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Abstract 

The brain disorders may cause loss of some critical functions such as thinking, speech and 
movement. So, the early detection of brain diseases may help to get the timely best treatment. One 
of the common methods used to diagnose these disorders is the magnetic resonance imaging (MRI) 
technique. Manual diagnosis of brain abnormalities is time-consuming and difficult to perceive the 
minute changes in the MRI images especially in the early stages of abnormalities. Proper selection 
of the features and classifiers to obtain the highest performance is a challenging task. Hence, deep 
learning models have been widely used for medical image analysis over the past few years.  In this 
study, we have employed the AlexNet, Vgg-16, ResNet-18, ResNet-34 and ResNet-50 pre-trained 
models to automatically classify MR images in to normal, cerebrovascular, neoplastic, 
degenerative, and inflammatory diseases classes. We have also compared their classification 
performance with pre-trained models which are the state-of-art architectures. We have obtained 
the best classification accuracy of 95.23% ± 0.6 with ResNet-50 model among the five pre-trained 
models. Our model is ready to be tested with huge MRI images of brain abnormalities. The 
outcome of model will also help the clinicians to validate their finding after manual reading of the 
MRI images.    
 
 
Keywords: Brain disease, MRI classification, deep transfer learning, CNN, ResNet. 

 
1. Introduction 

The magnetic resonance imaging (MRI) is a popular technique widely used to investigate the 

abnormalities of human organs such as the brain (Legaz-Aparicio et al., 2017, Olson and Perry, 

2013). Over time, it has become more preferable than other imaging technologies due to its 

harmless characteristics and producing high contract images (Akkus et al., 2017). The MR devices 

use powerful magnets and radiofrequency pulses instead of ionizing radiation. Furthermore, due 
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to recent developments, it is now possible to record functional imaging of organs by using 

functional MR (fMR) technology (Cheng et al., 2018; Logothetis et al., 2001; Michalopoulos and 

Bourbakis, 2015; Saignavongs et al., 2017; Zhou et al., 2016). Medical imaging technologies now 

provide an enormous amount of data to the researchers from healthcare area to diagnose the 

diseases fast and accurately. 

 

Various signal processing-based approaches have been proposed for MR data classification 

problem (Chaplot et al., 2006; El-Dahshan et al., 2010; El-Dahshan and Bassiouni, 2018; Gudigar 

et al., 2019; Mohsen et al., 2017; Nayak et al., 2016, 2018, 2019, Wang et al., 2015, 2016, Zhang 

et al., 2011, 2015). The early studies usually analyzed a small set of brain images, and as a result, 

the outcome of these studies could not lead to the development of more generalized solutions 

which can work with extensive datasets (Gudigar et al., 2019). For instance, 2D discrete wavelet 

transform (DWT) and principal component analysis (PCA) methods were employed on a small set 

of brain images to achieve very high accuracy rates (El-Dahshan et al., 2010; Zhang et al., 2011). 

Furthermore, the combination of PCA with stationary wavelet transform (SWT) have improved 

the performance of the recognition systems so that researchers can perform their experiments with 

more number of images (Wang et al., 2015; Zhang et al., 2015). Similarly, independent component 

analysis (ICA) was used on fMR imaging data (Moritz et al., 2000). In these studies, usually, PCA 

or a substitute method was used for the feature reduction and various techniques are used to classify 

the images as normal and abnormal. (Chaplot et al., 2006) preferred support vector machine (SVM) 

based classification to obtain high accuracy scores using 52-images. The SVM is still a popular 

classifier on recent MR classification studies (Gudigar et al., 2019; Nayak et al., 2018; Wang et 

al., 2016). (Gudigar et al. 2019) have analyzed brain images by using various multiresolution 

techniques like discrete wavelet transform (DWT), curvelet and shearlet transforms. They have 

used particle swarm optimization (PSO) and SVM classifier. They have obtained the highest 

classification accuracy using shearlet transform based features. AdaBoost with random forest 

algorithm (Nayak et al., 2016) and SVM (Nayak et al., 2017) has been used to achieve very high 

recognition rates. 

