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Abstract   

BACKGROUND: Patients with REM sleep behavior disorder (RBD) have a high risk of 

developing PD, and thus can be used to study prodromal biomarkers. RBD has been associated 

with changes in gait; quantifying these changes using wearable technology is promising; however, 

most data are obtained in clinical settings precluding pragmatic application.  

OBJECTIVE: We aimed to investigate if wearable-based real-world gait monitoring can detect 

early gait changes and discriminate individuals with RBD from controls, and explore relationships 

between real-world gait and clinical characteristics. 

METHODS: 63 individuals with RBD (66±10 years) and 34 controls recruited in the Oxford 

Parkinson’s Disease Centre Discovery Study were assessed. Data were collected using a wearable 

device positioned on the lower back for 7 days. Real-world gait was quantified in terms of its 

Macrostructure (volume, pattern and variability (S2)) and Microstructure (14 characteristics).  The 

value of Macro and Micro gait in discriminating RBD from controls was explored using ANCOVA 

and ROC analysis, and correlation analysis was performed between gait and clinical 

characteristics. 

RESULTS: Significant differences were found in discrete Micro characteristics in RBD with 

reduced gait velocity, variability and rhythm (p≤0.023). These characteristics significantly 

discriminated RBD (AUC≥0.620), with swing time as the single strongest discriminator 

(AUC=0.652). Longer walking bouts discriminated best between the groups for Macro and Micro 

outcomes (p≤0.036). 
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CONCLUSIONS: Our results suggest that real-world gait monitoring may have utility as “risk” 

clinical marker in RBD participants. Real-world gait assessment is low-cost and could serve as a 

pragmatic screening tool to identify gait impairment in RBD. 

Introduction 

Parkinson’s disease (PD) is a progressive multisystem syndrome. There is no cure, and great 

efforts are underway to discover disease modifying therapies. It is estimated that by the time of 

diagnosis striatal dopamine is depleted by approximately 70-80%, a figure that corresponds to cell 

death of 30-50% of dopaminergic neurons in the substantia nigra [1, 2].  Recent clinicopathological 

work has demonstrated that loss of dopaminergic markers in the putamen is complete by four years 

post-diagnosis, highlighting the importance of early targeted therapy if disease modification is to 

be prioritized [3]. 

Diagnosis is therefore preceded by a long prodromal period during which the disease process has 

started but definitive motor symptoms and signs to permit a diagnosis have not yet appeared [4]. 

This period has been estimated, by retrospective and prospective studies, to vary between three to 

more than 20 years [2, 5, 6]. If we wish to address disease modification, early intervention during 

the prodromal period would be ideal to slow or halt ongoing degeneration of neurons. Identifying 

robust prodromal clinical and other biomarkers during this period is therefore an area of intense 

research interest. 

Idiopathic Rapid Eye Movement Sleep Behaviour Disorder (RBD) is of particular interest as a 

prodromal marker. More than 80% of RBD patients convert to PD or another α-synucleinopathy 

with a median overall prodromal phase of 8 years [7], and a motor phase of 4.5 years [4, 8, 9]. A 

very recent study estimated an overall conversion rate from RBD to an overt neurodegenerative 

syndrome of 6.3% per year, with 73.5% converting after 12-year follow-up [7], with an estimated 



 

5 
 

prevalence of RBD in PD of 42.3% in PD [10]. Previous studies have also reported a male pre-

dominance in typical RBD, with more than 80% of the patients being male [11, 12].  

Postuma et al. demonstrated that, using simple motor assessments (Movement Disorders Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS) and Timed Up and Go test), abnormalities in 

gait can precede PD diagnosis by up to 4.4-6.3 years [4]. McDade et al. have shown that 

quantitative cross-sectional analysis of normal pace walking in RBD participants found subtle 

changes of velocity, cadence and variability of gait compared to controls [13]. A recent paper 

showed also differences in gait between RBD participants and controls during fast and dual task 

conditions in a laboratory environment [14].  

Gait may therefore be a useful clinical biomarker to identify risk of conversion in RBD. Both 

studies, however, were performed under controlled conditions, with one study requiring 

specialized equipment (e.g. instrumented walkway) limiting its application. To address this 

shortcoming, wearable technology that measures discrete movements has been employed with 

promising findings. 

Recently, selective gait characteristics measured with wearable technology have been shown to be 

potential prodromal markers for people at risk of PD [15] and also in LRRK2 mutation carriers 

[16]. People at risk of PD and carriers demonstrated increased gait variability and asymmetry [15], 

a less consistent and rhythmic gait pattern (lower amplitude of the dominant peak of the 

accelerometer signal) [16], although these studies again were conducted in laboratory-based 

settings during controlled conditions. Intriguingly, work in RBD using smartphone technology in 

free-living conditions and prompted, structured tasks found that postural tremor, rest tremor, and 

voice were the discriminatory domains between RBD and controls but not gait, although signal 
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features (e.g. frequency-based features, detrended fluctuation analysis, etc.) rather than more 

clinically relevant, specific gait characteristics were quantified [17]. 

For wider scale screening, a more pragmatic, low cost method without the need for specialized 

staff or equipment is needed. Continuous monitoring in the real-world using wearable technology 

offers a solution with the added advantage that it avoids potential confounding due to 

compensation under controlled testing conditions and variation due to one-off sporadic 

assessments. It also provides a more ecological representation of gait and walking activity in a 

natural environment often implying ‘real-world dual-task’ conditions. This technology may thus 

serve as a tool to accurately identify surrogate markers of incipient disease manifestation [16-19]. 

The aims of this study were therefore: (i) to investigate if it was possible to detect subtle prodromal 

gait disturbances using continuous real-world monitoring with a wearable device and if this could 

discriminate RBD from a control group; and (ii) to explore the relationship between discriminatory 

gait characteristics with clinical scales associated with RBD. We adopted a comprehensive 

approach to quantify gait using a combination of Macrostructural (Macro) and Microstructural 

(Micro) gait characteristics.  Based upon the only other quantitative study of gait in RBD [13, 16, 

20] we hypothesized that people with RBD would have reduced volume of walking activity, and 

would demonstrate impairment in gait characteristics such as slower velocity, increased Micro gait 

variability and lower cadence compared to controls.  

Methods 

2.1 Participants 

RBD participants and controls (CL) were enrolled in the Oxford Parkinson’s Disease Centre 

(OPDC) Discovery study [21, 22]. The diagnosis of RBD was made on the basis of 

polysomnographic evidence according to the American Academy of Sleep Medicine International 
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Classification of Sleep Disorders criteria [23]. Full details of the clinical protocol and inclusion 

and exclusion criteria are described in detail elsewhere [21, 24]. 

 

2.2 Ethics, consent and permissions 

This study was conducted according to the declaration of Helsinki and had ethical approval from 

the local research committee (NRES Committee, South Central Oxford A Research Ethics 

Committee, Reference number 16/SC/0108). All participants gave written informed consent prior 

to testing. 

