers are constructed for the classification. We test
our scheme on one month of continuous seismic data, which
corresponds to 370 151 classifications, showing that incor-
porating the time dependency explicitly in the models sig-
nificantly improves the results compared to Hidden Markov
Models.

1 Introduction

The automatic detection and classification of seismic signals
is increasing in significance since data centers have moved
from the acquisition and archiving of single data snippets to
streaming continuous seismic waveforms. Automatic detec-
tion and classification of earthquakes is used, for example,
to automatically acquire consistent earthquake catalogues at
volcanoes, to achieve class-dependent pre-selection of local-
ization methods, and to exclude quarry blasts from earth-
quake catalogues. Our choice to reach a robust detection
and classification algorithm is to adopt Hidden Markov Mod-
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els (HMMs). This technique is very successfully applied to
speech recognition (Young et al., 2002), and has practical
applications to the field of seismology (Ohrnberger, 2001;
Beyreuther and Wassermann, 2008) and other fields (Keha-
gias and Fortin, 2006). The advantages and disadvantages of
this technique compared to other approaches is thoroughly
covered inBeyreuther and Wassermann(2008) for the field
of seismology.
HMMs provide a powerful tool to describe highly variable
time series based on double stochastic models. The model
acts on characteristic functions or features (estimated from
the seismogram), e.g. the envelope or the power in differ-
ent frequency bands, which describe the earthquake better
than the pure ground motion signal itself. One part of the
stochastic model represents the time dependency of these de-
rived characteristic functions; the other part represents the
distribution of the characteristic functions itself. Since this
is a fully probabilistic approach, a confidence measure is
naturally also provided. However, a drawback when using
HMMs is that the probability of the duration for a single part
in the HMM (called state) is an exponentially decaying func-
tion in time which is an unrealistic representation for the du-
ration of earthquake classes or speech (Oura et al., 2008).
To overcome this limitation, we apply Hidden semi-Markov
Models (HSMMs) which use the more realistic Gaussians as
state duration probability distributions.
The commonly used HMM decoding/classification technique
(Viterbi algorithm) cannot be applied to HSMMs, as it relies
strongly on the intrinsic HMM design. Therefore, we con-
struct Weighted Finite-State Transducers (WFSTs) from the
HSMMs for the purpose of classification (Mohri et al., 2002).
This step also allows a much more flexible model refinement
in the actual classification.
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Fig. 1. Training data examples(a) and characteristic functions(b) generated from the training data set (plus/minus one standard deviation
around the mean). Color-coding: reg in blue, near in green, loc in red, noise in yellow. A histogram over the timespan is appended vertically
for each characteristic function in(b). 3 s were subtracted from the start and added to the end of each sample in(a) to emphasize the contrast
to the noise.

In the next section the HMMs are briefly introduced to the
field of seismology, followed by a more detailed description
of their HSMM extension and the corresponding WFST clas-
sifier. In order to show the potential for earthquake detection
and classification, we apply HSMM as well as HMM to a one
month continuous seismic dataset.

2 Theory

2.1 Hidden Markov Models

Hidden Markov Models (HMMs) are estimated from a train-
ing data set, i.e. they belong to the class of supervised classi-
fication techniques. The models are not operating on the seis-
mic signal itself but on characteristic functions (also called
features) generated from the seismograms which better rep-
resent the different classes of earthquakes.
Figure1a shows an example of a training data set in the time-
amplitude space. The label corresponds to the class name
where the classes simply differ in epicentral distance (reg
100 km−600 km, near 10 km−100 km, loc 0 km−10 km,
noise noise). Note that the near and reg class have a quite
similar signature in the time-amplitude space and therefore
are not easy to distinguish. A much better characterization
of the classes is shown in Fig.1b, where different character-
istic functions are plotted. Each band corresponds to a plus
minus one standard deviation band around the mean of the

