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A two-part mixed-effects model for analyzing clustered time-to-event data with clumping 

at zero  

Abstract:  

Background and Objective: In longitudinal epidemiological studies consisting of a baseline 

stage and a follow-up stage, observations at the baseline stage may contain a countable 

proportion of negative responses. The time-to-event outcomes of those observations 

corresponding to negative responses at baseline can be denoted as zeros, which are excluded 

from standard survival analysis. Consequently, some important information on these subjects is 

therefore lost in the analysis. Furthermore, subjects are often clustered within hospitals, 

communities or health service centers, resulting in correlated observations. The framework of 

the two-part model has been developed and utilized widely to analyze semi-continuous data or 

count data with excess zeros, but its application to clustered time-to-event data with clumping at 

zero remains sparse.  

Methods: A two-part mixed-effects modeling approach was proposed. A logistic mixed-effects 

regression model was used in the first part to determine factors associated with the prevalence 

of the baseline event of interest. Parametric frailty models (including Weibull, exponential, log-

logistic and log-normal) were used in the second part to assess associations between exposures 

and time-to-event outcomes. Correlated random effects were incorporated within the two 

regression models to accommodate the inherent correlation within each clustering unit and the 

correlation between the two parts. As an illustrative example, the method was applied to 

exclusive breastfeeding data from a community-based prospective cohort study in Nepal.  

Results: A significantly positive correlation between the baseline prevalence of exclusive 

breastfeeding and exclusive breastfeeding duration was confirmed ( 0.67 = , P<0.001). The 
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correlated two-part model outperformed the independent two-part model (likelihood ratio test 

statistic=8.6, df=1, P=0.003). 

Conclusions: The proposed approach makes full use of all available information at baseline and 

during the follow-up, compared to the conventional survival analysis. In addition to 

breastfeeding studies, the method can be applied to other research areas where clustered time-to-

event data with clumping at zero arise. 

Keywords: Clumping at zero; Frailty model; Mixed-effects; Time-to-event data; Two-part 

model 



 

3 
 

1. Introduction 

In longitudinal epidemiological studies consisting of a baseline stage and a follow-up 

stage, observations at the baseline stage may contain a countable proportion of negative 

responses (i.e., “No” or “False” to a research question regarding a baseline event of 

interest). In the follow-up stage, only subjects with positive responses (i.e., “Yes” or 

“True” to the same research question regarding the same baseline event of interest) at 

baseline are continuously followed up to measure the time (duration) up to the 

occurrence of a failure event of interest, as a consequence the time to the failure event 

occurrence for those unfollowed-up subjects is denoted as zero. A motivating example 

is the longitudinal data arising from breastfeeding studies, which normally have a 

baseline stage for measuring the prevalence of breastfeeding at discharge and a 

followed-up stage for measuring the duration of breastfeeding. Breastfeeding, especially 

exclusive breastfeeding (EBF), is beneficial to both infants and mothers.1-4 The World 

Health Organization has recommended EBF for at least 6 months.5 However, the 

prevalence of EBF at hospital discharge varies globally and remains low in many 

countries, for example, 75.6% in Australia,6 50.3% in China7 and 68.6% in Spain.8 In 

other words, there exist a high proportion of non-exclusively breastfed infants, 

corresponding to those “no” responses to the status of EBF, at discharge (baseline). 

Their EBF duration (i.e., time to cessation of EBF) would be noted as zero.  

These two-stage studies produce two processes of outcome data, namely, a binary 

outcome to describe the prevalence of the event of interest at baseline and a time-to-

event outcome measuring the duration up to the failure event occurring in the follow-up. 

Statistical analyses, including logistic regression and survival analysis, for identifying 

factors associated with the prevalence of the baseline event, and with the time to the 
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failure event occurrence, are widely performed in literature. It is known that standard 

survival analysis considers only positive time-to-event outcomes so that subjects with a 

negative response at baseline are excluded from the risk set for estimating the survival 

probability (morbidity or mortality in some instances). Consequently, the information 

from these subjects, which may be important to the failure event of interest, is 

abandoned in the analysis. Given the two-stage data structure, in the literature, a 

framework of two-part (or two-stage) model has been introduced to analyze outcomes 

with a two-component structure, such as semi-continuous data9,10 and count data with 

excess zeros11,12 with applications in physical activity,13 healthcare cost,14,15 alcohol 

use,16 and household debt.17 However, to our best knowledge, its application to time-to-

event data with clumping at zero is limited to the lapse of insurance and duration 

analysis in political science.18,19 Furthermore, in epidemiological settings, subjects are 

often clustered within hospitals, communities, or health service centers. It is expected 

that observations exhibit intra-cluster correlation due to similar socio-economic, 

environmental or health conditions for individuals in the same cluster. To account for 

the heterogeneity between clustering units, an adjustment for the underlying correlation 

structure via random effects in a two-part model becomes necessary.  