 

Deep learning is a popular research area in artificial intelligence field, which gives researchers an 

opportunity to develop accurate solutions to the complex problems involving big data. Many 
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successful studies have been carried out on the classification and segmentation of brain MRI data. 

(Akkus et al., 2017; Bernal et al., 2018). The convolution neural networks (CNN) are deep learning 

approaches, have been employed widely for segmentation of brain tumors (Lyksborg et al., 2015; 

Pereira et al., 2016; Zikic et al., 2014) and lesion segmentation (Carass et al., 2017; Maier et al., 

2017). Similarly, deep learning approaches have been used effectively in brain MRI classification 

procedures (Lu et al., 2019; Mohsen et al., 2017; Talo et al., 2019, Sarraf and Tofighi, 2016; 

Wegmayr et al., 2018). (Sarraf and Tofighi, 2016) used CNN networks for Alzheimer's disease 

classification with MRI and fMRI data. (Mohsen et al., 2017) provided a performance of 96.9% 

using deep neural network (DNN) with 22 normal and 44 abnormal brain MR images. 

 

The elimination of hand-crafted feature extraction phase is possible with the usage of deep learning 

methods. Previous studies in the literature had to deal with feature extraction, and this arises 

performance and accuracy drawback for the developed hybrid solutions. Moreover, another major 

problem encountered in medical image analysis is the lack of labeled data and absence of sufficient 

experts to label the available data. The use of transfer learning, a deep learning technique, is 

important as it can be a solution to both of these problems. Transfer learning method is beneficial 

as these pre-trained models already know how to classify the images rather than starting a model 

that does not know anything about the classification task. The MR image analysis consists of a 

massive amount of image data as opposed to a single image data, and it is foreseeable that, it has 

high computational complexity with its applications (McBee et al., 2018). When the processed 

data is huge as in the case of medical data, the solution is either to use a small subset of data as 

done in the previous studies or to use transfer learning method (Litjens et al., 2017). (Talo et al., 

2019) used a deep learning based transfer learning approach to classify the given brain MR image 

into normal or abnormal classes with 100% using 5-fold validation strategy. (Lu et al., 2019) used 

AlexNet pre-trained model to classify brain images as normal and abnormal.  (Jain et al., 2019) 

proposed a deep transfer learning based Alzheimer’s disease diagnosis system. They used pre-

trained Vgg-16 model for their work.  

 

In this study, a model based on deep transfer learning is developed for the classification of brain 

abnormalities. As compared to the previous studies in the literature, we have almost doubled the 

number of images used (total of 1074 images) in this study. Another significant contribution of 
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this study is this is the first study involving five classes of brain classes: degenerative disease, 

inflammatory disease, cerebrovascular disease, neoplastic disease, and normal class. 

 
2. Material and Methods 
 

2.1. Brain Dataset 

 

The MR brain images used in this study were downloaded from the Harvard Medical School 

database (http://www.med.harvard.edu/AANLIB/). We have used the whole dataset except some 

slides that do not contain any part of the brain in it, such as an image with end part of a skull. All 

brain images have equal size of 256×256 pixels and T2-weighted in the axial plane. There are 42 

different cases in the database in five different categories and they consist of whole brain images 

from different subjects. The brain image consists of different number of slices. In Fig.1 different 

slices of sarcoma is shown. We have obtained a total of 1074 images/slices from this dataset.  