 

2.3 Demographic and clinical measures 

Age, gender and BMI were recorded for each participant. A comprehensive, structured medical 

history was taken from all participants including comorbidities and demographic information. 

Cognition was assessed using the Mini-Mental State Examination (MMSE [25]). EQ-5D was used 

as a standardized self-report measure of health status [26] and excessive daytime somnolence was 

measured by the Epworth Sleepiness Scale [27]. Motor features were assessed using: MDS-

UPDRS part III (MDS-UPDRS-III) [28]; the Purdue Pegboard test [29]; the Flamingo test (the 

ability of the patient to balance on one leg for 30 seconds) and the Timed Up and Go Test [24, 30]. 

The probability of prodromal PD was calculated for each participant at their baseline assessment 

using the method described by Berg et al. [31] as detailed in [21]. The following risk markers were 

used: sex, pesticide exposure, solvent exposure, caffeine use, smoking history, family history of 

PD, and presence of gene mutation (GBA or LRRK2). The following prodromal markers were 

also included: presence of RBD confirmed by polysomnography, subthreshold parkinsonism 

(using UPDRS and Purdue Pegboard scores), olfactory loss, constipation, excessive daytime 
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somnolence (measured by the Epworth Sleepiness Scale), postural hypotension, urinary 

dysfunction, and depression/anxiety [21]. Falls Rate was collected as the number of falls self-

reported in the six months prior to the assessment. 

2.4 Free-living data collection: protocol 

Participants were asked to wear a tri-axial accelerometer (Axivity AX3, York, UK; dimensions: 

23.0 × 32.5 × 7.6 mm; weight: 11 grams) for one week [32]. The device has been validated for its 

suitability in capturing high-resolution data akin to human movement [33]. It was located on the 

fifth lumbar vertebrae with a hydrogel adhesive (PAL Technologies, Glasgow, UK) and covered 

with additional tape (Hypafix bandage) for extra support. The water-proof device was programmed 

to capture data for seven days at 100Hz (range ± 8g). Participants were asked to continue their 

daily activities as usual and not to change their routine. Upon completion of the recording, 

participants removed the device and posted it back to the researcher as detailed in previous work 

[34]. 

 

2.5 Data processing and analysis 

2.5.1 Data processing and variable extraction 

Once the device was received, data were downloaded, segmented (per calendar day) and analyzed 

using bespoke MATLAB® programs. For each day, a logical heuristics paradigm was embedded 

into walking bout identification and quantification algorithm which has shown to be accurate in 

detecting ambulatory bouts (ABs) and step count in free-living conditions [35]. Individual ABs 

were extracted via MATLAB®, where a ‘bout’ was defined as the continuous length of time spent 

walking with at least four consecutive steps [34, 35]. ABs were detected by applying selective 
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thresholds on the magnitude and standard deviation (SD) of the triaxial acceleration data as 

described in detail elsewhere [35]. 

Outcome measures were described according to a broad framework of Macro and Micro 

characteristics [36] (Figure 1).  

Macro (behavioral) characteristics included the volume, pattern and variability (S2) of walking. 

Volumetric outcomes included total walking time per day, percentage (%) of walking time per 

day, number of bouts and steps per day. Pattern included mean bout length, generated based on 

the AB detected over the 7 days, and a non-linear descriptor (alpha (α)). Alpha describes ABs 

distribution, evaluating the ratio of short to long ABs (i.e. a high alpha means that the total walking 

time is made up of proportionally short ABs compared to long ABs). Macro gait variability (S2) 

was derived evaluating the ‘within subject’ variability of AB length, with a higher Macro gait 

variability (S2) indicating a more varied walking activity pattern, while a lower Macro gait 

variability (S2) would mean a less varied walking activity, so a reduced engagement in different 

activity and a tendency to repeat the same pattern of activity [34, 37, 38].  

Micro gait characteristics (n=14) were determined for each AB. Micro characteristics were 

selected based upon a model of gait comprising five domains (pace, variability, rhythm, 

asymmetry and postural control) validated both in older adults and in PD [33, 39]. Briefly, the 

initial contact and final contact events within the gait cycle were identified and allowed the 

estimation of step, stance and swing time. Initial contact events were also used to estimate step 

length using the inverted pendulum model [40]. Step velocity was calculated as the ratio between 

step length and time [33].To evaluate micro gait variability (e.g. step time variability), the standard 

deviation (SD) from all steps (left and right combined) was calculated. Asymmetry was determined 
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as the absolute difference between left and right steps for each AB, averaged across all ABs [33, 

41]. 

2.5.2 Data considerations 

All ABs with more than three steps (minimum bout length) were taken into account for the analysis 

[42-45]. A threshold of 2.5 seconds was set for the maximum resting period between consecutive 

ABs [35]. Each AB was considered individually to ensure robustness for the evaluation of the gait 

characteristics, to avoid sources of error in step detection, and facilitate the calculation of 

variability and asymmetry characteristics [19]. Micro outcomes were evaluated for each single AB 

and then averaged over the seven days; pooled seven-day data were used for quantifying Macro 

outcomes. As exploratory analysis Macro and Micro outcomes were evaluated including all ABs 

greater than three steps, and also including only short-to-medium (10s ≤ ABs < 30s, corresponding 

to a range of 15-50 steps), medium to long (30s ≤ ABs < 60s, , corresponding to a range of 50-100 

steps) and long ambulatory bouts (ABs ≥ 60s, corresponding to ≥100 steps) [19, 35, 46]. 

 

2.5.3 Statistical analysis 

Statistical analysis was carried out using SPSS v24 (IBM). Normality of data was tested with a 

Shapiro-Wilk test. Descriptive statistics were reported as means and SDs.  

(i) To distinguish between RBD and control cohorts we used a two-stage approach.  

1.  We identified between-group Macro and Micro gait differences in RBD vs. control 

participants with analysis of covariance (ANCOVA); age, sex, MMSE, MDS-UPDRS II 

and III and BMI were included as covariates. Further analysis of Micro and Macro 

outcomes was then repeated on walking bouts grouped by bout length (short-to-medium 
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(10s ≤ ABs < 30s), medium to long (30s ≤ ABs < 60s) and long ambulatory bouts (ABs ≥ 

60s)), to explore the impact of AB length on results. 

2. Secondary analysis explored the value of Micro and Macro gait characteristics for 

discriminating people with RBD from controls. Receiver Operating Characteristics (ROC) 

and stepwise, forward, logistic regression analyses controlling for age, sex and BMI were 

performed. All Micro gait characteristics were considered candidates and parameters were 

entered in the regression model. Discriminative models and Micro gait characteristics with 

the highest Area Under the Curve (AUC) for the ROC analysis are reported. Sensitivity for 

cut-off specificity at 90%, specificity for cut-off sensitivity at 90%, and best accuracy 

values of the variables and for the results of the regression models were also evaluated. 

