Sums of Semiprime, Z, and D L-Ideals in a Class of F-Rings

Suzanne Larson
Loyola Marymount University, slarson@lmu.edu

Repository Citation

Larson, Suzanne, "Sums of Semiprime, Z, and D L-Ideals in a Class of F-Rings" (1990). Mathematics Faculty Works. 9.
http://digitalcommons.lmu.edu/math_fac/9

Recommended Citation

Larson, S. Sums of Semiprime, Z, and D L-Ideals in a Class of F-Rings, Proceedings of the American Mathematical Society. vol. 109 (1990) pp. 895-901.

SUMS OF SEMIPRIME, z, AND d l-IDEALS IN A CLASS OF f-RINGS

SUZANNE LARSON
(Communicated by Louis J. Ratliff, Jr.)

Abstract

In this paper it is shown that there is a large class of f-rings in which the sum of any two semiprime l-ideals is semiprime. This result is used to give a class of commutative f-rings with identity element in which the sum of any two z-ideals which are l-ideals is a z-ideal and the sum of any two d-ideals is a d-ideal.

Introduction

An l-ideal I of an f-ring A is called semiprime if $a^{2} \in I$ implies $a \in I$. An ideal I of a commutative ring A with identity element is called a z-ideal if whenever $a, b \in A$ are in the same set of maximal ideals and $a \in I$, then $b \in I$. Given an element a of an f-ring A, let $\{a\}^{d}=\{x \in A: x a=0\}$ and $\{a\}^{d d}=\left\{x \in A: x y=0\right.$ for all $\left.y \in\{a\}^{d}\right\}$. An ideal I of a commutative f-ring is called a d-ideal if $a \in I$ implies $\{a\}^{d d} \subseteq I$.

Several authors have studied the sums of semiprime l-ideals, z-ideals, and d-ideals in various classes of f-rings. In [2, 14.8] it is shown that the sum of two z-ideals in $C(X)$, the f-ring of all real-valued continuous functions defined on the topological space X, is a z-ideal; and in [11, 4.1 and 5.1], Rudd shows that in absolutely convex subrings of $C(X)$, the sum of two semiprime l-ideals is semiprime and the sum of two z-ideals is a z-ideal. Mason studies sums of z-ideals in absolutely convex subrings of the ring of all continuous functions on a topological space and in more general rings in [10]. An example is given in [$5, \S 7$] of an f-ring in which there are two (semiprime) z-ideals whose sum is not a z-ideal or semiprime. Huijsmans and de Pagter show in [7, 4.4] that in a normal Riesz space, the sum of two d-ideals is a d-ideal.

In [4, 3.9], Henriksen gives a condition on two semiprime l-ideals of an f ring which is necessary and sufficient for their sum to be semiprime. Henriksen also notes in [4] that this condition can be difficult to apply globally, and so it seems difficult to use this result to determine in what classes of f-rings are the sum of any two semiprime l-ideals semiprime.

In this note we show that there is a large class of f-rings, specifically those f-rings in which minimal prime l-ideals are square dominated, in which the sum of any two semiprime l-ideals is semiprime. We use this result to show that in a commutative f-ring with identity element in which minimal prime l-ideals are square dominated, if the sum of any two minimal prime l-ideals is a z-ideal (resp. d-ideal), then the sum of any two z-ideals which are l-ideals is a z-ideal (resp. the sum of any two d-ideals is a d-ideal). As a corollary we show that in a commutative semiprime normal f-ring with identity element, the sum of any two z-ideals which are l-ideals (resp. d-ideals) is a z-ideal (resp. d-ideal).

1. Preliminaries

An f-ring is a lattice-ordered ring which is a subdirect product of totally ordered rings. For general information on f-rings see [1]. Given an f-ring A and $x \in A$, we let $A^{+}=\{a \in A: a \geq 0\}, x^{+}=x \vee 0, x^{-}=(-x) \vee 0$, and $|x|=x \vee(-x)$.