characteristic function amplitude over all available training
data for that specific class. In this representation it is much
easier to distinguish the different classes, as can be seen by
comparing the reg and near class (blue and green line) in the
characteristic function space and in the amplitude space, re-
spectively.
Figure1b also makes clear why it is important to include time
dependency in the model. If time dependency is excluded,
the classes can only be distinguished through their histogram
(as appended vertically for each characteristic function). As
an example the half octave band 10 (hob10) may be taken:
The reg and near class (blue and green line) are not easily
distinguished in the time independent histogram (Fig.1b).
However they are easily distinguishable in the time depen-
dent characteristic function itself. For more details on the
use of characteristic functions as well as the selection pro-
cess, seeOhrnberger(2001) or Beyreuther and Wassermann
(2008).
Figure2 shows a sketch of a HMM for a single earthquake
class. The observation is usually a vector containing multiple
features, though for visualization purposes we use a single
sample point (o = o) which represents the absolute ampli-
tude. The HMM segments the earthquake signal in different
parts over timei (called states). For each part an observa-
tion probability distributionbi(o) of the characteristic func-
tion (here the absolute amplitude) is estimated. The sequence
of the different parts is controlled by the (state) transition
probability (aij ), from part (i) to part (j ). The probability of
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Fig. 2. Hidden Markov Model with three different states. The state transition probabilities are denoted withaij . The observation distribution
for each state is denoted withbi(ot ).
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Fig. 3. Exponential (HMM) versus Gaussian (HSMM) state dura-
tion probability distribution.

the observation sequenceo1,o2,o3,o4,o5... can then be cal-
culated by taking the product of observation probabilities and
state transition probability for each observation sample, e.g.

b1(o1)a11b1(o2)a12b2(o3)a23b3(o4)a32b2(o5)..., (1)

assuming that the state transition sequence is known/given.
However, as the transition sequence is usually not known,
the transition sequence which has the maximum probability
is taken. Searching all possible transition sequences is in-
credibly time consuming and therefore usually an optimized
algorithm (called Viterbi algorithm, seeRabiner, 1989) is
used for classification.
In the HMM training procedure, the transition probabilities
(aij ) and the observation distributions (bi) are estimated au-
tomatically through an expectation-maximization algorithm.
For more details on the theory of HMMs, seeRabiner(1989)
andYoung et al.(2002).

2.2 The Extension to Hidden semi-Markov Models

The duration probability distribution of a particular HMM
state is not included in the intrinsic HMM design. Nonethe-
less, according to the definition of HMMs the probability of
stayingT time steps in statei can be calculated from the state
transition probabilities (aij ) as follows:

aT
ii (1−aii) = (1−aii)exp(T log(aii)) = const·exp(−T |log(aii)|) (2)

with aii being the self-state transition probability
(0 ≤ aii ≤ 1), which yields the negative logarithm in
the third part of the equation. The result is an exponentially
decaying function of the duration timeT . An exponentially
decaying function, however, is not an adequate representa-
tion of the duration distribution of certain states (e.g., P-wave
and P-coda, S-wave and S-coda etc.) of an earthquake class,
as this would imply that this part (state) has most likely
length one or zero (see Fig.3).

An alternative representation is to integrate the state dura-
tion probability distributions explicitly into the HMM. This
HMM extension is known as a Hidden semi-Markov Model
(HSMM) (Oura et al., 2006, 2008). In doing so, we are now
able to approximate the duration probabilities through Gaus-
sians. The HSMMs were a breakthrough in speech synthesis
because it is crucial that certain speech parts have the correct
duration since they otherwise sound unnatural (Zen et al.,
2004).
Figure4 provides an example of a three state Hidden semi-
Markov Model. First a sampled1 is drawn from the duration
probability distribution (Gaussian) of the first stateδ1. De-
pending on the value ofd1, d1 observationso1...od1 are gen-
erated with the corresponding probabilitiesb1(o1)...b1(od1).
Then the second state is entered and the same procedure is
continued for all remaining states. The corresponding prob-
abilities are multiplied:
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Fig. 4. Hidden semi-Markov Model. The duration probabilitiesδ1,2,3 are plotted in the states (lower rectangles). Directly when a state is
entered, a sample is drawn fromδ, e.g. five in the part. Consequently five observations are generated from the observation probabilityb1 and
then the next state is entered.
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b3(oi3); with d1+d2+d3 = T . (3)