Regression analysis was then repeated adding sniffin’ sticks total score to the Macro and 

Micro gait variables models, as olfactory loss has previously been shown to have a 

diagnostic specificity of >80% [47]. 

Given the exploratory nature of this analysis, we used a threshold of p < 0.05 to guide statistical 

interpretation and did not make adjustments for multiple comparisons [13, 48, 49]. However, we 

provide p-values and reported also p ≤ 0.01 so that the reader may assess the statistical strength of 

our findings. 

(ii) Finally, we explored the relationship between discriminatory characteristics and clinical and 

risk factors of conversion to PD in RBD participants to explain and interpret findings. We used 

Partial correlations controlling for age to identify relationships between Micro and Macro gait 

characteristics and clinical scales. 
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Results 

Sixty-three people with RBD and thirty-four controls were assessed. Clinical, demographic and 

cognitive descriptors are shown in Table 1. People with RBD and CL groups were comparable for 

age, BMI and gender (although RBD included proportionally, although not significantly, more 

women). In keeping with previous reports [21], RBD participants had lower cognitive, EQ-5D 

scores and sniffin’ sticks test total scores, and greater motor impairment as seen by MDS-UPDRS 

III scores. According to the MDS criteria 48 RBD participants met the MDS criteria for probable 

prodromal PD (Probability >80%). 

We also repeated the analysis looking at RBD at high risk (with MDS Probability of Prodromal 

PD > 80%) and at low risk (MDS Probability of Prodromal PD < 80%) and we did not found any 

significant differences in Macro or Micro gait characteristics between the two groups (p ≥ 0.137); 

these groups were therefore not reported separately. 

Those with RBD had also a higher number of falls reported in the six months prior to the 

assessment (Table 1).  

 

Differences in Macro gait characteristics between RBD and CL 

Between-group differences were influenced by bout length. When considering the total number of 

ABs no significant difference was found in Macro gait characteristics between people with RBD 

and CL. Volume of walking bouts did not differ between people with RBD and CL. There was a 

trend for people with RBD to walk in less variable (lower S2) ABs compared to CL, although this 

did not reach significance (Table 2, Figure 2a). 

When considering short-to-medium and medium-to long bouts again no differences were found 

between groups (Supplementary Table 1, Figure 3a and 3b).  
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However, when exploring differences based on long bouts (≥ 60s), although they represented less 

than 5% of the total amount of ABs, we found that ambulatory pattern significantly differed 

between the groups (Supplementary Table 1). Mean bout length was significantly lower and alpha 

significantly higher (denoting that walking time was made up proportionally of shorter ABs) for 

people with RBD compared to CL (p < 0.040) (Figure 3c).  

 

Differences in Micro gait characteristics between RBD and CL 

For total ABs, characteristics relating to pace (step velocity), variability (step velocity variability) 

and rhythm (step, stance and swing time) were significantly different between people with RBD 

and CL. People with RBD walked slower with less variable velocity. In addition, RBD had 

significantly slower cadence: higher step time, swing time and stance time compared to CL (Table 

3, Figure 2b). Interesting, postural control, as measured by step length asymmetry, did not 

discriminate between groups. 

For short-to-medium (10s ≤ ABs < 30s) and medium-to long ABs (30s ≤ ABs < 60s) we did not 

find any significant differences between the groups (Supplementary Table 2, Figure 3d and 3e). 

The picture remained similar to the one for total ABs. When considering long ABs (≥ 60s), again 

pace and rhythm resulted significantly lower for people with RBD compared to CL, although step 

velocity variability was no longer significant between the groups (p = 0.304) (Supplementary 

Table 2, Figure 3f).  

 

Discriminating prodromal gait disturbances within RBD with Macro and Micro gait 

characteristics. 

When looking at total ABs, none of the Macro characteristics discriminated RBD from CL. 
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For total ABs, step velocity and step velocity variability were the Micro gait characteristics that 

contributed to best discriminate individuals with RBD from CL with sensitivity of 88.9%, 

specificity of 31.4%, accuracy of 68.4% and AUC = 0.698 (Table 4). 

When olfactory loss (sniffin’ sticks test total scores) was added to the regression models for total 

ABs, AUC increased to 0.842, with sensitivity of 78.9%, specificity of 64.5% and accuracy of 

73.9% (Figure 4). 

For long ABs (≥ 60s), mean bout length, variability (S2) and alpha were the Macro gait 

characteristics which distinguished between the two groups. In addition, swing time was the 

characteristic which distinguished between individuals with RBD and CL with highest sensitivity 

of 93.70% (AUC = 0.652 as single variable and AUC = 0.660 for the regression model, Table 4). 

When sniffin’ sticks test total scores was added to the regression models for long ABs, AUC 

increased to 0.860 (highest value), with sensitivity of 78.9%, specificity of 67.7% and accuracy of 

75.0% (Figure 4). 

 

Relationship of Macro and Micro gait characteristics with clinical characteristics 

Partial correlation analysis between Macro gait characteristics and clinical scales showed a 

negative low to moderate correlation between volume, pattern and variability of walking and 

MDS-UPDRS III, denoting that people with more severe motor scores tended to walk less, in 

shorter bouts and with lower variability. We found that cognitive (MMSE) and health status tests 

(EQ-5D Score) significantly positively correlated with volume characteristics, showing that people 

with poorer cognition and worse health status walked less. In terms of motor tests, the Flamingo 

test showed a significant positive correlation with volume and pattern of walking and the Timed 

Up and Go Test showed negative correlations with volume, pattern and variability, showing that 
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participants with lower motor function walked less, in shorter and less variable bouts. Falls rate 

negatively correlated with volume and pattern of walking, suggesting that people with higher falls 

rate walked less and in shorter bouts (Table 5).  

Partial correlation analysis in RBD participants between Micro gait characteristics and clinical 

scales showed that MDS-UPDRS III scores significantly negatively correlated with pace (step 

velocity and step length) and positively with rhythm (step, swing and stance time), signifying that 

participants with higher score tended to walk slower and with shorter steps (Table 5). Cognitive 

tests (MMSE) showed a significant low to moderate positive correlation with pace and variability 

(step velocity variability), denoting that participants with poorer global cognitive scores walked 

slower and with lower variability. This finding is line with previous work demonstrating that global 

cognitive scores are associated with Micro gait pace (older adults) and variability characteristics 

(in PD) [50]. Our correlation findings, although exploratory, would corroborate the relationship 

between global cognition and gait (pace and step velocity variability characteristics) during the 

prodromal stage of PD, although requires validation in larger groups. 

Motor tests showed a significant positive correlation with pace and variability for the Flamingo 

test, and a negative correlation with pace and variability and a positive correlation with rhythm for 

the Timed Up and Go Test; showing how participants with lower motor functions walked slower 

and with lower variability (Table 5). 