A ring ideal I of an f-ring A is an l-ideal if $|x| \leq|y|, y \in I$ implies $x \in I$. Given any element $a \in A$ there is a smallest l-ideal containing a, and we denote this by $\langle a\rangle$.

Suppose A is an f-ring and I is an l-ideal of A. The l-ideal I is semiprime (prime) if $a^{2} \in I \quad(a b \in I)$ implies $a \in I \quad(a \in I$ or $b \in I)$. It is well known that in an f-ring, an l-ideal is semiprime if and only if it is an intersection of prime l-ideals, and that all l-ideals containing a given prime l-ideal form a chain. In an f-ring a semiprime l-ideal that contains a prime l-ideal is a prime l-ideal as shown in [12, 2.5], [7, 4.2].

An ideal I of a commutative ring A with identity element is a z-ideal if, whenever $a, b \in A$ are contained in the same set of maximal ideals and $a \in I$, then $b \in I$.

In a commutative f-ring, let $\{a\}^{d}=\{x \in A: a x=0\}$ and $\{a\}^{d d}=\{x \in$ $A: x y=0$ for all $\left.y \in\{a\}^{d}\right\}$. An ideal I of a commutative f-ring is called a d-ideal if $a \in I$ implies $\{a\}^{d d} \subseteq I$.

Henriksen, in [4] calls an l-ideal I of an f-ring A square dominated if $I=\left\{a \in A:|a| \leq x^{2}\right.$ for some $x \in A$ such that $\left.x^{2} \in I\right\}$. Two characterizations now follow describing those commutative semiprime f-rings in which all minimal prime l-ideals are square dominated. Parts (1) and (2) of the following lemma are shown to be equivalent in [8, 2.1]. That part (3) of the following lemma is equivalent to part (1) follows easily from the equivalence of parts (1) and (2).

Lemma 1.1. Let A be a commutative semiprime f-ring. The following are equivalent:
(1) Every minimal prime l-ideal of A is square dominated
(2) For every $a \in A^{+}$the l-ideal $\{a\}^{d}$ is square dominated
(3) The l-ideal $O_{P}=\{a \in A$: there exists $a b \notin P$ such that $a b=0\}$ is square dominated for all prime l-ideals P of A.

2.

We begin with two results that will be needed when showing that in an f ring in which minimal prime l-ideals are square dominated, the sum of two semiprime l-ideals is semiprime.

Theorem 2.1. Let A be an f-ring. In A, the sum of a semiprime l-ideal and a square-dominated semiprime l-ideal is semiprime.
Proof. Suppose that I, J are semiprime l-ideals and that J is square dominated. Let $a^{2} \in I+J$ with $a \geq 0$. Then $a^{2} \leq i+j$ for some $i \in I^{+}, j \in J^{+}$. Since J is square dominated, $j \leq j_{1}^{2}$ for some $j_{1} \in A^{+}$with $j_{1}^{2} \in J$. So $a^{2} \leq i+j_{1}^{2}$. Let $x=a-\left(a \wedge j_{1}\right)$ and $y=a \wedge j_{1}$. Since J is a semiprime l-ideal, $j_{1} \in J$ and $y \in J$. Now for any positive elements a, j_{1}, of any totally ordered ring, $a \wedge j_{1}=a$ or $a \wedge j_{1}=j_{1}$. In the first case $\left(a-\left(a \wedge j_{1}\right)\right)^{2}=0$, and in the second case $\left(a-\left(a \wedge j_{1}\right)\right)^{2}=\left(a-j_{1}\right)^{2}=a^{2}-a j_{1}-j_{1} a+j_{1}^{2} \leq a^{2}-2 j_{1}^{2}+j_{1}^{2}=a^{2}-j_{1}^{2}$. Therefore in any totally ordered ring, $\left(a-\left(a \wedge j_{1}\right)\right)^{2} \leq 0 \vee\left(a^{2}-j_{1}^{2}\right)$. This implies that in the f-ring $A, x^{2}=\left(a-\left(a \wedge j_{1}\right)\right)^{2} \leq 0 \vee\left(a^{2}-j_{1}^{2}\right) \leq i$. Thus, $x^{2} \in I$ and hence $x \in I$. We have $a=x+y$ with $x \in I$ and $y \in J$. Therefore $a \in I+J$.