  

 
Figure 1. Sample slices of whole brain images of sarcoma class. 
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In this work, we have considered five classes for classification. The classes are normal class and 

four main disease categories: cerebrovascular (brain attack), degenerative, neoplastic (brain 

tumor), and inflammatory diseases. The cerebrovascular, neoplastic, degenerative, and 

inflammatory disease classes have 16, 8, 9, 7 subjects respectively and the normal class has two 

subjects.  The cerebrovascular diseases contain multiple embolic infarction, diffusion, acute stroke 

(speech arrest), subacute stroke (hesitating speech), etc. types of pathologies. The neoplastic 

diseases include glioma, sarcoma, metastatic bronchogenic carcinoma, metastatic 

adenocarcinoma, and meningioma disease types. The degenerative diseases contain Alzheimer's 

disease, pick's disease, cerebral calcinosis, Huntington's disease, motor neuron disease, and visual 

agnosia diseases.  Inflammatory pathologies consist of acquired immune deficiency syndrome dementia, 

herpes encephalitis, creutzfeld-jakob, etc.  Sample MR images of five classes are shown in Fig.2. 
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Figure 2. Sample brain MR images of five classes of this study. 

2.2. Deep transfer learning  

 
Deep learning models, especially CNNs, have shown tremendous success in classifying medical 

images (Lundervold et al., 2018). Training deep learning models from scratch usually requires a 

large amount of data and computation power. One of the main problems in the automated medical 

image analysis is the limited amount of labeled data. Hence, the transfer leaning technique is a 

solution to this problem (Talo et al., 2019; Yosinski et al., 2014). Transfer learning is the method 

by which the model uses the knowledge gained during the training of a relatively large dataset in 

a different but related problem. Many resources (GPUs) are required to train deep learning models 
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from scratch and the training process takes a long time. With transfer learning, we don't need to 

retrain the entire network from scratch for a different problem. Therefore, this technique eliminates 

the need for large amount of data and huge hardware requirement.  In another word, the transfer 

learning method allows us to train deep learning models with relatively little data and it requires 

less computational power for training of new model.   During the transfer learning process, only 

the classifier is trained in the new network, while the features learned from the large dataset are 

transferred. The transfer learning pipeline for the classification of five brain classes is given in 

Fig.3. 

 
 

Figure 3. Schematic representation of the transfer learning technique employed for the classification of five brain 
classes.  

 
In this study, we have employed the current popular deep learning architectures namely, AlexNet, 

VggNet, and ResNet to classify brain images into five different classes. Block diagrams of these 

pre-trained CNN models are shown in Fig.4. 
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Figure 4. Block diagrams of pre-trained CNN architectures used in this work: (a) AlexNet, (b) Vgg-16, (c) ResNet    
 
 
AlexNet developed by Krizhevsky, Sutskever, and Hinton (Krizhevsky et al., 2012) won the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. The model dropped the 

top 5 error rates from 26% (second place) to 15.3% and outperformed all competitors in the 

competition. The sample AlexNet architecture is shown in Fig.4 (a). VggNet developed by 

(Simonyan and Zisserman, 2014) got the second place in the ILSVRC-2014 challenge for the 

classification task with 7.3% error rate and got the first place for localization project. VggNet 

trained using ImageNet database has yielded improved classification accuracy as compared to 

AlexNet.  The typical Vgg-16 architecture is given in Fig.4 (b). The Residual neural network 

(ResNet) was invented by (He et al., 2016)  and got the first place for the classification task in the 

ILSVRC 2015 challenge with 3.57% error rate.  ResNet architecture was able to train a neural 

network with 152 layers and yielded better classification performance than other best known 

architectures such as AlexNet and VggNet. Stacking many of residual blocks together forms the 

ResNet architecture and the schematic representation of the typical ResNet-34 is shown in Fig.4 

(c).   
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3. Experiments and Results  

 
We have compared the performance of AlexNet, Vgg-16, ResNet-18, ResNet-34 and ResNet-50 

pre-trained networks in classifying the five classes of brain images. These architectures have 

performed well using the ImageNet database and hence can be used for medical image 

classification.  