In addition, in some cases it is reasonable to assume the binary data and time-to-event 

data generated from the two processes are related to each other, indicating an inherent 

correlation between the two stages. In breastfeeding studies, for example, mothers in 

one community which has a higher prevalence of EBF at hospital discharge are more 

likely to have longer EBF durations compared to those in other communities. Ignoring 

such correlation may introduce bias in statistical inferences. Therefore, we proposed a 

two-part mixed-effects (fixed and random effects) modeling approach to analyze 
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clustered time-to-event data with clumping at zero, with application to EBF data as an 

illustrative example. Correlated random effects accounting for possible correlation 

between baseline and follow-up stages were considered in this approach.  

2. Methods 

2.1. Two-part mixed-effects model  

This paper considers that longitudinal observations can be partitioned structurally into 

two parts. The first part is a baseline part (Part 1), where subjects’ statuses regarding a 

‘baseline event’ are observed. Examples of positive responses to the ‘baseline event’ 

include “EBF at discharge” or “hold a health insurance at baseline”. The second part is a 

follow-up part (Part 2), where positive time to a ‘failure event’ of interest, conditional 

on the positive baseline response in the first part, is observed. Examples of the ‘failure 

event’ could be “EBF cessation” or “health insurance lapse”.  

Suppose the observations from a longitudinal epidemiological study are given by 

1
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where ( , ) ( 1| )ij ij ij ijp p p Z = = =γ  is the probability of the baseline event occurrence 

for the j th subject within the i th cluster for given covariates ijx  via ,ij ij ix u = +γ  

with 
iu  being the random effects for adjusting the subject-level correlation at baseline 

and the parameter vector γ  represents the effects of ijx  on the binary outcome; 

( , , )ij ijf y  β  denotes the probability density of the observed time to the failure event ijy  

for covariates ijw  via ij ij iw v = +β , with 
iv  being the random effects for adjusting the 

subject-level correlation in the follow-up and β  is parameter vector associated with ijw . 

The likelihood function ( )L γ,β  can be factorized into two parts as 

 
1
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ij ij
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=
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Here, this two-part mixed-effects model aims to: (i) determine factors associated with 

the prevalence of the baseline event of interest; (ii) assess associations between 

exposures and time-to-event outcomes; (iii) capture/ account for the possible correlation 

between the prevalence part and the time-to-event part.  

2.1.1. Part 1: logistic mixed-effects regression model  

For the first part 
1( )L γ , a logistic mixed-effects regression model can be applied to 

achieve the first objective via: 
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 log( / (1 ))ij ij ij ij ip p x u − = = +γ   (4) 

2.1.2. Part 2: parametric frailty model  

For the second part 
2 ( )L β , either a conditional semi-parametric Cox proportional 

hazards model with random effects (i.e., Cox frailty model) or a class of conditional 

parametric survival models incorporating random effects (i.e., parametric frailty 

models) can be used. However, compared to semi-parametric proportional hazard model 

(i.e., Cox proportional hazard model), parametric survival models provide more 

efficient and informative estimations when the baseline hazard function could be 

specified in advance.20,21 This paper focuses on parametric frailty models in Part 2 

modeling. The resulting log-likelihood function is given by 
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where ( ; , )ij ijS y  β  is the survival function, and ( ; , )ij ijh y  β  is the hazard function, 

ij ij iw v = +β . The hazard function can be one of the various forms depending on 

different distributions of the time-to-event outcome ijy , including Weibull, exponential, 

log-logistic and log-normal. In practice, gamma and lognormal are commonly used 

distributions for the frailty term (exponential transformation of the random component) 

in the above frailty model.22  

2.1.3. Assumptions on random effects iu  and iv  
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For the relationship between random effects 
iu  and 

iv  in Part 1and Part 2, the study 

considers the following two assumptions:  

1) If 
iu  and 

iv  are assumed to be independent, following a normal distribution 

2(0, )uN   and 
2(0, )vN  , respectively, the approach is an independent two-part mixed-

effects modeling. 