Lemma 2.2. Let A be an f-ring in which minimal prime l-ideals are square dominated. In A, the sum of any two prime l-ideals is prime.
Proof. Let I and J be prime l-ideals of A. Let I_{1}, J_{1} be minimal prime l-ideals contained in I, J respectively. We will show $I+J$ is an intersection of prime l-ideals. To do so, we let $z \in A$ such that $z \notin I+J$ and we will show there is a prime l-ideal containing $I+J$ but not z. The l-ideal $I_{1}+J_{1}$ is prime, and the prime l-ideals containing it form a chain. By the maximal principle, there is a prime l-ideal Q containing $I_{1}+J_{1}$ which is maximal with respect to not containing z. By the previous theorem, $I+J_{1}$ is semiprime. It also contains a prime l-ideal and is therefore prime. Similarly, $I_{1}+J$ is prime. Thus $I \subseteq I+J_{1} \subseteq Q$ and $J \subseteq I_{1}+J \subseteq Q$. This implies that $I+J \subseteq Q$ and $z \notin Q$. Therefore $I+J$ is an intersection of prime l-ideals. So it is semiprime. It also contains a prime l-ideal and is therefore prime.

In [3, 4.7], Gillman and Kohls show that in $C(X)$, the f-ring of all realvalued continuous functions defined on the topological space X, an l-ideal is an interesection of l-ideals, each of which contains a prime l-ideal. Their proof easily generalizes to prove that in an f-ring, an l-ideal which contains all nilpotent elements of the f-ring is an intersection of l-ideals, each of which contains a prime l-ideal. We will make use of this result in the proof of the following theorem.

Theorem 2.3. Let A be an f-ring in which minimal prime l-ideals are square dominated. In A, the sum of any two semiprime l-ideals is semiprime.
Proof. Let I, J be semiprime l-ideals. We will show $I+J$ is an intersection of prime l-ideals. To do so, we let $z \in A$ such that $z \notin I+J$ and we show that there is a prime l-ideal containing $I+J$ but not z. By Gillman and Kohl's result mentioned above, there is an l-ideal Q containing $I+J$ and containing a prime l-ideal but not containing z. Let P be a minimal prime l-ideal contained in Q. By Theorem 2.1, $P+I$ is semiprime. Also, it contains a prime l-ideal and so is prime. Similarly, $P+J$ is prime. Then by the previous lemma, $(P+I)+(P+J)$ is prime. Since $(P+I)+(P+J) \subseteq Q$, $z \notin(P+I)+(P+J)$ and $I+J \subseteq(P+I)+(P+J)$.

The converse of the previous theorem does not hold, as we show next.
Example 2.4. In $C([0,1])$, denote by i the function $i(x)=x$, and by e the function $e(x)=1$. Let $A=\{f \in C([0,1]): f=a e+g$ where $a \in \mathbf{R}, g \in\langle i\rangle\}$ with coordinate operations. Then A is a commutative semiprime f-ring.

We will show that the sum of two semiprime l-ideals of A is semiprime. So suppose I, J are semiprime l-ideals. If I or J contains an element $f=a e+g$ such that $a \neq 0$, then it can be shown that I or J is square dominated. Then by Theorem 2.1, $I+J$ is semiprime. So we may now suppose that both $I, J \subseteq\langle i\rangle$. If $f^{2} \in I+J$, then there is $i_{1} \in I^{+}, j_{1} \in J^{+}$such that $f^{2}=i_{1}+j_{1}$. Also, $f \in\langle i\rangle$ which implies $|f| \leq n i$ and $f^{2} \leq n^{2} i^{2}$ for some $n \in \mathbf{N}$. So $i_{1} \leq n^{2} i^{2}$ and $j_{1} \leq n^{2} i^{2}$. Therefore $\sqrt{i_{1}} \leq n i$ and $\sqrt{i_{1}} \in A$. Since I is semiprime, $\sqrt{i_{1}} \in I$. Similarly, $\sqrt{j_{1}} \in J$. So $f \leq \sqrt{i_{1}}+\sqrt{j_{1}}$ implies $f \in I+J$. Thus $I+J$ is semiprime.