 

3.1 Experimental Setups 

 

Convolutional neural networks (CNN) generally constructed by stacking convolutional, pooling 

and the fully connected layers (Krizhevsky et al., 2012; LeCun et al., 1998). Convolutional layers 

automatically extract hierarchical features from the images. The convolutional and poling layers 

are the convolutional base of CNN architecture. The classifier consists of couple of fully connected 

layers to classify the images based on extracted features. We have removed the last fully connected 

layer (classifier) of pre-trained network from the model and attached two fully connected layers to 

convolutional base. The last fully connected layer is connected to output five exits to classify brain 

MR images with a softmax activation function. Also, the dropout layers added between fully 

connected layers to prevent the overfitting. The dropout layers prevent the models from 

memorizing training data and generalize on the unseen data. By dropout technique, some of the 

neurons of the fully connected layers are ignored during training (Srivastava et al., 2014). 

Additionally, batch normalization layers are added to normalize layers of neural networks 

according to the input values. Batch normalization technique (Ioffe and Szegedy, 2015) allows the 

models to be trained more quickly in a stable manner by keeping all pixel values of the images in 

between 0 and 1. The details of the layers, output dimensions, and the parameter numbers of the 

proposed AlexNet model is given in Table 1. 

 
 
 
 

Table 1.  Details of layer types, output shapes and the number of parameters of the proposed AlexNet. 
 

Layers Output shape Number of parameters 
Convolutional base of AlexNet  (64, 256, 1, 1) 2,469,726 
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BatchNorm1d (64, 512) 1,024 
Dropout (64, 512) 0 
Fully connected (64, 512) 262,626 
ReLU (64, 512) 0 
BatchNorm1d (64, 512) 1,024 
Dropout (64,512) 0 
Fully connected (64, 5) 2,565 

 

We used 80% of the dataset for training and 20% for validation sets.  We have employed   5-fold 

cross validation to compare the performance of each pre-trained model. Each pre-trained model 

was trained 5 times and the classification accuracy was calculated for each training. Then for all 

pre-trained models, the average of the classification performances is calculated.  

 

We have used two steps to training the brain MR images and is given below:   
 

(i) In stage-1 of training, we have only trained the attached few layers of the models for 

15 epochs and set the learning rate hyper-parameter to the value of 1e-3. The initial 

training of the model runs fast because we only trained the last few attached layers and 

keep the rest of the layers frozen. So the only computation cost is required for the newly 

added layers.  

 
(ii) In stage-2 process, we fine-tune both convolutional base and fully connected layers by 

unfreezing all layers.  In this work, fine-tuning term is used to unfreeze all the layers 

of pre-trained models. In other words, initially, only the attached layers of pre-trained 

models are trained for 15 epochs, then the whole network is unfreezed to re-train all 

layers. At this stage, we have retrained the models for 15 more epochs by setting 

learning rate values in the range of [3e-6, 3e-4]. Since the training of the previous layers 

is mostly completed, there is no point in training all layers of a model at the same rate. 

Therefore, we have set the learning rate gradually during training. The learning rate of 

3e-6 (low) is chosen for the first few layers and 3e-4 (high) for end layers. The learning 

rate for the middle layers is chosen in between 3e-4 and 3e-6 (moderate). An illustration 

of the whole training process is shown in Fig.5.  
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Figure 5. The training process of pre-trained model to classify brain MR images. Low, moderate and high values 
indicate the magnitude of the learning rate. 

 

We have used PyTorch-v1 (Ketkar, 2017) deep learning framework with Python language to 

implement all pre-trained models. The RMSProp, stochastic gradient descent (SGD) optimizer, is 

used for parameter updates during training. The dropout rate after the first and the second fully 

connected layers are chosen to be 0.25 and 0.50, respectively. Hyper-parameter values of batch 

normalization were adjusted to 1e-5 for epsilon and 0.1 for momentum. All the models trained on 

NVIDIA GeForce GTX 1080 TI graphics card with 11 GB memory. 

 

3.2 Results 

 

During stage-1 training, only the attached layers of AlexNet, Vgg-16, ResNet-18, ResNet-34, and 

ResNet-50 pre-trained CNN models are activated to classify MR brain images for 15 epochs. In 

the Stage-2 training, every single layer of the model is activated for another 15 epochs. For each 
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pre-trained model, the loss and accuracy graphs for validation sets are shown in Fig.6 for a single 

fold.  
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Figure 6. The performance of AlexNet, Vgg-16, ResNet-18, Resnet-34, and Resnet-50 architectures for fold-1: (a) 
validation losses, and (b) validation accuracies.   
 