2) If 
iu  and 

iv  are assumed to be correlated, following a bivariate normal 

distribution with a variance-covariance matrix 
2

2

0
~ ,

0

u vi u

i u v v

u
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            

, the 

approach is a correlated two-part mixed-effects modeling. 

Practically the likelihood ratio test can be used to assess and compare the goodness-of-

fit between the independent and the correlated two-part models. 

2.1.4. Parameter estimation 

When the random effects 
iu  and 

iv  are independent and note that the likelihood 

function ( )L γ,β  allows for different sets of covariates in both parts, it is 

computationally feasible and fully efficient to fit the two regression models separately. 

When the random effects 
iu  and 

iv  are assumed to be correlated, the Laplace 

approximation9 or adaptive Gaussian quadrature,10,15 which has been utilized to handle 

correlated two-part random effects for modeling semi-continuous data, can be adapted. 

Under either assumption, model fitting and parameters estimation can be conveniently 

implemented by using the adaptive Gaussian quadrature technique available in Proc 
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NLMIXED of SAS (SAS Institute Inc., Cary, NC, USA). Appendix provides the SAS 

codes used in our illustrative example. 

Figure 1 presents the two-part mixed-effects modeling process. 

 

Figure 1. Flow chart of the two-part mixed-effects modeling process 

 

2.2. Illustrative example  

2.2.1. Breastfeeding data  
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A community-based prospective cohort study was conducted in Nepal between January 

and October 2014 to determine factors associated with breastfeeding duration, involving 

27 randomly selected communities (15 village development committees and 12 wards 

of two municipalities). Details of the study design, setting and sampling had been 

reported previously.23 Briefly, a total of 735 mothers were recruited by a proportionate 

sampling scheme from the target population (i.e., infants<1-year old) and interviewed 

shortly after giving birth, and those mothers who confirmed they exclusively breastfed 

their infants at discharge (baseline) were followed up for measuring the EBF duration 

by six months postpartum. Information about the EBF duration (i.e., time to EBF 

cessation) was collected for the mothers who were exclusively breastfeeding their 

babies at baseline. The final sample (N=649) excluded 86 mothers who delivered at 

home.  

2.2.2. Two-part modeling procedure 

2.2.2.1. Outcome variables  

The status of EBF at baseline was coded as a binary outcome, with ‘1’ for EBF and ‘0’ 

for non-EBF and used as the outcome variable in Part 1 logistic mixed-effects 

regression model. For those mothers who exclusively breastfed their infants at the 

baseline interview, the EBF duration (days) up to 6 months postpartum obtained in the 

follow-up was used as the outcome variable in Part 2 parametric frailty model. Three 

covariates, namely, birth mode (caesarean section vs natural birth (reference group)), 

grandmother feeding preference (breastfeeding vs other feeding (reference group)), and 

mother-child bonding (yes vs no (reference group)), were included in both parts of the 

model.  
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2.2.2.2. Identifying an appropriate baseline hazard function  

For Part 2 parametric frailty model, an appropriate form of the baseline hazard function 

is needed to be specified. With no other suggestive information available from the data, 

we fitted the data with four commonly used event time distributions, namely, Weibull, 

exponential, log-logistic and log-normal, without any covariates, then compared their 

Akaike information criterion (AIC), Bayesian information criterion (BIC) and -2log-

likelihood values. The one with the smallest value for these model selection criteria was 

chosen as the baseline hazard function. Cumulative hazard was estimated with Fleming-

Harrington method from EBF duration data and visually compared with fitted hazards 

from alternative parametric models.  

2.2.2.3. Assessing correlation between two stages of random effects  

The breastfeeding data were fitted with a logistic mixed-effects model and a Weibull 

accelerated failure time (AFT) frailty model initially assuming independent random 

effect 
iu  and 

iv . Empirical Bayes estimates of the random effects were plotted against 

each other to examine the degree of correlation between the two random effects. The 

Pearson’s correlation coefficient between the estimated 
iu  and 

iv  ( 1,2, ,27i = ) was 

calculated as well.  

