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AMERICAN MATHEMATICAL SOCIETY 
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S 0002-9939(98)04424-4 

COHOMOLOGY OF POLYNOMIALS 
UNDER AN IRRATIONAL ROTATION 

LAWRENCE W. BAGGETT, HERBERT A. MEDINA, AND KATHY D. MERRILL 

(Communicated by David R. Larson) 

ABSTRACT. A new description of cohomology of functions under an irrational 
rotation is given in terms of symmetry properties of the functions on subinter- 
vals of [0, 1]. This description yields a method for passing information about 
the cohomology classes for a given irrational to the cohomology classes for an 
equivalent irrational. 

INTRODUCTION 

Given an irrational 0, a real-valued measurable function v on [0, 1) is called a 
coboundary for 0 if there exists a real-valued measurable function w on [0, 1) such 
that 

v(x) = w(x)-w(x + 0) 

for almost all x E [0, 1), where addition in the argument is taken mod 1. In some 
contexts, we restrict our attention to a smaller class of functions. For example, we 
say that v is an LP coboundary, if v E LP and there exists a w E LP that satisfies 
the functional equation above. In all cases, the function w is called a transfer or 
cobounding function. The question of which functions are coboundaries for an 
irrational 0 arises in the study of the representation theory of non-type I groups 
([R], [BM]) as well as in the study of skew products in ergodic theory ([A]). 

In Section 1 we establish a new characterization of coboundaries in terms of the 
evennesss and oddness of functions on certain subintervals of [0,1]. For example, we 
show that an odd function is a coboundary for 0 if and only if it is the odd part of 
a function that is even on both [0, 0] and [0,1]. Because a function is a coboundary 
if and only if both its even and odd parts are, the previous statement together with 
its even counterpart completely characterizes which functions are coboundaries. 

In Section 2, we use this characterization to gain information about the set 
of irrationals for which a polynomial is a coboundary. A simple argument using 
Fourier series shows that a finite trigonometric series is a coboundary for every 
irrational. At the opposite extreme, an absolutely continuous function v on [0,1] 
such that v(0) $7 v(1) is not a coboundary for any irrational ([Med], [GLL]). Also, 
if t is rational, the characteristic function of an interval with length t, adjusted by a 
constant to have integral 0, is not a coboundary for any irrational. If t is irrational, 
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it is a coboundary for precisely those irrationals of the form t+m m, rn E Z ([P 
[V], [Mer]). Between these extremes, not much is known about the exact nature 
of the sets that occur. Two partial results are the following. A simple Fourier 
argument shows that periodic absolutely continuous functions with L2 derivatives, 
in particular polynomials with equal values at 0 and 1, are L2 coboundaries for 
irrationals that satisfy a certain Diophantine property. For functions that are not 
trigonometric polynomials, in [BMM] it is shown that if v is analytic, the set of 
irrationals for which v is a coboundary is of the first category; similarly, if v E L', 
the set of irrationals for which v is an L1 coboundary is of the first category. 

In order to study the set of irrationals for which a polynomial is a coboundary, 
we define, for each irrational 0, a linear transformation Ho that maps the space of 
polynomials onto itself. We construct Ho so that it rescales symmetry properties of 
functions on subintervals of [0, 1]. Because of this resealing, Ho takes coboundaries 
for 0 to coboundaries for 1/0. 

We can extend the knowledge we gain about 1/0 to a whole class of irrationals. 
Recall that 0 is equivalent to 0b if 

0 a + b 
cq$ + d 

for some a, b, c, d E 2, ad - bc = +1, or, equivalently, the continued fraction expan- 
sions for 0 and q$ have identical tails (see for example [HW]). In this paper we use 
our transformation Ho to show that if a polynomial v is an LP coboundary for 0, 
1 < p < 2, then it is an LP coboundary for every irrational equivalent to 0. We also 
show that if a polynomial v is an LP coboundary for 0 then it is an LP coboundary 
for nO for every nonzero integer n. Neither of these statements is true in general 
for arbitrary functions. In particular, neither is true for the characteristic function 
examples mentioned above, since X[o,0] -0 is an L2 coboundary for 0, but not even a 
measurable coboundary for 1/0 or 20. At the end of Section 2, we give examples of 
continuous functions that are L2 coboundaries for particular irrationals 0 without 
being even L1 coboundaries for 1/0. 