The probability of the single HSMM given an observation
sequenceo1...oT is the one with the values ofd1,d2,d3 which
maximize Eq. (3). Again the observation distributions (bi)
and the duration probability distribution (δi) are estimated
automatically during HSMM training (for details seeOura
et al., 2006).

2.3 Weighted Finite-State Transducer decoding

The Viterbi algorithm is standard in HMMs classification
(also called decoding). However, this cannot be applied for
HSMMs because its optimized dynamic programming core
relies strictly on the architecture of the HMM state transi-
tions. Viterbi decoding is optimized and therefore extremely
fast. In contrast, Weighted Finite-State Transducers (WF-
STs) unfold the complete HSMM structure, where each un-
folded path is modeled individually at the expense of speed.
However, by associating weights such as probabilities, dura-
tions, or penalties to each possible path, the WFSTs provide a
unified framework for representing and refining various mod-
els (used byMohri et al., 2002, for speech and language pro-
cessing). WFSTs are the standard HSMM decoder used in
speech recognition (seeOura et al., 2006) and in following
we show how to build up an HSMM decoder with a WFST.
Figure5 shows the first five possible paths for the first state
of the loc model. In total, the number of paths per state in

0

5/0

7:loc[1]/2.867

1

7:-/0
7:loc[1]/2.809

2

7:-/0
7:loc[1]/2.759

3

7:-/0 7:loc[1]/2.717

4

7:-/0 7:loc[1]/2.684

Fig. 5. The Weighted Finite-State Transducer for the first 5 time
samples in the loc model. The lowest path (with 5 arcs) corresponds
to the first part in Fig.4 which is bound to the right by the dashed
line labeledd1. While the nodes only mark the steps in time, the
arcs contain the input states, output labels, and the corresponding
weight, which in this case is the negative log probability of the du-
ration probability.

our application ranges between 24-875; however, for visual-
ization purposes, we show the first five only. The five ob-
servations in Fig.4 (first “loc” state) are represented by the
lowest path in Fig.5. The other paths (Fig.4), with 4,3,2 and
1 arcs, would correspond to the drawn values 4,3,2 and 1 of
δ1. The circles in Fig.5 correspond to numbered nodes which
the transducer can pass. All the probabilities are stored in the
arcs and described by the corresponding labels. The annota-
tion “7:−0” , for instance corresponds to the WFST input
label 7 (the first of loc, see Table1), no output label (“–”) is
assigned, and the negative log probability for this transition
is 0 which corresponds to exp(−0) = 100%. The annotation
“7:loc[1]/8.032” assigns the output label “loc[1]” to the path
(in principle any name can serve as a label; we chose the
name of the HSMM state as output label) and a negative log
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Table 1. The mapping of HSMM states and WFST input labels. Each earthquake class has three states.

HSMM state reg 1 reg 2 reg 3 near 1 near 2 near 3 loc 1 loc 2 loc 3 noise 1
WFST input label 1 2 3 4 5 6 7 8 9 10

d1 d1 + d2
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5
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6
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7:loc[1]/2.809