2.2.2.4. Fitting data with a two-part mixed-effects model incorporating 

correlated random intercepts  

The adaptive Gaussian quadrature technique was used for parameter estimation via the 

SAS NLMIXED procedure. Perhaps due to data scaling issues,24 the estimation 

procedure failed to converge with this dataset. We also suspected that unequal numbers 
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of observations used in the correlated two-part modeling may cause some problems 

related to a non-invertible variance-covariance matrix during parameter estimation. As a 

computational solution, to ensure the two-part regression models having the same 

number of observations, each zero EBF duration observation was transformed by 

adding a very small positive value (e.g., 1E-6), and was then included as a censored 

observation in Part 2 parametric frailty modeling.  

The likelihood ratio test was used to assess whether the correlated two-part model 

provided a better fit to the data. Finally, sensitivity analyses were performed to evaluate 

the robustness of the results after transformation of zero observations in Part 2 

parametric frailty modeling. The parameter estimation and goodness-of-fit were 

compared between models excluding zero observations and including transformed zero 

observations.  

3. Results 

Among those 649 mothers, 434 mothers (66.9%) exclusively breastfed their infants at 

baseline, leading to 33.1% ‘zero’ EBF duration observations. Conditional on those 

mothers who practiced EBF at baseline, only 434 mothers were followed up to six 

months postpartum for measuring the EBF duration. In Part 2, as shown in Table 1, the 

Weibull distribution, which had the smallest AIC, BIC and -2log-likelihood values 

compared with the exponential, log-logistic and log-normal distributions, was chosen as 

the most appropriate distribution for the EBF duration data. The same model selection 

decision was evidenced by the visual inspection in Figure 2. As shown in Figure 3, a 

positive correlation (r=0.55, P=0.003) was found between the random effects 
iu  and 

iv , 
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suggesting an inherent correlation between the occurrence of EBF for mothers after 

giving birth and time to EBF cessation by 6 months postpartum.  

Table 1. Information criteria values from fitting alternative parametric models 

 Parametric models 

Weibull Exponential Log-logistic Log-normal 

AIC 283.97 926.02 354.71 526.94 

BIC 292.11 930.10 362.85 535.09 

-2log-likelihood 279.97 924.02 350.71 522.94 

 

 

Figure 2. Cumulative hazard estimates from EBF duration data and fitted hazards from 

alternative parametric models 
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Figure 3. Correlation between random effects estimated from two independent models 

(the logistic mixed-effects model and the Weibull AFT frailty model). 

A correlated two-part mixed-effects model was consequently fitted to the data, while a 

two-part mixed-effects model assuming independent random effects was also fitted for 

comparison purpose. As shown in Table 2, a significantly positive correlation 

( 0.67 = , P<0.001) between the two parts was confirmed, indicating that the 

independent random effects assumption was inappropriate. A positive correlation was 

evident between the baseline prevalence of EBF and EBF duration, i.e., mothers in the 

community with a higher prevalence of EBF at hospital discharge tended to have longer 

EBF durations. There were only slight differences in the estimated regression 

coefficients between the independent and correlated two-part mixed-effects models; 

however, variance components estimated by the independent two-part model were 

slightly smaller than those by the correlated two-part model, the latter also fitted the 

data better with a significantly smaller -2log-likelihood (likelihood ratio test statistic 

being 8.6, df=1, P=0.003). 
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Table 2. Parameter estimates in the two-part model with different assumptions for 

breastfeeding data 

Parameters 

Independent two-part 

model 
 Correlated two-part model 

Estimate SE P  Estimate SE P 

Part 1 logistic mixed-effects 

model 

       

Intercept 0.8361 0.4564 0.0780 
 

0.8381 0.4584 0.0800 

Birth mode -1.8801 0.2777 <.0001 
 

-1.9039 0.2785 <.0001 

Grandmother feeding preference 0.4480 0.3485 0.2100 
 

0.4691 0.3472 0.1900 

Mother-child bonding 0.1443 0.2916 0.6200 
 

0.1407 0.2894 0.6300 

Part 2 Weibull AFT frailty model        

Gamma 4.9438 0.2146 <.0001 
 

4.9465 0.2146 <.0001 

Intercept 4.8690 0.0518 <.0001 
 

4.8689 0.0510 <.0001 

Birth mode -0.0462 0.0399 0.2600 
 

-0.0491 0.0397 0.2300 

Grandmother feeding preference 0.0772 0.0413 0.0730 
 

0.0781 0.0410 0.0680 

Mother-child bonding 0.0798 0.0360 0.0350 
 

0.0736 0.0355 0.0490 

2

u   1.4218 0.5515 0.0160  1.4928 0.5702 0.0150 

u v        0.1111 0.0474 0.0270 

2

v   0.0182 0.0064 0.0083  0.0186 0.0065 0.0082 

Correlation coefficient (  )     0.6668 0.1513 0.0002 

-2log-likelihood (both parts) 4277.8  4269.2 

Abbreviations: AFT, accelerated failure time; SE, standard error. 
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The sensitivity analyses showed that the transformation of zero EBF durations in Part 2 