1. SIMULTANEOUS SYMMETRY ON INCOMMENSURABLE INTERVALS 

Definition. A function w is said to be even on an interval [a, b] if w(a+x) = w(b-x) 
for a.e. x E [0, b - a]. The function is odd on [a, b] if w(a + x) = -w(b - x). 

We note that any function w on [a, b] can be written uniquely as the sum of its 
even and odd parts as follows: 

w(a x) -w(a + x) + w(b-x) w(a + x)-w(b-x) 
2 ? 2 

forxe [O,b-a]. 

Theorem 1.1. Let 0 be an irrational number in [0, 1]. If a measurable function w 
is simultaneously even (or simultaneously odd) on the three intervals [0, 1], [0, 0], 
and [0, 1], then w is a constant. 

Proof. Extend w periodically from [0, 1) to JR. If w is even on all three intervals, 
then w satisfies the three conditions: 

(1) w(x)=w(1-x) for 0 < x < 1, 

(2) w(x)=w(0-x) for 0 < x < 0, 
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(3) w(0+x) =w(1-x) forO<x< 1-0. 

Combining (1) and (2) gives w(x) = w(0+x) for 1-0 < x < 1. Combining (1) and 
(3) gives the same equality for 0 < x < 1-0. Thus, by the ergodicity of translation 
by 0, w must be constant. The same proof, with the insertion of the appropriate 
minus signs, establishes the result for w simultaneously odd on the three intervals. 
Moreover, in the latter case, the constant must in fact be 0. [ 

We will be dealing throughout this paper with functions that are simultaneously 
even (odd) on two of these three intervals. 

Theorem 1.2. Let 0 be any number, rational or irrational, in (0, 1), and suppose 
w is a continuous function on [0,1] that is real analytic on the open interval (0, 1). 
If w is simultaneously even (odd) on any two of the three intervals [0, ], [0, 0], or 
[0, 1], then w has a (unique) analytic extension w to the whole real line, and CD has 
a nontrivial period. In particular, if w is a polynomial, then it is a constant. 

Proof. We treat the simultaneously even case, the argument for the odd case being 
analogous. The assumption implies that at least two of the three equations (1), 
(2), and (3) in the proof of Theorem 1.1 must hold for w. If it is (1) and (3) that 
hold, it follows as in that proof that w(x) = w(x + 0) for all x E [0, 1 - 0]. If it 
is (1) and (2) that hold, we similarly have w(x) = w(x + 0 - 1) for all x E [0 0]. 
In either case, these functional equations show that w can be extended to a real 
analytic function CD on all of R, either with period 0 or period 1 - 0. 

If it is (2) and (3) that hold, then from (2) we have that w(x) = w(0 - x) for all 
x E [0, 0]. Again, this functional equation shows that w can be extended to a real 
analytic function CD on all of R, and that Cv(x) = Cv(0 - x) for all real x. Combining 
this with (3) gives that 'v(-x) = CD(0+x) = CD (I -x), showing that w has period 1. 
The final statement follows because a periodic polynomial must be a constant. [ 

The next result indicates a fractal-like behavior of simultaneous symmetry of a 
function, which we will need in the next section. 

Theorem 1.3. Let 0 be an irrational number in (0, 1), and let qi denote the greatest 
integer in 1/0. If a function w is simultaneously even (odd) on [0, 1] and [0, 1] then 
it is even (odd) on the two smaller intervals [0, 1 - qi0] and [1 - q10, 0]. Moreover, 
w is completely determined by its values on these two intervals by the equation 
w(x) = w(x + 0) for x E [0,1- 0]. 