The Epworth Sleepiness Scale Total Score and MDS Probability Score did not show any 

significant correlation with either Macro or Micro gait characteristics (Table 5). 

Discussion 

We provide here evidence that continuous, real-world gait assessment with wearable devices may 

be a good paradigm to identify prodromal Parkinsonian gait disturbances and risk of PD 
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conversion in people with RBD. Being aware that RBD may only reflect a subtype of (future) PD, 

our findings show discrete differences in gait informing a nuanced understanding of gait 

impairment during the prodromal PD stage. Macro gait characteristics demonstrated that pattern 

and walking bout length characteristics were associated with group only for long ABs. In contrast, 

we found that discrete Micro gait characteristics were able to discriminate between people with 

RBD and CL highlighting differences in pace, variability and rhythm, with swing time being the 

best discriminating characteristic for people with RBD.  

These findings highlight specific differences in Macro and Micro gait characteristics that may 

inform a pragmatic method for screening for risk of conversion to PD in RBD cohorts. Our study 

complements the existing evidence that there are subtle changes in gait prior to the onset of 

significant motor symptoms in an at risk group [9]. 

A novel aspect of this study is the real-world wearable device-based assessment of walking 

behaviour and gait impairments associated with RBD prior to the onset of clinically significant 

motor deficits and diagnosis of PD or dementia. This is the first study where data were collected 

with continuous passive monitoring in entirely uncontrolled environments, during every-day life, 

in a totally unconstrained way. Compliance was high and homogenous in both groups: 83.5% of 

the participants wore the accelerometer for the whole 7 day period, while 16.5% of the participants 

wore it for either 6 or 6.5 days. Reasons for the temporary removal of the accelerometer were 

travel and, for one participant, undergoing a CT scan. This presented a unique opportunity to 

observe whether Macro and Micro gait could detect prodromal gait disturbances in RBD, that may 

be able to flag people at risk of PD conversion. Moreover the significant association of clinical 

characteristics with gait lends validity to the findings. 

Walking activity (Macro gait) differs between RBD and CL only during long bouts. 
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Our findings only partly support our hypothesis that people with RBD are less active than CL. 

When looking at all walking bouts, we found that people with RBD were as active as and similar 

to CL when considering the total amount, pattern and variability of walking activity. We found 

that only for long ABs (≥ 60s) people with RBD walked with a higher proportion of short walking 

bouts (significantly higher alpha) and in shorter walking bouts compared to CL; also ROC analysis 

showed that only pattern (alpha) evaluated during long walking bouts played a role in 

discriminating RBD from CL, but did not give significant results during the regression analysis.  

This may reflect restricted engagement in sustained walking bouts for RBD. Comparison across 

studies however is difficult due to limited number of studies on RBD walking activity. 

Interestingly, this walking activity/ behavior “picture” seems very similar to the typical PD pattern 

of activity [37], characterized by an inability to sustain high level of walking and a walking pattern 

defined by shorter walking bouts compared to healthy controls. Our findings on Macro gait 

characteristics not only extend and partly corroborate previous work, but would underline already 

the risk and the tendency of people with RBD, in this prodromal “at high risk” phase, to align with 

and show a “PD-like” behavior, identifying an early risk in people with RBD. 

The data, however, suggest that the relationship of people at risk of developing PD and activity is 

more complex and influenced by duration of walking bouts, particularly longer duration bouts. 

Differences observed in patterns of walking through a reduction in longer walking bouts may be 

due to compensatory change to reduce risk (e.g. falls risk), possibly by reducing duration of 

walking bouts either by limiting access to the community or exercise, or may be due to fatigue 

related to RBD. Our correlations results could corroborate this “risk reduction” hypothesis as we 

showed that people with higher falls rate tended to walk less and in shorter bouts, although this 
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should be interpreted with caution as falls rate in this study was a self-reported measure related to 

the numbers of falls recalled in the six months prior to the assessment. 

 

An open question is whether people with RBD would walk less and in shorter bouts due to fatigue 

as a result of sleep disturbance or rather because they are developing parkinsonism and therefore 

“PD-like” behavior. Our results support the latter, as we have shown that a clinical marker of PD 

(MDS-UPDRS III) was significantly correlated with lower volume of walking and shorter bouts 

length, while Epworth Sleepiness Scale did not show any correlation with either Macro or Micro 

gait characteristics. Reduction in walking bout length in people with RBD may also be due to 

changes in patterns of walking behaviors indicating reduced confidence and a less varied walking 

“routine”. Compensatory strategies or higher attentional load (e.g. dual task) required for walking 

during real-world conditions may also play a role in modifying Macro level outcomes. Indeed, our 

correlation results showed that poorer cognition was significantly associated with poorer 

performance (lower volume of walking), although this is still unclear and further work is required 

to understand this relationship more fully. 

Macro characteristics such as the overall amount of walking is important as inactivity increases 

the risk of other age associated health care conditions– which increase the overall burden of disease 

– which acts almost as a double hit. This becomes very relevant especially because RBD 

participants have been shown to have increased burden of cardiovascular risk factors compared to 

both controls and PD patients[21] and in fact our results showed that health status (EQ-5D VAS 

Score) was positively correlated with volume of walking, so participants with “better” health status 

walked more. By maintaining/increasing habitual levels of activity, more generic benefits, 

protective to a population at high risk of PD may be conferred. 
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Micro gait differs between RBD and CL. 

Our results confirmed the hypothesis that people with RBD would show impaired gait compared 

to controls characterized by slower gait velocity, lower variability and lower cadence. Previous 

work in laboratory settings showed an association between RBD and gait variability as well as 

measures of rhythm [13].  In partial support of previous studies showing that slower step velocity 

(pace) and cadence (slower rhythm) appear to be a prodromal marker for PD, we found rhythm, 

step velocity and its variability to be lower in RBD participants [13]. This could be explained by 

the fact that people with RBD appear to be walking slower and with shorter steps, so with a more 

cautious walking pattern and therefore reduced step velocity variability. Conversely, people with 

PD show higher gait variability, so our results could suggest that there may be a change in the 

variability construct going from the prodromal stage to manifest disease: from lower gait 

variability in the prodromal phase to higher gait variability later when PD manifests. Higher 

variability in Micro gait characteristics may be advantageous or deleterious representing either 

compensatory adaptions to minimize risk, or impaired control and inability to minimize risk, 

respectively. Conversely lower variability in Macro gait characteristics (‘behavior’) may be 

deleterious - representing inability to engage and adapt in a wider variety of walking activities and 

presenting a cautious gait pattern [46]. Results from our correlations analysis corroborate this 

hypothesis; we showed that participants with poorer global cognition (lower MMSE scores) 

walked with higher step velocity variability and slower pace (lower step velocity and step length), 

and that participants with higher motor disease severity and lower motor functions (MDS-UPDRS 

III, Flamingo Test and Timed Up and Go Test) walked slower, with shorter steps and with lower 

variability (swing time variability, step length variability and step velocity variability). 
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In contrast to a previous study conducted in a high-risk cohort, we did not find increased gait 

asymmetry [18]. This could be due to the different protocol (study was conducted in a lab-based 

environment and not real-world conditions) and the different cohort (non-manifesting LRRK2-

G2019S mutation carrier vs. RBD). We speculate that when following up people with RBD and 

testing them longitudinally the tendency of higher variability and asymmetry may emerge, leading 

to a more “PD like” gait. 