2
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3

7:-/0 7:loc[1]/2.717

4
7:-/0 7:loc[1]/2.684 11

8:loc[2]/2.608

7

8:-/0

12
-:-/0

8:loc[2]/2.545

8

8:-/0 8:loc[2]/2.495

9

8:-/0 8:loc[2]/2.456

10
8:-/0 8:loc[2]/2.430 17/0

9:loc[3]/2.480

13

9:-/0 9:loc[3]/3.450

14

9:-/0 9:loc[3]/3.422

15

9:-/0 9:loc[3]/3.397

16
9:-/0 9:loc[3]/3.373

Fig. 6. Concatenated Weighted Finite-State Transducer. The WFST is the result of concatenating the WFST shown in Fig.5 for the first,
second and third loc state. The labeling of the above figure is described in Fig.5. The corresponding mapping from HSMM states to WFST
input labels is described in Table1. Note that for visualization, only the first 5 paths per HSMM state are plotted.

probability of this transition of 8.032 which corresponds to
exp(−8.032) = 0.033%. Therefore, all we need to do to build
an earthquake classifier for the first loc state with a WFST is
to link the input label to an HSMM state (Mohri et al., 2002)
and to assign the negative log probability of the last arcs in
the transducer to the duration probability of all previous arcs,
thus setting their probability to 100%. The probability for
staying two samples in state one (the second path from the
top in Fig.5) corresponds tocdf (2)−cdf (1), whereby the
cumulative duration distribution function is denoted ascdf .

The WFSTs allow composition, unification and concatena-
tion of the transducers (for more details, seeMohri et al.,
1997). In order to build up a WFST for the complete loc
earthquake we simply concatenate the transducer for the first,
second, and third loc state into one overall loc earthquake
transducer. Figure5 shows the transducer for the first loc
state and Fig.6 represents the concatenated transducer for
the whole loc model.

The classifier for the reevaluation of the training data is con-
structed by unifying the concatenated WFSTs of the earth-
quake classes and the noise as shown in Fig.7. In the clas-
sification process the negative log-likelihoods are minimized
to find the most likely path. The WFST for the reevaluation
of the training data in the next sections has in total 1016 dif-
ferent possibilities/paths.

The flexibility in constructing the WFST easily allows the in-
troduction of minimum and maximum length criteria for the
earthquake parts. By, for example, deleting the arcs point-
ing from nodes (0→ 5) and (1→ 5) in Fig.5, the resulting
WFST has a minimum duration of two samples. In the clas-
sification of an earthquake it should be impossible to directly
travel from HSMM state (1→ 2 → 3) and stay during all

the remaining samples (order of 100 or 1000) in the third
HSMM state, which then basically resembles only the third
HSMM state. In order to avoid this behavior, and to increase
the speed of the application, we build the WFST with the
minimum length being the value of the 30th percentile and
the maximum length being the 70th percentile of the dura-
tion distribution for each state, respectively.

3 Application

The HSMM detection and classification system was applied
to a one month period (2007-09) of continuous data from
the seismic station RJOB of the Bavarian Earthquake Ser-
vice (http://www.erdbeben-in-bayern.de). The specified data
set was chosen because the target classes loc, near and reg,
which served as examples in the theory section and are rep-
resented and differ by epicentral distance. This enables us to
easily decide whether a classification is correct or not, thus
allowing a better evaluation of the advantages and disadvan-
tages of the proposed algorithms. The training data set con-
sists of 122 loc, 37 near, 115 reg and 176 noise events.
A first performance test is the reevaluation of the training
data set. The models are trained from the training data and
then as a second step, the same training data are then reclas-
sified by using these trained models (allowing only one class
per event as shown in Fig.7). The results are shown in Fig.8.

www.nonlin-processes-geophys.net/18/81/2011/ Nonlin. Processes Geophys., 18, 81–89, 2011