Proof. If w is simultaneously even on [0, 1] and [0,1], then we have conditions (1) 
and (3) as in the proof of Theorem 1.1, again yielding that w(x) = w(0 + x) for 
x E [0, 1-0]. By iterating this equation, we get w(x) = w(qi0+x) for x E [0, 1-qi0]. 
Combining this with (1) gives the evenness of w on [0, 1 - qi0]. To establish the 
evenness on [1 - qi0, 0], stop the iteration above one step sooner, with w(x) = 
w((qi-1)0+x) for x E [0, 1-(qi-1)0]. Thus w(0-x) = w(qi0-x) = w(l-q10+x) 
for x E [ 0, (qi + 1)0 - 1]. Again, a slight modification of this argument yields the 
proof for the odd case. [1 

Remark. The converse of Theorem 1.3 also holds in the following sense: If w is 
simultaneously even (odd) on [0, 1 - qi0] and [1 - qi0, 0], and if w also satisfies 
w(x) = w(x + 0) for x E [0, 1-0], then w is simultaneously even (odd) on [0, 1] and 
[0,1]. 
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Next, we establish the equivalence between the problem of determining which 
functions are simultaneously even (odd) on [0,0] and [0,1], and the problem of 
determining which functions are coboundaries under rotation by 0. 

Theorem 1.4. Let 0 be an irrational number in (0, 1). A function w is simultane- 
ously even (simultaneously odd) a.e on [0, 0] and [0, 1] if and only if the odd (even) 
part of w on [0, 1] is a coboundary for 0 with transfer function W'. 

Proof. We prove the theorem for simultaneously even w, an analogous argument 
working for the odd case. As before we extend w periodically from [0, 1] to R. 

Suppose then that v is the odd part of w on [0, 1], where w is even on [0, 0] and 
[0, 1]. Then equations (2) and (3) as in the proof of Theorem 1.1 hold for w, while 
equation (1) is replaced by 

(1') w(1-x) = w(x)-2v(x) for 0 < x < 1. 

Combining first (1') and (2) and then (1') and (3) as in the proof of Theorem 1.1, 
we deduce that w(x) - w(x + 0) = 2v(x). 

Conversely, suppose that the odd function 2v is a coboundary for 0 with transfer 
function w so that w(x) - w(x + 0) = 2v(x). Then, since v is odd on [0, 1], we have 

w.(x) - w(x +0) -w(1 - x) + w(l - x +0), 

and thus 

w(x) - w(l - x +0) = w(x +0) - w(l -x), 

so that the function u(x) = w(x) - w(1 - x + 0) is invariant under translation by 
0 and so is a constant. For x E [0, 0], u is the odd part of the restriction to [0, 0] of 
2w; since it is constant, it must be 0. This proves that w is even on [0, 0]. And, for 
x E [0, 1 - 0], the translate of u by 0 is the odd part of the restriction to [0, 1] of 
2w, showing that w is also even there. 

We finish the proof by noting that this implies that the odd part of w 

w(x)-w(l-x) _ W(X)-W(X + 0) = V(X). 
2 2 

E1 

Corollary. If v is a nonzero polynomial that is a coboundary for an irrational 0, 
then its transfer function w cannot be continuous on [0,1] and real analytic on 
(0,1). In particular, w cannot be a polynomial. 