It can be seen from Fig.5 that, the best classification accuracy is achieved with the ResNet-50 

model and the lowest performance was obtained with the AlexNet pre-trained model. Resnet-50 is 

modern architecture and has deeper layers as compared to AlexNet. Stage-2 process shows better 

classification performance as compared to Stage-1 due to the contribution of each layer. While the 
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ResNet-50 model showed the best improvement in Stage-2 step, this success was not observed in 

AlexNet architecture at the same stage. Additionally, the loss values of the models in Stage-1 are 

constant after the 10th epoch, while there is an obvious decline after 20th epoch in Stage-2. The 

most important reason for this fine-tuning process in Stage-2 is because the models unfreeze during 

this step and are trained moderately. This apparent decline in loss values is more pronounced in 

ResNet architectures. The classification accuracies of pre-trained models for 5 folds and the 

average time cost are shown in Table 2. 

 
 

Table 2. Classification results obtained using different pre-trained models with average training time. 

Models Average 
training time 

Accuracy rate (%) 

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Overall 

AlexNet 133 s 80.37 76.64 84.11 81.78 77.57 80.09 ±3 

Vgg-16 249 s 86.92 82.71 89.25 86.45 85.98 86.26 ±2.3 

ResNet18 131 s 87.38 85.51 90.65 89.25 84.58 87.47 ±2.5 

ResNet34 136 s 92.99 86.92 91.59 92.52 88.32 90.46 ±2.6 

ResNet50 248 s  94.86 95.33 96.26 94.39 95.33 95.23 ±0.6  

 
It can be seen from Table 2 that, the lowest classification performance (80.11% ± 3) is obtained 

with AlexNet model and the highest performance was obtained for the ResNet-50 model with 

95.23% ± 0.6 overall accuracy. In terms of time cost, Vgg16 and ResNet-50 models have the 

highest train time. The main reason for this is ResNet-50 model is the largest deep learning 

structure among other pre-trained models (AlexNet, Vgg-16, ResNet-18, and ResNet-34). Since 

the ResNet-50 model allows the information flow through network with residual connections, that 

is, the gradient value does not diminish through back propagation, and the deepest structures have 

the best classification performance.  

 

Fig.7 shows the confusion matrixes obtained using the validation data set obtained for the fold-3 

of AlexNet, Vgg-16, ResNet-18, and ResNet-50 pre-trained models. 
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Figure 7. The confusion matrixes obtained using pre-train models with Fold-3 datasets: (a) AlexNet, (b) Vgg-16, (c) 
ResNet-18, and (d) ResNet-50. The percentages shown in cells of confusion matrices are column-wise percentages of 
TP/total number of predicted and FP/total number of predicted for each class. 
 
The neoplastic disease group has the highest classification accuracy using MR images. The images 

with the lowest performance are normal brain images. While AlexNet, categorized only 17 normal 

brain images, the Vgg-16 model classified 19 images, ResNet-18 classified 21 images, and 

ResNet-50 classified 26 normal brain images out of 30 normal images correctly. The lowest 

classification accuracy of 84.1% and the highest classification accuracy of 96.26% are obtained 

using AlexNet and ResNet-50 models respectively for this fold. 

 

For the detailed performance evaluation of the pre-trained models' validation, the commonly used 

precision, sensitivity, specificity, accuracy, and F1-Score values are calculated. The mean and 
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standard deviation values of performance parameters for AlexNet, Vgg-16, and ResNet-50 pre-

trained models are given in Table 3. 

 
Table 3. The average (mean ± standard deviation) values of the models for the 5-folds using the validation set. 