Next we show that not every minimal prime l-ideal of A is square dominated. Let f be a function such that $0 \leq f \leq i, f(x)=0$ for all $x \in[1 / 4,1]$, $f(x)=0$ for all $x \in[1 /(4 n+2), 1 / 4 n]$, and $f(1 /(4 n+3))=1 /(4 n+3)$ for all $n \in \mathbf{N}$. Also, let g be a function such that $0 \leq g \leq i, g(x)=0$ for all $x \in[1 / 4,1], g(1 /(4 n+1))=1 /(4 n+1)$, and $g(x)=0$ for all $x \in[1 /(4 n+4), 1 /(4 n+2)]$ for all $n \in \mathbf{N}$. Then $g \in\{f\}^{d}$, and there is no element $h \in A$ which satisfies $g \leq h^{2}$ and $h^{2} \in\{f\}^{d}$. So $\{f\}^{d}$ is not square dominated, and Lemma 1.1 implies that not every minimal prime l-ideal of A is square dominated.

Next we turn our attention to the sum of two z-ideals which are l-ideals and to the sum of two d-ideals. Note that in a commutative f-ring with identity element, a z-ideal is not always an l-ideal. However it can easily be seen that in a commutative f-ring with identity element, if every maximal ideal is an l-ideal (or equivalently if for all $x \geq 1, x^{-1}$ exists), then a z-ideal is always an l-ideal. In a commutative f-ring with identity element, every d-ideal is an l-ideal. G. Mason has established three results concerning z-ideals which we will use in the proof of the next theorem. The first is as follows.
(α) In a commutative ring with identity element, every z-ideal is semiprime [9, 1.0].

The second was proven for a commutative ring with identity element, and the third was proven for a commutative ring with identity element in which the prime ideals containing a given prime form a chain. With only very slight modifications to the proofs, these results can be given in the context of f-rings.
(β) If, in a commutative f-ring with identity element, P is minimal in the class of prime l-ideals containing a z-ideal I which is an l-ideal, then P is also a z-ideal. In particular, minimal prime l-ideals are z-ideals [9, 1.1].
(γ) If, in a commutative f-ring with identity element, the sum of any two minimal prime l-ideals is a prime z-ideal, then the sum of any two prime l-ideals not in a chain is a z-ideal [10, 3.2].
One can easily mimic the proofs to (β) and (γ) to show analogous results about d-ideals.
$\left(\beta^{\prime}\right)$ If, in a commutative f-ring with identity element, P is minimal in the class of prime l-ideals containing a d-ideal I, then P is also a d-ideal. In particular, minimal prime l-ideals are d-ideals.
$\left(\gamma^{\prime}\right)$ If, in a commutative f-ring with identity element, the sum of any two minimal prime l-ideals is a prime d-ideal, then the sum of any two prime l-ideals which are not in a chain is a d-ideal.

Theorem 2.5. Let A be a commutative f-ring with identity element in which minimal prime l-ideals are square dominated.
(1) If the sum of any two minimal prime l-ideals of A is a z-ideal, then the sum of any two z-ideals which are l-ideals of A is a z-ideal.
(2) If the sum of any two minimal prime l-ideals of A is a d-ideal, then the sum of any two d-ideals of A is a d-ideal.