Proof. Suppose false. Without loss of generality, assume that v is an odd function. 
Then, by the theorem, w must be even on both intervals [0,0] and [0, 1], and so 
by Theorem 1.2, w is the restriction to [0,1] of a real analytic function wC3 that is 
periodic. But then the polynomial v(x) = -w(x) - CDw(x + 0) must be periodic as well, 
giving a contradiction. [ 

2. COHOMOLOGY OF POLYNOMIALS 

Fix an irrational number 0 < 0 < 1. Our first goal in this section is to define a 
transformation Ho on the space P of polynomials on [0, 1]. We constuct Ho so that 
it rescales the symmetry properties of functions on [0, 1]; thus we will be able to 
show that it also rescales the coboundary equation. 
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Lemma 2.1. If v is an odd polynomial on [0, 1], then there exists a unique even 
polynomial q on [0, 1], with integral 0, such that q + v is even on [0, 1]. If v is an 
even polynomial on [0, 1], then there exists a unique odd polynomial q on [0, 1] such 
that q + v is odd on [0,1]. 

Proof. Let v be an odd polynomial of degree n on [0, 1]. (An analogous argument 
establishes the even case.) To find the required even polynomial q, we use the Le- 
gendre polynomials, {l1"'1 } and {l "'l }, as orthogonal bases for L2[0, 1] and L2[0, 1], 
respectively. We take as the kth Legendre polynomial on [a, b] the unnormalized 

l'ab](x) = dk ((x - a)(x - b))k. Recall that 1[ab] is even (odd) on [a, b] if k is even 

(odd), and that l kab] 1ab] ..ab] span the space of polynomials on [a, b] of degree 
less than or equal to k. Thus any even polynomial q of integral 0 on [0, 1] can be 
written in the form q = ,k~l a2k l[o'i] To find the q required by the lemma, it will 

k=1 2k 33 suffice to find a2k's such that ET~l a2k(40"'1l] ,"0'1]) = -(v, l"'l]) for all odd j. Since 

(l"l] , l(" ) - 0 for i > k, the required a2k's are thus the solution to a triangular 
system of linear equations. The diagonal elements of the coefficient matrix are of 
the form (1?'0], 4120,] ). By comparing the coefficients of x2k and x2k-l in 1[O,1], 2k 2k- ~~~~~~~~~~~~~~~~2k 

1 *and 12k'1]1, we find that (l[1 1] ) = 2k0(1 -)4k1((2k-1)!)2 Since this 2k' 2k-i 2k ' 2k-i 
is nonzero for all integers k > 1, and for all irrational 0, we have a unique solution. 
In fact, it is of degree n + 1. - 

Definition. If v is an odd polynomial on [0, 1], let q be the unique even polynomial 
of integral 0 for which q +v is even on [0, 1]. Write u for the odd part of the function 
q + v on the interval [0, 0], and define 

[Ho(v)](x) = -u(0x). 

Analogously, if v is an even polynomial on [0, 1], let q be the unique odd polynomial 
on [0, 1] for which q + v is odd on [0, 1]. Write u for the even part of the function 
q + v on the interval [0, 0], and define 

[Ho(v)](x) = -u(0x). 

If v is any polynomial, write v = ve + vt in terms of its even and odd parts, and 
define 

Ho(v) = Ho(ve) + Ho(vo). 

Lemma 2.2. The transformation Ho is linear and infective from P into itself. 

Proof. Note that the assignment v v-4 q in the proof of Lemma 2.1 is linear on 
the space of odd polynomials and also on the space of even polynomials. It follows 
directly that Ho is linear. Suppose that Ho (v) = 0. Since Ho sends odd polynomials 
to odd polynomials and even polynomials to even polynomials, we may assume 
without -loss of generality that v is odd. But then -the polynomial q + v must be 
even on both [0, 1] and [0, 0]. Now, Theorem 1.2 implies that q + v is a constant, 
and thus it is even on [0, 1]. But this would imply that v itself is even as well as 
odd, whence it is 0. This shows that Ho is infective. [ 

The next aim of this section is to show the existence of a basis for P, whose 
elements are simultaneously eigenfuctions for all the transformations Ho, 0 < 0 < 1. 
An immediate consequence of this will be that each Ho maps onto 'P. We will make 
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explicit use of these eigenfunctions to derive our main cohomological result. First 
we need the following lemma. 