 

In line with our hypothesis, we found that Micro gait characteristics played an important role in 

discriminating RBD from CL. We showed that pace, variability and rhythm characteristics were 

impaired in RBD and rhythm (swing time) was the best single discriminative domain in the 

regression model for Micro gait characteristics. This is interesting as the ability to regulate pace 

and rhythm (swing time) is notably impaired in PD and both domains have been shown to be dopa-

resistant sensitive measures of disease progression [51]. The lower pace and rhythm (poorer 

performance) of RBD compared to CL and the fact that swing time strongly discriminated RBD 

from CL would corroborate the theory that subtle changes in rhythm could reflect not only 

prodromal and early manifestation motor impairment, but also a potential powerful progressive 

marker of alterations to the central gait network in RBD [16, 51]. 

As a general comment, we did not achieve high sensitivity and specificity values; this in line with 

the high heterogeneity characterizing RBD populations. Indeed, within RBD participants some are 

on the verge of converting to PD, others may convert in >10 years’ time, and others may never 

convert. Recent work has described how olfactory dysfunction is an important clinical biomarker 

for PD [52].  We found that adding olfactory loss information (sniffin’ sticks test total scores) to 

gait characteristics increased discriminative power of the regression models, achieving highest 
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AUC for long ABs (AUC = 0.860). This suggests that a multimodal assessment could be a useful 

tool for discrimination of RBD from controls. Future work is needed to address this point by 

looking at larger cohorts and longitudinal data including converters to DLB, MSA, etc. which may 

have a different gait signature. 

 

Clinical Implications 

We found that more Micro gait characteristics than Macro ones seem to discriminate people with 

RBD from CL; specifically Micro gait pace, rhythm and variability measures seem to be best 

discriminative domains for presence of RBD. Real-world walking behavior and gait assessment 

could therefore play an important role, together with other prodromal biomarkers, as a diagnostic 

tool to identify at an early stage people with similar “PD-like” walking behaviors and gait profiles, 

so at risk of developing PD. 

 

Limitations 

This study informs understanding of the association between walking activity quantified via a 

range of Macro and Micro gait characteristics and RBD, however further work is required to 

identify the merits of these exploratory analysis, especially in a larger and balanced sample of 

people with RBD and in longitudinal studies looking at conversion to PD if and when available. 

We acknowledge that, due to male predominance of the presented cohort, generalisability of the 

results may not extend to females. Moreover, accounting for multiple correction may also 

strengthen and confirm results. Utilizing larger populations of RBD assessed longitudinally to 

enable separation of participants with high risk of converting to PD to those with lower risk may 

help improving discriminatory analysis and in ultimately predicting prodromal PD. We 
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acknowledge that the inclusion of only one model of gait including specific Macro and Micro gait 

characteristics may limit generalizability; in the future other reported models and outcomes should 

be considered to identify the best measure (or combination of measures) for the detection of early 

prodromal markers of PD.  

 

Conclusion 

We found that Macro gait outcomes, assessing overall walking behavior, do not seem to play a 

significant role in identifying or discriminating RBD, apart when considering longer walking 

bouts. In general longer bouts (≥ 60s) seem to differentiate groups better than medium or medium-

to-long bouts. Micro gait characteristics are sensitive to identify RBD; pace, variability and rhythm 

characteristics significantly differentiated RBD from controls, with swing time being the best 

discriminator for the definition of persons with RBD, so at risk of developing PD. Our results are 

promising and would suggest quantitative sensor-based real-world gait assessment as an important 

part of an assessment battery for definition of prodromal markers of PD. 
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Figures 

Figure 1.  

Real-world assessment – Macro and Micro gait characteristics: (a) Example of body worn monitor 

placement for the real-world (7-day) data collection. (b) Raw vertical acceleration processing 

(signal segments in black) from real-world data. (c) Example of walking bout extraction and Micro 

gait characteristic evaluation from walking bouts. (d) Data output: conceptual model of Macro gait 

representing three domains and six Macro gait characteristics, and Micro gait representing five 

domains and 14 Micro gait characteristics. 
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Figure 2.  

Radar plot illustrating the real-world Macro (panel a) and Micro (panel b) gait characteristics for 

controls (CL) and people with rapid eye movement sleep behavior disorder (RBD) evaluated in 

real-world conditions for total ambulatory bouts. The central dotted line represents CL data, 

deviation from zero along the axis radiating from the center of the plot represents how many 

standard deviations (range: ± 1 SD, z score based on CL means and standard deviations) the RBD 

differ from CL. * represents significant differences between RBD and CL (p values < 0.05). (Var: 

Variability, Asy: Asymmetry).  
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Figure 3. 

Radar plot illustrating the real-world Macro and Macro gait characteristics for controls (CL) and 

people with rapid eye movement sleep behavior disorder (RBD) evaluated in real-world conditions 

for short-to-medium (10s ≤ ABs < 30s, Macro - panel a, Micro - panel d), medium-to-long (30s ≤ 

ABs < 60s, Macro - panel b, Micro - panel e) and long ambulatory bouts (ABs ≥ 60s, Macro - 

panel c, Micro - panel f). The central dotted line represents CL data, deviation from zero along the 

axis radiating from the center of the plot represents how many standard deviations (range: ± 1 SD, 

z score based on CL means and standard deviations) the RBD differ from CL. * represents 

significant differences between RBD and CL (p values < 0.05). (Var: Variability, Asy: 

Asymmetry). 

 



 

31 
 

 



 

32 
 

Figure 4. 

Receiver Operating Characteristics (ROC) results for regression models using gait only and 

olfactory loss information (sniffin’ sticks test total score) in addition to gait characteristics for 

total ambulatory bouts (Total ABs, panel a) and long ambulatory bouts (ABs ≥ 60s, panel b)). 
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Tables 

Table 1 

Clinical and demographic characteristics for controls (CL) and participants with rapid eye 

movement sleep behavior disorder (RBD). 