http://www.erdbeben-in-bayern.de


86 M. Beyreuther and J. Wassermann: HSMM/WFST earthquake classification

0

5

1:reg[1]/5.862

11:-/0

18
-:-/0

36

-:-/0

54

-:-/0

6
-:-/0

1:reg[1]/5.861

2
1:-/0

23

4:near[1]/3.573

19

4:-/0

41

7:loc[1]/2.867

37

7:-/0

55

10:-/0

1:reg[1]/5.859

3
1:-/0 1:reg[1]/5.858

4
1:-/0 1:reg[1]/5.857

11

2:reg[2]/6.291

7

2:-/0

12
-:-/0

2:reg[2]/6.290

8

2:-/0 2:reg[2]/6.290

9

2:-/0 2:reg[2]/6.289

10
2:-/0 2:reg[2]/6.288 17/0

3:reg[3]/6.443

13

3:-/0 3:reg[3]/6.443

14

3:-/0 3:reg[3]/6.442

15

3:-/0 3:reg[3]/6.442

16
3:-/0 3:reg[3]/6.441

24
-:-/0

4:near[1]/3.555

20
4:-/0 4:near[1]/3.538

21
4:-/0

4:near[1]/3.522

22
4:-/0 4:near[1]/3.507 29

5:near[2]/4.621

25

5:-/0

30
-:-/0

5:near[2]/4.614

26

5:-/0 5:near[2]/4.608

27

5:-/0 5:near[2]/4.602

28
5:-/0 5:near[2]/4.595 35/0

6:near[3]/5.252

31

6:-/0 6:near[3]/5.249

32

6:-/0 6:near[3]/5.245

33

6:-/0 6:near[3]/5.242

34
6:-/0 6:near[3]/5.238

42
-:-/0

7:loc[1]/2.809

38
7:-/0 7:loc[1]/2.759

39

7:-/0 7:loc[1]/2.717

40
7:-/0 7:loc[1]/2.684

47

8:loc[2]/2.608

43

8:-/0

48
-:-/0

8:loc[2]/2.545

44

8:-/0 8:loc[2]/2.495

45

8:-/0 8:loc[2]/2.456

46
8:-/0 8:loc[2]/2.430 53/0

9:loc[3]/2.480

49

9:-/0 9:loc[3]/3.450

50

9:-/0 9:loc[3]/3.422

51

9:-/0 9:loc[3]/3.397

52
9:-/0 9:loc[3]/3.373

10:noise[1]/0
56/0

10:-/0

Fig. 7. Classifier design for the reevaluation of the training data. By concatenating the different HSMM states, one WFST per earthquake
class is constructed (Fig.6). The separate WFST for each class can then be unified (i.e. put in parallel) which results in one large WFST
shown here. Note again that for visualization, only the first 5 paths per HSMM state are plotted.

HMM HSMM

------> true class type ------> ------> true class type ------>

reg near loc noise reg near loc noise

reg 0.82 0.08 0.02 0.06 reg 0.84 0.08 0.00 0.00

near 0.18 0.86 0.07 0.01 near 0.11 0.86 0.00 0.00

loc 0.00 0.05 0.91 0.00 loc 0.00 0.05 0.92 0.00

noise 0.00 0.00 0.00 0.93 noise 0.04 0.00 0.08 1.00

Quake Trace: 0.86 Quake Trace: 0.88

Missed Event False Alarm

Fig. 8. Reevaluation of the training data. To the right the true class
type is plotted; to the bottom the recognized one. E.g., for the HMM
reg class, 82% of the data are correctly classified as reg and 18% are
confused as near.

The detection performance of HMM versus HSMM (Fig.8)
is expressed by the rate of false alarms and missed events.
The missed event rate is higher for HSMM, whereas the false
alarm rate is higher for the HMM. A higher false alarm rate is
problematic, because during continuous classification mostly
noise is classified (e.g. 370 151 noise classifications in the
following continuous period). Thus, even a low percentage
of false alarms lead to a high total number. Nonetheless, the
classification performance of both HMM and HSMM is sim-
ilar. The reevaluation of the isolated training data set pro-
vides an indication of the performance, since over-training
and performance in various noise conditions is not covered.
Therefore we also chose to classify one month of continuous
data.