Lemma 2.3. The transformation Ho satisfies the following: 

(1) (Ho(v))' = OHo(v'), 
(2) f61 Hoa(v) - -0 f61 v. 

Proof. It will suffice to prove the lemma for even and odd polynomials; the result 
then follows from breaking an arbitrary polynomial into its even and odd parts. 

A routine calculus argument shows that, on any interval [a, b], v' is odd (even) 
if v is even (odd). Thus, if v is odd, and if q is the unique polynomial guaranteed 
for v by Lemma 2.1, q' is the unique polynomial guaranteed for v'. If v is even, 
since q' may not have integral 0, q' differs from the guaranteed polynomial for v' 
by a constant. Thus, in either case, if we let u be the even (odd) part of q + v 
on [0,0], we have that [Ho (v')] (x) = -u'(Ox). On the other hand, we have that 
[HO(v)]'(x) = dd(u(Ox)) = -Ou'(Ox), which establishes part (1). 

Now, for part (2), note that the case of odd v follows immediately from the fact 
that Ho takes odd polynomials to odd polynomials. For even v, the q of Lemma 
2.1 is odd on [0,1] so that 1 

q + v = v. Also, q+V is odd on [0,1], so that 

0q + v = q + v. Finally, since in this case the u described in the definition of 

Ho is the even part of q + v on [0, 0], we have that fo, u = Jo q+v L vf - Since 
[Ho (v)] (x) = -u(Ox), the result now follows from a change of variables. D 

Theorem 2.4. There exists a basis {ko, kj,... } for P such that Ho(k1) = - I ki 
for all 1 > 0 and for all irrational 0, 0 < 0 < 1. 

Proof. We construct the eigenfunctions inductively. First, let ko denote the (even) 
identically 1 polynomial. Now, given an irrational 0, we see that the odd polynomial 
qo on [0, 1], guaranteed by Lemma 2.1, for which qo + ko is odd on the interval [0, 1], 
is the linear polynomial - 2 (x - 1/2). Let u0 denote the even part of q0 + ko on the 
interval [0, 0], and observe then that 

[Ho(ko)](x) =-Uo(Ox) 

[qo + ko](Ox) + [qo + ko](0 - Ox) 
2 

-2x + +1- 2(0-Ox) + I + 1 

2 

_0 
--0-1ko(x). 

Now, suppose that the kj's for j < 1 have been defined to satisfy Ho (kj) = 

_0j-1kj. Define 

kx j1 jy 

k1+1 (x)= / i (t) dt - / i k(t) dt dy. 
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Using Lemma 2.3, we see that 

(Ho (kl+ 1))' = OHo (k'1+0 

= OHo (k1) 
= -016k1) 

= -Ol'k1+ 

so that He(kl+i) and -O'kl+l differ by a constant. By the second part of Lemma 
2.3, we have that fg Ho(kl+1) - 0i fo kl+j = 0, which shows that the constant 
must be 0. D 

Proposition 2.5. The eigenfunctions {kl} of the transformation Ho have the fol- 
lowing properties: 

(1) kl is a polynomial of degree 1. 
(2) ki is even (odd) when I is even (odd). 

(3) kl1 = ki. 
(4) For I > 2, we have that ki (0) = ki (1). 
(5) For I > 1, we have 

ki (n)=,; ki(t)e-2 rdt= (2-r)2 

Proof. Parts 1, 2 and 3 follow immediately from the explicit construction of the 
eigenfunctions. Part 4 follows because 

ki (1) - k (O) = k1 (t) dt = 0 

for all I > 2. Finally, part 5 is established by induction and integration by parts. E 

It is perhaps evident from their definition that the eigenfunctions {kl } converge 
uniformly to zero. However, they do it in a surprising way. 