 Classes Accuracy 
(%) 

Precision 
(%) 

Sensitivity 
(%) 

Specificity 
(%) F1-Score 

A
le

xN
et

 

Degenerative 84.76 ±2.9 81.88 ±5 76.72 ±2.7 89.68 ±3.2 79.18 ±3.4 
Inflammatory 90.68 ±3 71.73 ±10.1 95.59 ±3.5 89.29 ±3.3 81.64 ±7.5 
Normal 89.27 ±1.6 77.19 ±6.7 51.21 ±5.3 96.91 ±1.3 61.23 ±3.4 
Cerebrovascular 92.84 ±1 85.94 ±4.2 85.29 ±4.4 95.42 ±1.3 85.48 ±1.8 
Neoplastic 98.27 ±0.6 87.65 ±4.3 96.88 ±2.8 98.45 ±0.6 91.96 ±2.2 

V
gg

-1
6 

Degenerative 89.86 ±1.8 86.28 ±4.4 86.89 ±5.4 91.83 ±2.7 86.40 ±2.1 
Inflammatory 94.96 ±0.9 85.33 ±4.6 92.81 ±4.2 95.65 ±1.1 88.78 ±2.2 
Normal 92.49 ±1.8 84.96 ±2.5 64.61 ±6.9 97.86 ±0.3 73.29 ±5.3 
Cerebrovascular 94.10 ±2.6 85.18 ±7.1 91.02 ±5.8 95.08 ±2.7 87.84 ±5.1 
Neoplastic 99.14 ±0.2 93.32 ±2.9 97.84 ±2.9 99.29 ±0.2 95.48 ±1.6 

R
es

N
et

-5
0 

Degenerative 96.14 ±1 94.37 ±1.2 94.11 ±3.1 97.16 ±0.7 94.21 ±1.6 
Inflammatory 97.89 ±0.9 91.16 ±4.4 99.59 ±0.9 97.47 ±1.3 95.13 ±2 
Normal 97.71 ±0.8 97.31 ±4.5 85.82 ±5 99.56 ±0.7 91.08 ±3.2 
Cerebrovascular 99.03 ±0.3 97.77 ±0.7 98.52 ±0.8 99.21 ±0.3 98.15 ±0.6 
Neoplastic 99.51 100 94.50 ±0.1 100 97.17 

 

It can be seen from Table 3 that the lowest sensitivity values have emerged for normal brain image 

class. The sensitivity values of the normal class are 51.21% ± 5.3, 64.61% ± 6.9 and 85.82% ± 5 

for AlexNet, Vgg-16, and ResNet-50, respectively. Using ResNet-50, the performance values of 

all five classes have increased significantly. 
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Figure 8. Sample image results of some layer activations on input test images obtained using pre-trained ResNet 
models: a) activations of normal brain test input image, and b) activations of brain test input image with neoplastic 
disease.  
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It can be seen from Fig. 8 that, in the initial layer, activations retain most of the image information 

present in brain image. The first layer activations serve as edge detectors. As the layer depth 

increases, the extracted properties become more abstract. Activations in the higher layers carry 

less information about specific data seen in the input image but carry more information about their 

individual classes.  

 

Further studies on subject wise classification: 

 

In this section, we have first performed subject-wise classification using a single Alzheimer subject 

belonging to degenerative class derived from Whole Brain Atlas dataset and then downloaded the 

Open Access Series of Imaging Studies (OASIS) dataset (Marcus et al., 2007) to examine the 

performance of the proposed deep model on various Alzheimer subjects. There are four Alzheimer 

subjects in the Whole Brain Atlas dataset. We have used three subjects for training and one for 

testing. The Alzheimer subject in the test set has 21 brain images. Resnet-50 pre-trained model has 

been retrained without seeing the test subject. The trained model has classified 14 out of 21 test 

images correctly and hence obtained the model performance of 66.67% for the single Alzheimer 

subject. The performance of the pre-trained model was not at the desired level as compared to the 

overall performance of the model due to limited number of Alzheimer subjects in the training set. 