In one month 370 151 classifications are made (3600· 24·

30/7, with 7 s window step size). The continuous data are
classified in a sliding window of class dependent length (loc
14 s, reg 157 s, near: 47 s), with a window step of 7 s. The
window length was chosen such that each class fits about
twice inside the window. For each window and type, a
[noise, earthquake, noise] and an only [noise] sequence are
classified. This allows a flexible position of the earthquake

in the window and calculation of the confidence measure
P(earthquake)/P(noise), with P being the probability.
Figure9 displays the results of the HMM and HSMM classi-
fication. The plot DATA shows three local earthquakes; the
plots HSMM and HMM show the results of the two different
models, respectively. The log probabilities of the earthquake
models are plotted as colored bars, and the log probabilities
of the corresponding noise model are plotted as dashed lines
in the same color.
An earthquake is detected if the probability for the earth-
quake is greater than the probability for noise. The corre-
sponding type is classified by selecting the earthquake class
with the highest confidence measure, which in Fig.9 corre-
sponds to the vertical distance of the associated noise proba-
bility to the center of the earthquake probability (displayed
as a bar). Other classifications in that period are deleted,
even if they are longer than the class with the highest con-
fidence measure. This procedure is known as “the winner
takes all” (see e.g.Ohrnberger, 2001). By comparing the
results from the HMM and HSMM classification, it is easy
to see that the classes are much better characterized by the
HSMM. Through their rather simple design the HMM even
missclassifies the second and third local earthquake. It is also
clear to see that the reg HSMMs have more realistic min-
imum duration (the 10 s duration of the reg HMM for the
third local earthquake is impossible) due to the more flexible
model design in the WFST.
This classification procedure is applied to a one month pe-
riod of continuous data. In order to avoid a large number of
false alarms, minimum confidence thresholds for a classifica-
tion are introduced (for details seeBeyreuther et al., 2008),
which are chosen in such a way that the false alarm rate for
both HMM and HSMM are similar. The results are shown in
Table2.
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Fig. 9. The top plot shows three local earthquakes. The second and third plot shows the resulting log probabilities from HMM and HSMM
detection and classification respectively. Colored bars denote the log probability of the earthquake classes, while the dashed lines denote the
corresponding noise classes for each earthquake class.

Table 2. Results of one month of continuous classification. Confused events are events which are misclassified to another earthquake class.
The confused events for the noise class correspond to the false alarms. For the comparison, the post-processing thresholds for both HSMM
and HMM are chosen such that the false alarm rate stays for both algorithms at about two false alarms per day.

HMM # of reg # of near # of loc # of noise

correct events: 9 (26%) 4 (25%) 56 (67%) 370 084
confused events: 5 (14%) 1 (6%) 12 (14%) 67
missed events: 21 (60%) 11 (69%) 15 (18%) –

total: 35 16 83 370 151

HSMM # of reg # of near # of loc # of noise

correct events: 23 (66%) 10 (63%) 75 (90%) 370 087
confused events: 5 (14%) 2 (13%) 5 (6%) 64
missed events: 7 (20%) 4 (25%) 3 (4%) –

total: 35 16 83 370 151

The HSMM clearly outperforms the HMM. However, the re-
sults of the HMM and HSMM could be easily improved by
using a different parameterization, e.g. more states. But since
the computation time of the WFST decoding would then in-
crease dramatically, we choose to use a rather simple setup.
The reasons for choosing certain parameters and the param-
eters itself are discussed in the following.

4 Discussion

A key point for the HMM and HSMM design is the refine-
ment to the correct parameter set. The parameters are the
number of Gaussians which compose the observation prob-
abilities (called Gaussian mixtures), the number of states in
general, the model topology and the possibility of tying vari-
ances etc. The motivation for choosing the parameters and
the parameters themselves are explained in the following.
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1. We use left to right models as explained in the theory
section due to the causality of the earthquakes (Fig.1).
For noise, which is clearly time independent (Fig.1),
only one state is used and thus no time dependency is
assumed. Due to the limited amount of training data, it
is statistically likely to over-train the model parameters.
Consequently for a robust estimation of the parameters,
only a limited amount of states and Gaussian mixtures
for the observation probabilitybi(o) can be used. Also,
the high computational costs of the WFST classification
limits us to a maximum amount of six states (0.5 h CPU
time for 1 h of data).