Characteristic 
CL (n = 34) RBD (n = 63) 

p 

Mean (SD) Mean (SD) 

Female (n, %) 0, 0% 5, 7.9% 0.092 

Age (years) 67.3 (10.1) 67.1 (9.4) 0.945 

BMI (kg/m2) 27.1 (3.0) 28.1 (5.5) 0.314 

MMSE (0-30) 28.6 (1.9) 26.9 (2.2) 0.001 

Duration of symptoms (years) - 4.5 (4.2) - 

MDS Probability of prodromal PD [%] - 85.2 (23.2) - 

Epworth Sleepiness Scale Total Score 

(0-24) 
5.3 (3.6) 7.0 (5.0) 0.079 

Sniffin’ Sticks Total Score (0-16) 12.2 (2.2) 8.1 (3.2) <0.001 

EQ-5D VAS Score 85.7 (9.9) 76.0 (17.6) 0.001 

MDS-UPDRS III 3.0 (2.5) 6.6 (6.7) <0.001 

Flamingo test (s) 25.3 (9.3) 22.2 (10.3) 0.154 

Purdue pegboard test (s) 34.1 (6.5) 30.8 (6.3) 0.018 

Timed Up and Go test (s) 8.0 (2.0) 9.3 (2.8) 0.019 

Falls rate 0.1 (0.3) 0.4 (0.8) 0.017 

BMI: Body Mass Index; MMSE, Mini–Mental State Examination; EQ-5D VAS score: EuroQol-5 Dimension VAS 

score; MDS-UPDRS III: Movement Disorders Unified Parkinson’s Disease Rating Scale part III; Falls Rate: number 

of falls reported in the six months before the assessment. In bold significant p-values (p <0.05).  
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Table 2. 

Real-world Macro gait characteristics (volume, pattern and variability) for controls (CL) and 

people with rapid eye movement sleep behavior disorder (RBD). Data are presented for total 

ambulatory bouts (ABs > three steps). Values are presented as mean ± standard deviation (SD). 

Results of the ANCOVA analysis between people with RBD and CL are reported, in bold are 

shown p-values < 0.05. 

Macro Characteristics Total ABs 

  CL RBD F-value p 

Volume     

Total Walking Time per Day  (Min) 209 (61) 210 (64) 0.252 0.617 

Percentage of Walking Time 15 (4) 15 (4) 0.252 0.617 

Number of steps per Day 14494 (4141) 14139 (4656) 0.006 0.940 

Bouts per Day 654 (191) 669 (174) 0.625 0.431 

Pattern     

Mean Bout Length (sec) 19 (4) 19 (3) 0.476 0.492 

Alpha (α) 1.588 (0.036) 1.585 (0.034) 0.290 0.592 

Variability     

Variability (S2) 0.889 (0.069) 0.872 (0.07) 1.172 0.282 
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Table 3. 

Real-world Micro gait characteristics for controls (CL) and people with rapid eye movement sleep 

behavior disorder (RBD). Data are presented for total ambulatory bouts (ABs > three steps). 

Values are presented as mean ± standard deviation (SD). Results of the ANCOVA analysis 

between people with RBD and CL are reported, in bold are shown p-values < 0.05. 

Micro Characteristics Total ABs    

  CL RBD F-value p 

Pace     

Step Velocity (m/s) 
1.084 

(0.091) 

1.037 

(0.073) 
5.994 0.016 

Step Length  (m) 
0.609 

(0.036) 

0.596 

(0.034) 
2.209 0.141 

Swing Time Var (s) 
0.145 

(0.016) 

0.148 

(0.012) 
0.906 0.344 

Variability     

Step Velocity Var (m/s) 
0.384 

(0.039) 

0.367 

(0.029) 
5.922 0.017 

Step Length Var (m) 
0.156 

(0.012) 

0.155 

(0.011) 
0.062 0.804 

Step Time Var  (s) 
0.174 

(0.021) 

0.176 

(0.013) 
0.226 0.635 

Stance Time Var (s) 
0.186 

(0.023) 

0.188 

(0.015) 
0.176 0.676 

Rhythm     

Step Time (s) 
0.602 

(0.026) 

0.613 

(0.021) 
5.496 0.021 

Swing Time (s) 
0.446 

(0.024) 

0.459 

(0.023) 
6.941 0.010* 

Stance Time (s) 
0.755 

(0.03) 

0.768 

(0.022) 
5.366 0.023 

Asymmetry     

Step Time Asy (s) 
0.095 

(0.016) 

0.094 

(0.009) 
0.719 0.399 

Swing Time Asy (s) 
0.086 

(0.014) 

0.085 

(0.009) 
0.662 0.418 

Stance Time Asy (s) 
0.096 

(0.016) 

0.094 

(0.009) 
0.862 0.356 

Postural Control     

Step Length Asy (m) 
0.085 

(0.009) 

0.086 

(0.008) 
0.313 0.577 

Var: Variability; Asy: Asymmetry. * p ≤ 0.01 
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Table 4 

Receiver Operating Characteristics analysis with Area Under the Curve (AUC) and binary logistic 

regression significant results with values of sensitivity, specificity and accuracy for the Macro and 

Micro gait characteristics. Data are presented for total ambulatory bouts (ABs > three steps) and 

ABs ≥ 60s. 

Total bouts AUC p 

Sensitivity 

at  90% 

specificity 

Specificity 

at 90% 

sensitivity  

Max accuracy 

(sensitivity, specificity) 

Regression (sensitivity, 

specificity, accuracy) 

Micro             

Pace       

Step Velocity (m/s) 0.648 0.016 14.30% 25.71% 63.33% (66.7%, 60.00%) 
88.9%, 31.4%, 68.4% 

p=0.023 (AUC = 0.698) 

Step Length  (m) 0.622 0.047 15.87% 17.14% 63.80% (61.9%, 65.71%)  - 

Variability       
Step Velocity Var 

(m/s) 
0.644 0.019 33.33% 17.14% 63.01% (31.7%, 94.28%) 

88.9%, 31.4%, 68.4% 

p=0.042 (AUC = 0.698) 

Rhythm       

Step Time (s) 0.622 0.047 22.22% 22.86% 61.27% (39.7%, 82.85%)  - 

Swing Time (s) 0.631 0.032 23.80% 22.86% 61.42% (85.7%, 37.14%)  - 

Stance Time (s) 0.620 0.050 22.22% 28.57% 59.68% (50.8%, 68.57%)  - 

Abs ≥ 60s  

Macro             

Pattern       

Mean Bout Length 

(sec) 
0.631 0.032 15.90% 34.29% 64.44% (88.90%, 40%)  - 

Alpha (α) 0.625 0.040 17.50% 37.14% 
65.40% (93.70%, 

37.14%) 
 - 

Variability       

Variability (S2) 0.623 0.045 17.50% 17.14% 
61.90% (66.70%, 

57.14%) 
 - 

Micro             
Pace       

Step Velocity (m/s) 0.625 0.041 12.70% 28.57% 
61.27% (96.80%, 

25.71%) 
 - 

Rhythm   
 

   

Step Time (s) 0.642 0.020 14.30% 22.86% 
64.44% (74.60%, 

54.29%) 
 - 

Swing Time (s) 0.652 0.013 19.00% 25.71% 
66.83% (50.80%, 

82.86%) 

93.7%, 20%, 67.3% 

p=0.011 (AUC = 0.660) 

Stance Time (s) 0.640 0.022 19.00% 25.71% 
63.49% (69.80%, 

57.14%) 
 - 

Var: Variability. In bold significant p-values for binary logistic regression analysis (p <0.05).  
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Table 5 

Partial correlations between Macro and Micro gait characteristics and clinical scales in RBD 

participants. Data displayed as (r (p value)). Data in bold refer to significant correlations (p < 0.05). 