Therefore, we increased the number of Alzheimer subjects by downloading from the OASIS 

dataset. We have acquired 3200 Alzheimer brain images from OASIS database. 2560 of these 

images were added to the training set and 640 of them were added to the test set. After this addition, 

the model was retrained and tested on 661 (640 from OASIS+21 from Whole Brain Atlas) images 

which had not seen before. The performance graphs of ResNet-50 pre-trained model are given in 

Fig. 9.  
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Stage-1 Stage-2

(a) (b)  
Figure 9. The performance graphs of ResNet-50 pre-trained model on OASIS added brain dataset, a) loss graphs b) 
accuracy graphs. 
 

Resnet-50 model correctly classified 649 out of 661 Alzheimer test images (Degenerative class). 

This shows that the classification performance of ResNet-50 model for the Alzheimer images is 

98.18%. The classification performance of ResNet-50 pre-trained model is significantly improved 

due to increased brain MR images. 

  

4. Discussion 

 

Various studies have been conducted using different feature extraction/selection and classification 

algorithms to classify brain MRI data.  Table 4 presents the state-of-the-art studies conducted using 

the same brain MRI data.  We have used all available data to classify MR images into five classes.  

The previous studies have been conducted using various number of MR images from the same 

dataset (the whole brain atlas) to classify MR images into various categories. In this study, we have 

used more data than the existing studies. The entire brain atlas dataset is not suitable for patient-

level classification due to less number of patient images. However, in this study like rest of the 

studies, we have used the same dataset and implemented image-level classification. 

 
Table 4. Comparison of the state-of-art studies conducted using the same dataset. 
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Study Number of Used 
Images (slices) 

Num. of 
Classes 

Method and 
Classifier 

Accuracy 
(%) 

(Chaplot et al., 2006) 
x Normal: 6 
x Abnormal: 46 

2 DWT+SOM+SVM 98 

(El-Dahshan et al., 
2010) 

x Normal: 10 
x Abnormal: 60 

2 DWT + PCA + KNN 98 

(Zhang et al., 2011) 
x Normal: 18 
x Abnormal:48 

2 WT+PCA+BPNN 100 

(Nayak et al., 2016) 
x Normal:35 
x Abnormal:220 

2 DWT +PCA + 
ADBRF 99.53 

(Gilanie et al., 2018) 
x Normal:14 
x Abnormal: 87 

2 Gabor Texture + SVM 100 

(El-Dahshan and 
Bassiouni, 2018) 

x Normal: 30 
x Abnormal:60 

2 SWT+PCA+KLDA+ 
KNN 

100 

(Hooda and Verma, 
2019) 

x Normal: 24 
x Abnormal:56 

2 LBP+MCM 98.75 

(Gudigar et al., 2019-
a) 

x Normal: 83 
x Abnormal: 529 

2 Shearlet transform + 
Texture + PSOSVM 97.38 

(Talo et al. 2019) 
x Normal:27 
x Abnormal: 513 

2 Deep Transfer 
Learning (ResNet-34) 100 

(Lu et al., 2019) 
x Normal: 114 
x Abnormal: 177 

2 Deep Transfer 
Learning (AlexNet) 

100 

(Gudigar et al., 2019-
b) 

x Normal: 83 
x Degenerative: 132 
x Inflammatory:114 
x Cerebrovasc.: 187 
x Neoplastic: 96 

5 VMD+SVMN 98.20 

The Proposed 

x Normal: 82 
x Degenerative: 209 
x Inflammatory:172 
x Cerebrovasc.: 373 
x Neoplastic: 238 

5 Deep Transfer 
Learning (ResNet-50) 95.23 ±0.6 

 

It can be noted from Table 4 that, DWT (Chaplot et al., 2006; El-Dahshan et al., 2010; Nayak et al., 

2016) , Gabor texture (Gilanie et al., 2018), local binary pattern (LBP) (Hooda and Verma, 2019), 

stationary WT (SWT) (El-Dahshan and Bassiouni, 2018), kernel linear discriminator analysis 