2. Because of the time-dependent characteristics of the
earthquakes themselves (Fig.1), we use more dis-
cretizations in time (6 states) for the earthquake models
and only one for the noise model.

3. For the noise model we choose a higher number of
Gaussian mixtures (4 mixtures) for the observation
probability distributionsbi(o) such that a large amount
of different noise sources could be matched. For the
earthquake models we use a single mixture.

4. In previous studies day noise and night noise classes
were used, which match the anthropogenic noise during
day time and the non-anthropogenic noise during night
time (Ohrnberger, 2001; Beyreuther and Wassermann,
2008). In this study, however, we use only one noise
class in order to avoid competing day noise and night
noise models through the competitive training ofYoung
et al.(2002); Zen et al.(2009).

5. The training ofYoung et al.(2002) andZen et al.(2009)
allows the computation of full multidimensional covari-
ance matrices for the observation probability. How-
ever, in order to keep the number of free parameters
low, the characteristic functions are first transformed to
their principal axes (using principal component analy-
sis), such that only the diagonal of the covariance ma-
trices need to be used.

We also tried other parameter combinations: earthquake
statesi from three to six, Gaussian mixtures ofbi(o) from
one to six, and tied variances for all models. Clearly a lower
number of earthquake states results in a lower number of
discretizations in time and thus a worse classification result.
More interestingly, a higher number of Gaussian mixtures
for the observation probability distributions of the earthquake
models did not achieve better results. This may indicate that
the characteristic functions of the earthquakes are well rep-
resented by one Gaussian distribution. Also a higher amount
of mixtures for the noise model did not achieve better results;
four mixtures seem to be robust.

5 Conclusions

Seismology is a data rich science which allows nearly un-
limited access to measures of ground motion. The migration
of data centers’ data acquisition from event based data snip-
pets to continuous data has increased the amount of avail-
able waveforms dramatically. However, the target wave-
forms (earthquakes) are hard to detect, particularly with low
signal to noise ratios. Advanced detection and classifica-
tion algorithms are required, e.g. for automatically acquir-
ing consistent earthquake catalogues for volcanoes, for class-
dependent pre-selection of localization methods, or for ex-
cluding explosions from earthquake catalogues.
In this study we applied Hidden Markov Models, which are
double stochastic models known from speech recognition for
classification. We demonstrated the benefit of including a
more realistic time dependence in the model (HSMM). The
classification of one month of raw continuous seismic data
(in total 370 151 classifications) shows a classification per-
formance increase up to 40% using HSMM vs. HMM. How-
ever the performance increase has to be balanced with the in-
crease of CPU time by a factor of 10 (1/2 h CPU time for 1 h
data), thus making it difficult to process large data archives.
For future work either a much more optimized WFST imple-
mentation needs to be used or the HMM models need to be
refined in such a way that the natural duration of the earth-
quake parts is better represented.
This paper shows the improved performance from includ-
ing more realistic time dependencies specifically for HMM.
However, an increased performance should also be possi-
ble by including the time dependency in the model design
of other supervised learning techniques such as support vec-
tor machines (Langer et al., 2009) or artificial neuronal net-
works (Ibs-von Seht, 2008) when classifying time series. An-
other major impact on the detection and classification perfor-
mance, especially the false alarm rate, is easily achieved by
combining the results of several stations, similar to the coin-
cidence sums of common triggers.
In order to compare the results of this study to other meth-
ods in earthquake detection and classification (e.g. artificial
neuronal networks, support vector machines, self organizing
maps or tree based classifiers) benchmark data sets are re-
quired. Unfortunately these are currently not available for
the field of seismology and, concluding the presented study,
we think there is a strong demand for them.
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