Total bouts MMSE 

MDS 

Probability 

of 

prodromal 

PD 

Epworth 

Sleepiness 

Scale Total 

Score 

EQ-5D 

VAS 

Score 

MDS-

UPDRS 

III 

Flamingo 

test 

Timed 

Up and 

Go test  

Falls 

Rate 

Macro 

Characteristics        

Volume 
        

Total Walking 

Time per Day  

(Min) 

.227 

(.035) -.156 (.234) .018 (.862) 

.245 

(.019) 

-.286 

(.005)* 

.198 

(.056) 

-.330 

(.001)* 

-.343 

(.002)* 

Percentage of 

Walking Time 

.227 

(.035) -.156 (.234) .018 (.862) 

.245 

(.019) 

-.286 

(.005)* 

.198 

(.056) 

-.330 

(.001)* 

-.343 

(.002)* 

Number of steps 

per Day 

.250 

(.019) -.118 (.369) -.002 (.988) 

.240 

(.021) 

-.330 

(.001)* 

.205 

(.047) 

-.357 

(<.001)* 

-.306 

(.005)* 

Bouts per Day 
.167 

(.122) -.175 (.181) .001 (.989) 

.221 

(.034) 

-.181 

(.081) 

.092 

(.377) 

-.217 

(.035) 

-.261 

(.019) 

Pattern 
        

Mean Bout 

Length (sec) 

.157 

(.145) -.097 (.460) -.005 (.966) 

.112 

(.288) 

-.247 

(.016) 

.251 

(.015) 

-.259 

(.012) 

-.264 

(.017) 

Alpha (α) 
.021 

(.846) .125 (.340) -.073 (.492) 

-.020 

(.852) 

.106 

(.309) 

-.182 

(.078) 

.138 

(.185) 

.200 

(.073) 

Variability 
        

Variability (S2) 
.155 

(.151) -.035 (.790) -.050 (.637) 

.105 

(.318) 

-.227 

(.028) 

.178 

(.086) 

-.224 

(.030) 

-.203 

(.069) 

Micro 

Characteristics                 

Pace 
        

Step Velocity 

(m/s) 

.370 

(<.001)* -.066 (.618) -.068 (.522) 

.152 

(.147) 

-.362 

(<.001)* 

.337 

(.001)* 

-.455 

(<.001)* 

-.144 

(.199) 

Step Length  

(m) 

.394 

(<.001)* -.083 (.530) -.061 (.564) 

.189 

(.071) 

-.276 

(.007)* 

.323 

(.001)* 

-.379 

(<.001)* 

-.157 

(.161) 

Swing Time Var 

(s) 

-.190 

(.078) -.037 (.781) .119 (.258) 

-.164 

(.119) 

.149 

(.152) 

-.154 

(.139) 

.245 

(.017) 

.087 

(.437) 

Variability 
        

Step Velocity 

Var (m/s) 

.295 

(.006)* -.194 (.136) -.040 (.707) 

.029 

(.784) 

-.150 

(.150) 

.267 

(.009)* 

-.259 

(.012) 

-.122 

(.279) 

Step Length Var 

(m) 

.205 

(.057) -.252 (.052) -.096 (.361) 

.145 

(.167) 

-.119 

(.253) 

.203 

(.050) 

-.236 

(.022) 

-.115 

(.306) 

Step Time Var  

(s) 

-.153 

(.156) -.129 (.325) .143 (.172) 

-.168 

(.109) 

.075 

(.473) 

-.061 

(.559) 

.155 

(.136) 

.064 

(.572) 

Stance Time 

Var (s) 

-.125 

(.248) -.142 (.280) .142 (.176) 

-.193 

(.065) 

.061 

(.562) 

-.049 

(.642) 

.133 

(.202) 

.066 

(.556) 

Rhythm 
        

Step Time (s) 
-.143 

(.187) -.056 (.671) .050 (.635) 

-.026 

(.806) 

.241 

(.019) 

-.109 

(.295) 

.274 

(.008)* 

.015 

(.893) 

Swing Time (s) 
-.152 

(.159) .005 (.970) .094 (.370) 

-.114 

(.279) 

.245 

(.017) 

-.111 

(.288) 

.297 

(.004)* 

.031 

(.782) 

Stance Time (s) 
-.151 

(.163) -.074 (.572) .031 (.768) 

.027 

(.796) 

.211 

(.041) 

-.086 

(.407) 

.249 

(.016) 

-.007 

(.947) 

Asymmetry 
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Step Time Asy 

(s) 

.054 

(.617) -.127 (.333) .060 (.569) 

-.003 

(.979) 

-.084 

(.419) 

-.066 

(.529) 

-.032 

(.759) 

.059 

(.601) 

Swing Time 

Asy (s) 

.017 

(.877) -.128 (.331) .102 (.332) 

-.075 

(.479) 

-.036 

(.731) 

-.155 

(.135) 

.102 

(.327) 

.120 

(.287) 

Stance Time 

Asy (s) 

.051 

(.642) -.127 (.334) .121 (.249) 

-.038 

(.722) 

-.045 

(.664) 

-.115 

(.268) 

.030 

(.773) 

.093 

(.408) 

Postural 

Control         
Step Length 

Asy (m) 

.098 

(.367) -.092 (.486) .127 (.227) 

-.012 

(.908) 

.009 

(.930) 

-.025 

(.812) 

-.134 

(.198) 

.017 

(.879) 

MMSE, Mini–Mental State Examination; EQ-5D VAS score: EuroQol-5 Dimension VAS score; MDS-UPDRS III: 

Movement Disorders Unified Parkinson’s Disease Rating Scale part III; Var: Variability; Asy: Asymmetry. * p ≤ 0.01 
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Supplementary Table 1 

Real-world Macro gait characteristics (volume, pattern and variability) for controls (CL) and 

people with rapid eye movement sleep behaviour disorder (RBD). Data are presented for short-to-

medium (10s ≤ ABs < 30s, corresponding to a range of 15-50 steps), medium-to-long (30s ≤ ABs 

< 60s, corresponding to arrange of 50-100 steps) and long ambulatory bouts (ABs ≥ 60s, 

corresponding to ≥ 100 steps). Values are presented as mean ± standard deviation (SD). Results of 

the ANCOVA analysis between people with RBD and CL are reported, in bold are shown p values 

< 0.05. 