time-to-event analysis did not affect the robustness of parameter estimation and model 

fit. Parameter estimates and the goodness-of-fit were exactly equivalent between the 

model without zero EBF durations and the model including transformed zero EBF 

durations as censored observations. 

4. Discussion 

A two-part mixed-effects modeling approach was proposed for analyzing clustered 

time-to-event data with clumping at zero. This approach takes into account the 

correlation within each clustering unit by incorporating random effects in each part. The 

method further takes into account the possible correlation between the two random 

effects, that is, the correlation between the baseline prevalence and the followed-up 

time-to-event outcomes. Compared to the conventional survival analysis, this approach 

makes full use of all available information at baseline and during the follow-up. In 

addition to breastfeeding studies, the methodology has potential applications in a wide 

range of research areas, such as social science, finance and health care, in which 

clustered/ longitudinal time-to-event outcomes with clumping at zero arise. A notable 

research area is duration analysis in political science, where political scientists have 

proposed solutions to selection bias derived from nonrandom sample selection, while a 

correlated random effects approach has not been developed and implemented yet.19  

The two-part mixed-effects modeling approach has been discussed widely in the 

literature,25 but most existing works have been focused on longitudinal semi-continuous 

data9,10,13,26 and longitudinal count data with excess zeros.12,27 Applications of the two-

part mixed-effects model on clustered time-to-event data with clumping at zero are very 
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sparse. To our best knowledge, our proposed two-part mixed-effects model is the first 

attempt to deal with such data. 

As discussed in the work by Su, Tom, Farewell 26, an incorrect assumption about the 

correlation between random effects in two parts can introduce bias in the two-part 

modeling of semi-continuous data. The results obtained from the illustrative example in 

our study showed a consistent conclusion that the variance component was 

underestimated in Part 2 survival modeling if the model was misspecified as 

independent random effects when the correlation between two parts actually existed. 

Clustered time-to-event data are often encountered in longitudinal epidemiological 

studies. The proposed correlated two-part mixed-effects modeling approach takes into 

account the correlations possibly presenting in a two-level hierarchical data structure, 

i.e., subjects nested within different clustering units, via random effect terms 
iu  and 

iv  

in the model. The method can be extended to handle higher level hierarchical or a 

multilevel data structure, by specifying a corresponding variance-covariance structure 

for depicting correlations between random effects.  
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Appendix: SAS sample codes 

proc nlmixed data= tpmvk; 

bounds gamma>0; 

***Logistic component***; 

eta1=betal_0+betal_1*birthmode+betal_2*grandmapref+betal_3*bonding+ran

l;/*ranl is the random effect in the logistic part*/ 

p=exp(eta1)/(1+exp(eta1)); 

if ebfbase=0 then loglik=log(1-p);/*log likelihood for the first 

Logistic regression part*/ 

***Survival component***; 

if ebfbase=1 then do; 

eta2=betas_0+betas_1*birthmode+betas_2*grandmapref+betas_3*bonding+ran

s;/*rans is the random effect in the survival part*/ 

alpha=exp(-eta2); 

loglik=log(p)-(alpha*ebfduration)**gamma+(censor=0)*(-

gamma*eta2+(gamma-1)*log(ebfduration)+log(gamma));/*log likelihood for 

the Weibull survival part censor=1 indicates censored observation*/ 

end; 

model ebfduration~general(loglik); 

random ranl rans ~ 

normal([0,0],[exp(2*logsigl),cov_l_s,exp(2*logsigs)]) 

subject=CommunityCode; 

estimate 'correlation coeffecient(ranl_rans_rho)' 

cov_l_s/(exp(logsigl)*exp(logsigs)); 

estimate 'variancel' exp(2*logsigl); 

estimate 'variances' exp(2*logsigs); 

run; 