Proof. We first show part (1). Suppose I, J are z-ideals which are l-ideals. Then I, J are semiprime l-ideals by (α), and by Theorem $2.3, I+J$ is a semiprime l-ideal. We will show that $I+J$ is the intersection of z-ideals. To do so, we let $z \in A$ such that $z \notin I+J$, and we will show there is a z-ideal containing $I+J$ but not z. Since $I+J$ is a semiprime l-ideal, it is the intersection of prime l-ideals. So there is a prime l-ideal P containing $I+J$ but not z. Let $P_{1}, P_{2} \subseteq P$ be prime l-ideals minimal with respect to containing I, J respectively. By $(\beta), P_{1}, P_{2}$ are prime z-ideals. It follows from (γ) that $P_{1}+P_{2}$ is a z-ideal. Also, $I+J \subseteq P_{1}+P_{2}$ and $z \notin\left(P_{1}+P_{2}\right)$ since $P_{1}+P_{2} \subseteq P$.

The proof of part (2) is analogous.
Recall that for any element a of an f-ring, $\{a\}^{d}$ is a z-ideal and a d ideal. Recall also that a prime l-ideal P of a commutative semiprime f-ring is minimal if and only if $a \in P$ implies there is a $b \notin P$ such that $a b=0$.

Corollary 2.6. Let A be a commutative semiprime f-ring with identity element in which minimal prime l-ideals are square dominated.
(1) If for every $a, b \in A^{+},\{a\}^{d}+\{b\}^{d}$ is a z-ideal, then the sum of any two z-ideals which are l-ideals of A is a z-ideal.
(2) If for every $a, b \in A^{+},\{a\}^{d}+\{b\}^{d}$ is a d-ideal, then the sum of any two d-ideals of A is a d-ideal.

Proof. To show part (1), we need only show that the sum of any two minimal prime l-ideals is a z-ideal. Let P, Q be minimal prime l-ideals. Suppose a, b are in the same set of maximal ideals and $b \in P+Q$. Then $b=p+q$ for some $p \in P, q \in Q$. Also, there is $p_{1}, q_{1} \in A^{+}$such that $p_{1} \notin P, q_{1} \notin Q$, and $p p_{1}=0, q q_{1}=0$. So $b=p+q \in\left\{p_{1}\right\}^{d}+\left\{q_{1}\right\}^{d}$. By hypothesis, $\left\{p_{1}\right\}^{d}+\left\{q_{1}\right\}^{d}$ is a z-ideal. So $a \in\left\{p_{1}\right\}^{d}+\left\{q_{1}\right\}^{d} \subseteq P+Q$.

The proof of part (2) is analogous.
An f-ring (and more generally a Riesz space) A is called normal if $A=$ $\left\{a^{+}\right\}^{d}+\left\{a^{-}\right\}^{d}$ for all $a \in A$, or equivalently if $a \wedge b=0$ implies $A=$ $\{a\}^{d}+\{b\}^{d}$. In $[8,2.5]$ it is shown that in a commutative, semiprime normal f-ring with identity element, every minimal prime l-ideal is square dominated.

Corollary 2.7. Let A be a commutative semiprime normal f-ring with identity element. In A, the sum of any two z-ideals which are l-ideals is a z-ideal and the sum of any two d-ideals is a d-ideal.

Proof. In view of the fact that minimal prime l-ideals of A are square dominated and in light of Theorem 2.5, we need only show that the sum of any two minimal prime l-ideals is a z-ideal and a d-ideal. So let P, Q be minimal prime l-ideals. We will show that if $P \neq Q$, then $P+Q=A$. If $P \neq Q$, then there is an element $p \in P \backslash Q$. Since P is a minimal prime, there is an element $q \notin P$ such that $p q=0$. Then $p \wedge q=0$, and $\{p\}^{d}+\{q\}^{d}=A$. But $\{p\}^{d} \subseteq Q,\{q\}^{d} \subseteq P$. So $A=P+Q$.

Huijsmans and de Pagter show in [6, 4.4] that in a normal Riesz space the sum of two d-ideals is a d-ideal, so the d-ideal portion of the previous corollary is known.