Macro 

Characteristics 

10s ≤ ABs < 30s 

(15 – 50 steps) 

30s ≤ ABs < 60s 

(50 – 100 steps) 

ABs ≥ 60s 

(≥ 100 steps) 

  CL RBD 
F-

value 
p CL RBD 

F-

value 
p CL RBD 

F-

value 
p 

Volume             

Total Walking 

Time per Day  

(Min) 

64 (20) 66 (18) 1.252 0.266 37 (15) 39 (14) 0.732 0.394 72 (30) 68 (34) 0.057 0.811 

Percentage of 

Walking Time 
4 (1) 5 (1) 1.252 0.266 3 (1) 3 (1) 0.217 0.642 5 (2) 5 (2) 0.409 0.524 

Number of steps 

per Day 

4040 

(1341) 

4139 

(1080) 
0.616 0.434 

2668 

(1076) 

2733 

(979) 
0.435 0.511 

6060 

(2302) 

5548 

(2942) 
0.262 0.610 

Bouts per Day 219 (69) 
228 

(60) 
1.313 0.255 54 (22) 56 (20) 0.674 0.414 29 (13) 29 (13) 0.097 0.756 

Pattern             

Mean Bout 

Length (sec) 
17 (0.4) 

17 

(0.4) 
0.208 0.649 41 (1) 41 (1) 0.908 0.343 

159 

(36) 

143 

(33) 
4.551 0.036 

Alpha (α) 
3.407 

(0.121) 

3.417 

(0.119) 
0.078 0.781 

4.838 

(0.322) 

4.781 

(0.262) 
1.201 0.276 

2.522 

(0.342) 

2.706 

(0.374) 
5.497 0.021 

Variability             

Variability (S2) 
0.298 

(0.006) 

0.296 

(0.006) 
3.234 0.075 

0.188 

(0.005) 

0.189 

(0.006) 
0.725 0.397 

0.612 

(0.115) 

0.564 

(0.122) 
3.024 0.085 
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Supplementary Table 2 

Real-world Micro gait characteristics for controls (CL) and people with rapid eye movement sleep 

behaviour disorder (RBD). Data are presented for short-to-medium (10s ≤ ABs < 30s, 

corresponding to a range of 15-50 steps), medium-to-long (30s ≤ ABs < 60s, corresponding to a 

range of 50-100 steps) and long ambulatory bouts (ABs ≥ 60s, corresponding to ≥ 100 steps). 

Values are presented as mean ± standard deviation (SD). Results of the ANCOVA analysis 

between people with RBD and CL are reported, in bold are shown p values < 0.05. 

Micro 

Characteristics 

 10s ≤ ABs < 30s 

(15 – 50 steps) 
  

 30s ≤ ABs < 60s 

(50 – 100 steps) 
  

 ABs ≥ 60s 

(≥ 100 steps) 
  

  CL RBD 
F-

value 
p CL RBD 

F-

value 
p CL RBD 

F-

value 
p 

Pace             

Step Velocity (m/s) 
1.026 

(0.069) 

1.009 

(0.059) 
1.634 0.204 

1.079 

(0.066) 

1.057 

(0.073) 
1.897 0.172 

1.146 

(0.162) 

1.078 

(0.109) 
4.660 0.033 

Step Length  (m) 
0.59 

(0.024) 

0.586 

(0.022) 
0.344 0.559 

0.611 

(0.023) 

0.607 

(0.03) 
0.066 0.797 

0.633 

(0.061) 

0.614 

(0.052) 
1.890 0.173 

Swing Time Var (s) 
0.156 

(0.014) 

0.156 

(0.01) 
0.155 0.695 

0.148 

(0.014) 

0.148 

(0.011) 
0.003 0.957 

0.127 

(0.03) 

0.133 

(0.021) 
1.124 0.292 

Variability             

Step Velocity Var 

(m/s) 

0.382 

(0.029) 

0.378 

(0.028) 
0.221 0.640 

0.375 

(0.028) 

0.363 

(0.03) 
3.387 0.069 

0.351 

(0.077) 

0.338 

(0.05) 
0.714 0.400 

Step Length Var 

(m) 

0.154 

(0.008) 

0.155 

(0.007) 
1.320 0.254 

0.15 

(0.01) 

0.149 

(0.01) 
0.043 0.837 

0.143 

(0.03) 

0.145 

(0.023) 
0.312 0.578 

Step Time Var  (s) 
0.185 

(0.018) 

0.184 

(0.011) 
0.000 0.986 

0.174 

(0.018) 

0.173 

(0.012) 
0.130 0.719 

0.154 

(0.039) 

0.16 

(0.026) 
0.619 0.433 

Stance Time Var (s) 
0.197 

(0.02) 

0.196 

(0.012) 
0.000 0.994 

0.185 

(0.02) 

0.185 

(0.013) 
0.058 0.811 

0.166 

(0.043) 

0.172 

(0.029) 
0.542 0.463 

Rhythm             

Step Time (s) 
0.620 

(0.024) 

0.624 

(0.023) 
0.938 0.335 

0.612 

(0.026) 

0.618 

(0.025) 
1.667 0.200 

0.585 

(0.042) 

0.603 

(0.027) 
5.612 0.020 

Swing Time (s) 
0.465 

(0.024) 

0.473 

(0.024) 
2.741 0.101 

0.456 

(0.025) 

0.465 

(0.027) 
2.664 0.106 

0.428 

(0.032) 

0.444 

(0.026) 
6.288 0.014 

Stance Time (s) 
0.774 

(0.027) 

0.777 

(0.023) 
0.522 0.472 

0.765 

(0.028) 

0.772 

(0.026) 
1.755 0.189 

0.739 

(0.049) 

0.761 

(0.03) 
6.067 0.016 

Asymmetry     
        

Step Time Asy (s) 
0.077 

(0.014) 

0.076 

(0.009) 
0.311 0.578 

0.042 

(0.008) 

0.042 

(0.007) 
0.248 0.619 

0.025 

(0.006) 

0.027 

(0.007) 
0.853 0.358 

Swing Time Asy (s) 
0.07 

(0.012) 

0.069 

(0.01) 
0.545 0.462 

0.038 

(0.008) 

0.038 

(0.007) 
0.544 0.463 

0.022 

(0.005) 

0.024 

(0.006) 
2.068 0.154 

Stance Time Asy 

(s) 

0.077 

(0.013) 

0.076 

(0.01) 
0.394 0.532 

0.042 

(0.009) 

0.042 

(0.007) 
0.162 0.688 

0.024 

(0.006) 

0.026 

(0.006) 
2.180 0.143 

Postural Control     
        

Step Length Asy 

(m) 

0.081 

(0.01) 

0.082 

(0.009) 
0.283 0.596 

0.05 

(0.008) 

0.051 

(0.008) 
0.260 0.612 

0.027 

(0.006) 

0.029 

(0.007) 
2.359 0.128 

Var: Variability; Asy: Asymmetry. 