Corollary. Define ml = (27r)lkl. Then 

M41 -* -2cos27rx, 

M4+1 - -2 sin 27rx, 

M41+2 2 cos 27rx, 

M41+3 - 2 sin 27rx, 

uniformly on [0,1] as I -+ oo. 

Proof. Part (5) of Proposition 2.5 gives that 

Ml(X) = ( e2rnx 
n$O 

We rewrite this sum 

ml(x) = (-i)-2e27rix + (- )12 e2lrix + >e2einx. 

(-1)l I nI? 

Now, the third term (the sum) goes to zero uniformly as I - oo, while the first two 
terms combine to give the result. O 
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Recall that two functions f and g on Z are of the same order, denoted by f g, 
if there exist positive constants c, C, and N such that 

If(n)l < cjg(n)I < Cjf(n)l 

for n > N. 

Corollary. If v = Z=m clkl, then v3(j) -j1. 

The following theorem uses the fact that Ho rescales symmetry properties, to 
relate the cohomology of v and Ha(v). 

Theorem 2.6. Let 0 be an irrational, 0 < 0 < 1. A polynomial v on [0,1] is a 
coboundary for 0 if and only if Ha(v) is a coboundary for 1/0. If w and ' denote 
the transfer functions for v and Ho (v) respectively, then '69(x) and w(0x) differ by 
a polynomial. 

Proof. coboundary if and only if both its even and odd parts are coboundaries. 
Thus it will suffice to prove the theorem for an odd function v, and note that the 
proof for an even v is analogous. 

We take v to be an odd coboundary and note that by Theorem 1.4, v is twice 
the odd part (on [0, 1]) of its transfer function w. Moreover, w is even on both 
[0, 0] and [0, 1]. We define q as in Lemma 2.1, so that w - v - q is even on both 
[0, 1] and [0,1], and thus by Theorem 1.3, also on [0,1 - q10] and [1 - qi0, 0]. Now 
we restrict w - v - q to [0, 0] and then rescale to [0, 1]. The resulting function, 
ib(X) = W(0X) _ v(0x) - q(x) ,is even on [O, 1- qi] and [ 1O -, 1] . Thus by Theorem 
1.4, twice its odd part is a coboundary for the resealed angle 1-q0 (mod 1), 
with transfer function '6. Because w is even on [0,0], twice the odd part of w6 on 
[0,1] equals the odd part of -v(Ox) - q(0x), which is Ho(v). 

For the converse, suppose v = HO(v) is a coboundary for _ 1-g'6 (mod 1), 
with transfer function '6. Then wv is even on [0, 1-gq,] and [1,l1], so that it 
can be thought of as the resealing to [0, 1] of a function w1 on [0, 0] that is even on 
[0,1 -qi0] and [1 -qj0, 0]. Now extend wi to the rest of [0, 1] by w, (x) = wi (x + 0), 
0 < x < 1 - 0. This w1 is also even on [0,1] and on [0,1], by the remark following 
Theorem 1.3. Now let w(x) = w1(x) + v(x) + where q is t?he unique even 2 2 weeqi h nqeee 
polynomial with integral 0 guaranteed to exist for v by Lemma 2.1. We have that 
w is even on [0, 1]. To see that it is also even on [0, 0], note that it is sufficient to 

show hat w(Ox) v(6x ? (Ox '(x - ~(x) . nn 01 show that w(Ox) + 2) 2 =w(x) 2 2 is even on [0,1]. This follows from 
Theorem 1.4. Because w is even on both these subintervals, the odd part of w on 
[0, 1], which equals v, is a coboundary for 0. Cl- 

Corollary. An eigenfunction k, for Ho is a coboundary for 0 if and only if it is a 
coboundary for 1/0. If w and w are the transfer functions for 0 and 1/0 respectively, 
then w(Ox) and w(x) differ by a polynomial. 

We now use the basis of eigenvectors for the Ho's to derive information about 
the cohomology of general polynomials. 