We conclude with an example showing that in a commutative f-ring with identity element in which minimal prime l-ideals are square dominated, the sum of two minimal prime l-ideals is not necessarily a d-ideal or z-ideal. So the hypothesis that the sum of any two minimal prime l-ideals is a z-ideal or a d-ideal cannot be omitted from Theorem 2.5. The example makes use of a construction of Henriksen and Smith which appears in [5].

Example 2.8. In $C([0,1])$, let i denote the function defined by $i(x)=x$ and let $I=\left\{f \in C([0,1]):\left|f^{n}\right| \leq m i\right.$ for some $\left.n, m \in \mathbf{N}\right\}$. Then I is a semiprime l-ideal of $C([0,1])$. Let $A=\{(f, g) \in C([0,1]) \times C([0,1]): f-g \in I\}$. Then as shown in [5], A is a commutative semiprime f-ring with identity element.

As shown in [5, §3], the minimal prime l-ideals of A have the form $\{(f+$ $g, f): f \in P, g \in I\}$ or $\{(f, f+g): f \in P, g \in I\}$ for some minimal prime l-ideal P of $C([0,1])$. Using this fact, it is not hard to show that minimal prime l-ideals of A are square dominated.

Define a function h by $h(x)=\sum_{n=1}^{\infty} 1 / 2^{n} x^{1 / n}$. Then $h \in C([0,1])$ and $h \notin I$. Let P be a prime l-ideal such that $I \subseteq P$ and $h \notin P$, and let P_{1} be a minimal prime l-ideal contained in P. In A, let $Q_{1}=\{(f+g, f): f \in$ $\left.P_{1}, g \in I\right\}$ and $Q_{2}=\left\{(f, f+g): f \in P_{1}, g \in I\right\}$. Then Q_{1} and Q_{2} are minimal prime l-ideals of A and so are z-ideals and d-ideals. But $Q_{1}+Q_{2}$ is not a z-ideal, since the only maximal ideal (h, h) or (i, i) is contained in is $M=\{(f, g): f(0)=g(0)=0\}$ and yet $(i, i) \in Q_{1}+Q_{2}$ but $(h, h) \notin Q_{1}+Q_{2}$. To see directly that $Q_{1}+Q_{2}$ is not a d-ideal, note that $\{(i, i)\}^{d d}=A$ and $A \nsubseteq Q_{1}+Q_{2}$.

References

1. A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et anneaux reticules, Lecture Notes in Math., vol. 608, Springer-Verlag, New York, 1977.
2. L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York, 1960.
3. L. Gillman and C. Kohls, Convex and pseudoprime ideals in rings of continuous functions, Math. Z. 72 (1960), 399-409.
4. M. Henriksen, Semiprime ideals of f-rings, Sympos. Math. 21 (1977), 401-409.
5. M. Henriksen and F. A. Smith, Sums of z-ideals and semiprime ideals, Gen. Topology and its Relations to Modern Analysis and Algebra 5 (1982), 272-278.
6. C. B. Huijsmans and B. de Pagter, On z-ideals and d-ideals in Riesz spaces I, Nederl. Akad. Wetensch. Indag. Math. 42 (1980), 183-195.
\qquad , Ideal theory in f-algebras, Trans. Amer. Math. Soc. 269 (1982), 225-245.
7. S. Larson, Pseudoprime l-ideals in a class of f-rings, Proc. Amer. Math. Soc. 104 (1988), 685-692.
8. G. Mason, z-ideals and prime ideals, J. Algebra 26 (1973), 280-297.
9. \qquad Prime z-ideals of $C(X)$ and related rings, Canad. Math. Bull. 23 (1980), 437-443.
10. D. Rudd, On two sum theorems for ideals of $C(X)$, Michigan Math. J. 17 (1970), 139-141.
11. H. Subramanian, l-prime ideals in f-rings, Bull. Soc. Math. France 95 (1967), 193-203.

Department of Mathematics, Loyola Marymount University, Los Angeles, CaliforNIA 90045