KLDA) (El-Dahshan and Bassiouni, 2018), shearlet transform (Gudigar et al., 2019-a) methods and 

variational mode decomposition (VMD) (Gudigar et al., 2019-b)   were used for feature extraction 
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from images. The PCA (El-Dahshan et al., 2010; El-Dahshan and Bassiouni, 2018; Nayak et al., 

2016; Zhang et al., 2011) method was applied for the reduction of features dimensions. In the final 

stage for classification SVM (Chaplot et al., 2006; Gilanie et al., 2018; Gudigar et al., 2019-a; 

Gudigar et al., 2019-b), minimal complexity machine (MCM) (Hooda and Verma, 2019), k-

neighbor neighbor (KNN) (El-Dahshan et al., 2010; El-Dahshan and Bassiouni, 2018), back-

propagation neural networks (BPNN) (Zhang et al., 2011) and adaboost with random forests 

(ADBRF) (Nayak et al., 2016) classifiers have been used. On the other hand, recently all of these 

processes are carried out with an end-to-end structure using deep learning architectures using the 

same data set (Lu et al., 2019; Talo et al., 2019). In these studies, popular models such as AlexNet 

and ResNet, which were previously trained on large image data, were used. The main reason to use 

these pre-trained architectures is that these models were developed using small number of brain 

MRI data as can be seen from Table 4. In this study, we have used a transfer learning-based 

approach to classify MRI data in to normal and four different disease classes.  The main advantages 

of our work are summarized as follows:  

(I) Generally, most of the studies are focused on the classification of normal and abnormal 

MRI. In this study, normal and four main brain diseases (degenerative, inflammatory, 

cerebrovascular and neoplastic) are classified. This is the first study involving five 

classes of brain MRI images with deep learning method.  

(II) A total of 1074 MRI data are used, i.e., all the available images from the Harvard 

Medical School database are used.  Hence, we have used the maximum number of 

images (Table 4). 

(III)  Our method is completely automated and does not involve any feature extraction, 

selection or classification steps.  

(IV) The performance of popular deep learning models: AlexNet, Vgg-16, ResNet-18, 

ResNet-34 and ResNet-50 are compared. 

 

Subject-wise experimental studies have shown that the proposed deep model has yielded five class 

classification accuracy of 66.67% using a single Alzheimer subject.  The performance of the 

proposed model is not satisfactory. The main reason for this is the database used contains few 

subjects in each class.  Therefore, we have used Alzheimer disease in the Degenerative class for 

the subject-wise classification.  We have also shown that, the performance of ResNet-50 model 
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significantly improved using additional Alzheimer images from OASIS database. Based on this 

result, we can say that increasing the images of different cases increases the performance of the 

proposed model. We could not extend the subject-wise experiments in the study because the 

images in the databases were not fully compatible. The absence of a large set of subjects in each 

class limited the study. 

   

The main disadvantage of this study is fewer number of available annotated data.  Therefore, we 

have used transfer learning technique to overcome limited number of data.  It has been proposed 

to consider the functional strength of the brain disease cohort to model the network for 

classification or clustering to obtain more meaningful results (Zhang et al., 2017; Zhang et al., 

2018). Similarly, the use of approaches such as simultaneous constrained matrix and tensor 

factorization can help to extract unique properties from image (Zhou et al., 2016).  We can 

implement such approaches which will highlight individual characteristics in inter-subject studies 

when more data is available. 

 

5. Conclusion 

 

In this study, we employed the AlexNet, Vgg-16, Resnet-18, Resnet-34, and ResNet-50 deep 

learning pre-trained models to classify MR images into normal, cerebrovascular, neoplastic, 

degenerative and inflammatory categories. These models are tested using Harvard Medical School 

MR brain images database using all available 1074 images. Our results show that ResNet-50 model 

obtained the highest accuracy of 95.23% ± 0.6 among the five models. The AlexNet has attained 

the lowest performance in classifying images into five categories.  
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