Theorem 2.7. For any p, 1 < p < 2, if a polynomial v on [0, 1] is an LP cobound- 
ary for 0 then it is an LP coboundary for all irrationals equivalent to 0. 
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Proof. Write v = Er__ clkl. By the second corollary to Proposition 2.5, V3(j) j1 . 
If v is an LP coboundary for 0, the transfer function w is in LP and thus also in 
L1, so we have W'J(j) -* 0 as jjI - oc. Also, from the coboundary equation, 

'(i) ^ jm(le2irij6). *But then, for I > m, kj has the property that (l (j) E 12, 
U) 27riJO) ~~~~~~~~~~~~~~~~~(1-e2wiij0 

so that kj is an L2 coboundary for 0 for I > m. Thus, we have that both v and 

Zn=m+l clkl are LP coboundaries for 0, so that their difference, Cmkm must also 
be. We have shown that v is an LP coboundary for 0 if and only if k, is an LP 
coboundary for 0 for I > m. We know by the corollary to Theorem 2.6 that this is 
true if and only if ki is an LP coboundary for 1 for I > m. Thus, we see that v is 

0~~~~~~~ an LP coboundary for 0 if and only if it is an LP coboundary for a. 
Now if 0 and X are equivalent, then their continued fraction expansions are of the 

form 0 = [ao; al, a2, v v , ak, c1, c2 ... ] and 0 = [bo; bl, b2, bci, c21, C ] ([HW]). 
Here we write [ao; a1, a2...] for the continued fraction 

ao? 1 
a2+ 

Thus, it will suffice to show that v is an LP coboundary for 0 if and only if it is an 
LP coboundary for y, where 0 has continued fraction expansion given above, and 
ay = [Cl; C2, c3...]. We establish this by induction on k. The case k = 0 and the 
induction step both follow from the paragraph above by noting that [a,; a2, * * * ] = 

1 _ 1.0 
0-ao 0-[0] 

Remark. We note that the case p = 2 of the theorem can be proved without the 
use of the transformation Ho using Diophantine methods. 

Remark. Theorem 2.7 fails to hold in general, even for continuous functions, as the 
following example shows. Let 0 be any irrational that is not a root of a quadratic 
polynomial with integer coefficients. For such 0, we have that 0 and 1/0 are not 
rationally related. Thus, by Kronecker's theorem, we can find a sequence of integers 
Ink} such that the sequence {Bnk} = {(1 - e2wink/0)/(l - e2winkO)} is square 
summable. By passing to a subsequence of the nk'S, we can also ensure that the 
sequence {Cnk} = {1 - e2wink/0} is absolutely summable, so that the function 
v(x)-= Z 0nk e2,rinkx is continuous. From the coboundary equation, we see that 
v is a coboundary for 0 with L2 transfer function E Bnk e27rinkX, but that an L' 
transfer function for 1/0 is impossible since its Fourier coefficients would have to 
be identically equal to 1 for every nk. 

Corollary. If a polynomial v is an LP coboundary for 0, then it is an LP coboundary 
for jO for all integers j. 

Proof. First note that if v is a coboundary for 0 with transfer function w, then it 
is a coboundary for 1 -0 with transfer function i(x) = -w(x + 0). Thus, without 
loss of generality, we may assume < 0 < 1. By the definition of coboundary, if v 
is a coboundary for 0 with transfer function w then it is a coboundary for 0 with 

transfer function Cv (x) = w(x) + w(x + 0 ) + + w(x ? ( )+). Now suppose a 

polynomial v is an LP coboundary for 0. Then by Theorem 2.7 it is also an LP 
coboundary for A. The above remark now shows it is an LP coboundary for ? 

which since 0 > 2 is in [0,1]. Applying Theorem 2.7 again yields the result. E 
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Remark. Theorem 2.7 together with its corollary implies that if a polynomial v 
is an LP coboundary for 0, then it is an LP coboundary for aO+b a, b,c,d E Z, 
ad-bc $4 O. 
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